請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42482
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳漢忠(Han-Chung Wu) | |
dc.contributor.author | De-Kuan Chang | en |
dc.contributor.author | 張德寬 | zh_TW |
dc.date.accessioned | 2021-06-15T01:14:35Z | - |
dc.date.available | 2012-09-15 | |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-29 | |
dc.identifier.citation | Allen, T.M. (2002). Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer 2, 750-763.
Allen, T.M., and Cullis, P.R. (2004). Drug delivery systems: entering the mainstream. Science 303, 1818-1822. Allen, T. M., Hansen, C., Martin, F., Redemann, C., and Yau-Young, A. (1991). Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochimica et Biophysica Acta 1066, 29-36. Al-Batran, S. E., Bischoff, J., von Minckwitz, G., Atmaca, A., Kleeberg, U., Meuthen, I., Morack, G., Lerbs, W., Hecker, D., Sehouli, J., Knuth, A., and Jager, E. (2006). The clinical benefit of pegylated liposomal doxorubicin in patients with metastatic breast cancer previously treated with conventional anthracyclines: a multicentre phase II trial. British Journal of Cancer 94, 1615-1620. Arap, W., Pasqualini, R., and Ruoslahti, E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377-380. Barry, M. A., Dower, W. J., and Johnston, S. A. (1996). Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nature Medicine 2, 299-305. Bellamy, W. T., Richter, L., Sirjani, D., Roxas, C., Glinsmann-Gibson, B., Frutiger, Y., Grogan, T. M., and List, A. F. (2001). Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97, 1427-1434. Bains, M.S. (1991). Surgical treatment of lung cancer. Chest 100, 826-837. Beasley, M.B., Brambilla, E., and Travis, W.D. (2005). The 2004 World Health Organization classification of lung tumors. Seminars in Roentgenology 40, 90-97. Bennett, D.E., Sasser, W.F., and Ferguson, T. (1969). Adenocacinoma of the lung in men. A clinicopathologic study of 100 cases. Cancer 23, 431-439. Bray, F., Tyczynski, J.E., Parkin, D.M. (2004). Going up or coming down? The changing phases of the lung cancer epidemic from 1967 to 1999 in the 15 European Union countries. European Journal of Cancer 40, 96. Bosslet, K., Straub, R., Blumrich, M., Czech, J., Gerken, M., Sperker, B., Kroemer, H.K., Gesson, J.P., Koch, M., and Monneret, C. (1998). Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Research 58, 1195-1201. Boucher, Y., Baxter, L.T., and Jain, R.K. (1990). Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Research 50, 4478-4484. Boucher, Y., Kirkwood, J. M., Opacic, D., Desantis, M., and Jain, R. K. (1991). Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Research 51, 6691-6694. Brigger, I., Dubernet, C., and Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54, 631-651. Boyer M.W. (1977). Treating invasive lung cancer. The American Journal of Nursing 77, 1916-1923. Boyle, P., Gandini, S., and Gray, N. (2000). Epidemiology of lung cancer: a century of great success and ignominious failure. (London, Martin Dunitz). Brown, J.M., and Wilson, W.R. (2004). Exploiting tumour hypoxia in cancer treatment. Nature Reviews Cancer 4, 437-447. Byrd, R.B., Miller, W.E., Carr, D.T., Payne, W.S., and Woolner, L.B. (1968). The roentgenographic appearance of large cell carcinoma of the bronchus. Mayo Clinic Proceedings 43, 333-336. Chang, D.K. (2005). Identification of a novel peptide specifically binding to lung cancer for targeted therapy. MA thesis, National Taiwan University 28-40. Chen, Y.C., Huang, H.N., Lin, C.T., Chen, Y.F., King, C.C., and Wu, H.C. (2007). Generation and characterization of monoclonal antibodies against dengue virus type 1 for epitope mapping and serological detection by epitope-based peptide antigens. Clinical Vaccine Immunology 14, 404-411. Chu, Y.W., Yang, P.C., Yang, S.C., Shyu, Y.C., Hendrix, M.J., Wu, R., and Wu, C.W. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. American Journal of Respiratory Cell and Molecular Biology 17, 353-360. Colbern, G.T., Hiller, A.J., Musterer, R.S., Pegg, E., Henderson, I.C., and Working, P.K. (1999). Significant Increase in Antitumor Potency of Doxorubicin Hc1 by its Encapsulation in Pegylated Liposomes. Journal of Liposome Research 9, 523–538. D'Mello, F., Partidos, C.D., Steward, M.W., and Howard, C.R. (1997). Definition of the primary structure of hepatitis B virus (HBV) pre-S hepatocyte binding domain using random peptide libraries. Virology 237, 319-326. Davis, M.E., Chen, Z., and Shin, D.M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Delivery 7, 771-782. Dharap, S.S., Wang, Y., Chandna, P., Khandare, J.J., Qiu, B., Gunaseelan, S., Sinko, P.J., Stein, S., Farmanfarmaian, A., and Minko, T. (2005). Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci U S A 102, 12962-12967. Drummond, D.C., Meyer, O., Hong, K., Kirpotin, D.B., and Papahadjopoulos, D. (1999). Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological Reviews 51, 691-743. Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer 6, 688-701. D’Mello, F., Partidos, C.D., Steward, M.W., and Howard, C.R. (1997). Definition of the Primary Structure of Hepatitis B Virus (HBV) pre-S Hepatocyte Binding Domain Using Random Peptide Libraries. Virology 237, 319-326. Eagan, R.T., Maurer, L.H., Forcier, R.J., Tulloh, M. (1973). Combination chemotherapy and radiation therapy in small cell carcinoma of the lung. Cancer 32, 371-379. Eremina, V., Jefferson, J. A., Kowalewska, J., Hochster, H., Haas, M., Weisstuch, J., Richardson, C., Kopp, J. B., Kabir, M. G., Backx, P. H., Gerber, H. P., Ferrara, N., Barisoni, L., Alpers, C. E., and Quaggin, S. E. (2008). VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358, 1129-1136. Folgori, A., Tafi, R., Meola, A., Felici, F., Galfre, G., Cortese, R., Monaci, P., and Nicosia, A. (1994). A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. Embo Journal 13, 2236-2243. Flehringer, B., Kimmel, M., and Melamed, M. (1992). The effect of surgical treatment on survival from early lung cancer. Implications for screening. Chest 101, 1013-1018. Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A., and Barenholz, Y. (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Research 54, 987-992. Gabizon, A., and Martin, F. (1997). Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 54 Suppl 4, 15-21. Gabizon A.A., Shmeeda, H., and Zalipsky, S. (2006). Pros and Cons of the Liposome Platform in Cancer Drug Targeting. Journal of Liposome Research 16, 175-183. Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., and Carbone, D. P. (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150-4166. Gutmann, R., Leunig, M., Feyh, J., Goetz, A. E., Messmer, K., Kastenbauer, E., and Jain, R. K. (1992). Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Research 52, 1993-1995. Gottesman, M.M. (2002). Mechanisms of cancer drug resistance. Annual Review of Medicine 53, 615-627. Gottesman, M.M., Fojo, T. and Bates, S.E. (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Reviews Cancer 2, 48-58. Hammar S. (1987). Adenocarcinoma and large cell undifferentiated carcinoma of the lung. Ultrastructural Pathology 11, 263-291. Harrington, K.J., Mohammadtaghi, S., Uster, P.S., Glass, D., Peters, A.M., Vile, R.G., and Stewart, J.S. (2001). Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clinical Cancer Research 7, 243-254. Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., Jain, R. K., and McDonald, D. M. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. The American journal of pathology 156, 1363-1380. Heldin, C.H., Rubin, K., Pietras, K., and Ostman, A. (2004). High interstitial fluid pressure - an obstacle in cancer therapy. Nature Reviews Cancer 4, 806-813. Hu, W., and Kavanagh, J.J. (2003). Anticancer therapy targeting the apoptotic pathway. Lancet Oncology 4, 721-729. Huang, S.K., Mayhew, E., Gilani, S., Lasic, D.D., Martin, F.J., and Papahadjopoulos, D. (1992). Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Research 52, 6774-6781. Hurwitz, H., Fehrenbach, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R., and Kabbinavar, F. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine 350, 2335-2342. Jain, R.K. (1996). 1995 Whitaker Lecture: delivery of molecules, particles, and cells to solid tumors. Ann Biomed Eng 24, 457-473. Jain, R.K. (2001). Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46, 149-168. Jain, R.K. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Medicine 7, 987–989. Jett, J.R. (1993). Current treatment of unresectable lung cancer. Mayo Clinic Proceedings 68, 603-611. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., Li, T., Isner, J. M., and Asahara, T. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97, 3422-3427. Kirpotin, D., Park, J.W., Hong, K., Zalipsky, S., Li, W.L., Carter, P., Benz, C.C., and Papahadjopoulos, D. (1997). Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36, 66-75. Kuo, S.Y. (2004). Identification of oral cancer-targeted peptides by in vivo phage display and development of ligand-targeted therapy for oral cancer. MA thesis, National Taiwan University 39-42. Laginha, K.M., Verwoert, S., Charrois, G.J., and Allen, T.M. (2005). Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clinical Cancer Research 11, 6944-6949. Lee, C.G., Heijn, M., di Tomaso, E., Griffon-Etienne, G., Ancukiewicz M., Koike, C., Park, K.R., Ferrara, N., Jain, R.K., Suit, H.D., and Boucher, Y. (2000). Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Research 60, 5565–5570. Lee, T.Y., Lin, C.T., Kuo, S.Y., Chang, D.K., and Wu, H.C. (2007). Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery. Cancer Research 67, 10958-10965. Lee, T.Y., Wu, H.C., Tseng, Y.L., and Lin, C.T. (2004). A novel peptide specifically binding to nasopharyngeal carcinoma for targeted drug delivery. Cancer Research 64, 8002-8008. Less, J. R., Posner, M. C., Boucher, Y., Borochovitz, D., Wolmark, N., and Jain, R. K. (1992). Interstitial hypertension in human breast and colorectal tumors. Cancer Research 52, 6371-6374. Li, B., Tom, J.Y., Oare, D., Yen, R., Fairbrother, W.J., Wells, J.A., and Cunningham, B.C. (1995). Minimization of a polypeptide hormone. Science 270, 1657-1660. Liu, I.J., Hsueh, P.R., Lin, C.T., Chiu, C.Y., Kao, C.L., Liao, M.Y., and Wu, H.C. (2004). Disease-specific B Cell epitopes for serum antibodies from patients with severe acute respiratory syndrome (SARS) and serologic detection of SARS antibodies by epitope-based peptide antigens. The Journal of Infectious Diseases 190, 797-809. Lo, A., Lin, C.T., and Wu, H.C. (2008). Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Molecular Cancer Therapeutics 7, 579-589. Ludwig, H., Strasser-Weippl, K., Schreder, M., and Zojer, N. (2007). Advances in the treatment of hematological malignancies: current treatment approaches in multiple myeloma. Annals of Oncology 18, 64-70. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release 65, 271-284. Manegold, C., Gatzemeier, U., von Pawel, J. (2000). Front-line treatment of advanced non-small-cell lung cancer with MTA (LY231514, Pemetrexed disodium, ALIMTATM) and cisplatin: A multicenter phase II trial. Annals of Oncology 11, 435-440. Marina, N.M., Cochrane, D., Harney, E., Zomorodi, K., Blaney, S., Winick, N., Bernstein, M., and Link, M.P. (2002). Dose escalation and pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in children with solid tumors: a pediatric oncology group study. Clinical Cancer Research 8, 413-418. Matsumura, Y., and Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research 46, 6387-6392. Matsumura, Y., Gotoh, M., Muro, K., Yamada, Y., Shirao, K., Shimada, Y., Okuwa, M., Matsumoto, S., Miyata, Y., Ohkura, H., Chin, K., Baba, S., Yamao, T., Kannami, A., Takamatsu, Y., Ito, K., and Takahashi, K. (2004). Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15, 517-525. Mayer, L.D., Dougherty, G., Harasym, T.O., and Bally, M.B. (1997). The role of tumor-associated macrophages in the delivery of liposomal doxorubicin to solid murine fibrosarcoma tumors. J Pharmacol Exp Ther 280, 1406-1414. Minna, J.D., Higgins, G.A., and Glastein, E.J. (1982). Cancer: Principles of Practice of Oncology Philadelphia: DeVita, V.T., Hellman, S., and Rosenberg, S.A., editors. Lippincott. 396–474. Modok, S., Mellor, H.R., and Callaghan, R. (2006). Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Current Opinion in Pharmacology 6, 350-354. Muggia, F., and Hamilton, A. (2001). Phase III data on Caelyx in ovarian cancer. European Journal of Cancer 37 Suppl 9, S15-18. National Cancer Institute http://www.cancer.gov/newscenter/pressreleases/AvastinLung Nerenz, D.R., Leventhal, H., Love, R.R. (1981). Factors contributing to emotional distress during cancer chemotherapy. Cancer 50, 1020-1027. Nobili, S., Landini, I., Giglioni, B., and Mini, E. (2006). Pharmacological strategies for overcoming multidrug resistance. Current Drug Targets 7, 861-879. O'Brien, M.E. (2008). Single-agent treatment with pegylated liposomal doxorubicin for metastatic breast cancer. Anticancer Drugs 19, 1-7. Onn, A., Tsuboi, M., Thatcher, N. (2004). Treatment of non-small-cell lung cancer: a perspective on the recent advances and the experience with gefitinib. British Journal of Cancer 91, S11–S17. Park, J.W. (2002). Liposome-based drug delivery in breast cancer treatment. Breast Cancer Research 4, 95-99. Papahadjopoulos, D., Allen, T.M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S.K., Lee, K.D., Woodle, M.C., Lasic, D.D., Redemann, C., and Martin, F.J. (1991). Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88, 11460-11464. Pasqualini, R., and Ruoslahti, E. (1996). Organ targeting in vivo using phage display peptide libraries. Nature 380, 364-366. Park, J. W., Hong, K., Kirpotin, D. B., Colbern, G., Shalaby, R., Baselga, J., Shao, Y., Nielsen, U. B., Marks, J. D., Moore, D., Papahadjopoulos, D., and Benz, C. C. (2002). Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clinical Cancer Research 8, 1172-1181. Pastorino, F., Brignole, C., Marimpietri, D., Sapra, P., Moase, E. H., Allen, T. M., and Ponzoni, M. (2003). Doxorubicin-loaded Fab' fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Research 63, 86-92. Pastorino, F., Brignole, C., Di Paolo, D., Nico, B., Pezzolo, A., Marimpietri, D., Pagnan, G., Piccardi, F., Cilli, M., Longhi, R., Ribatti, D., Corti, A., Allen, T.M., and Ponzoni, M. (2006). Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Research 66, 10073-10082. Pérez-López, M.E., Curiel, T., Gómez, J.G., and Jorge, M. (2007). Role of pegylated liposomal doxorubicin (Caelyx) in the treatment of relapsing ovarian cancer. Anticancer Drugs 18, 611-617. Rajotte, D., Arap, W., Hagedorn, M., Koivunen, E., Pasqualini, R., and Ruoslahti, E. (1998). Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. The Journal of Clinical Investigation 102, 430-437. Raponi, M., Zhang, Y., Yu, J., Chen, G., Lee, G., Taylor, J., MacDonald, J., Thomas, D., Moskaluk, C., Wang, Y., and Beer, D.G. (2006). Gene Expression Signatures for Predicting Prognosis of Squamous Cell and Adenocarcinomas of the Lung. Cancer Research 66, 7466-7472. Safra, T., Muggia, F., Jeffers, S., Tsao-Wei, D.D., Groshen, S., Lyass, O., Henderson, R., Berry, G., and Gabizon, A. (2000). Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Annals of Oncology 11, 1029-1033. Schiller, J.H. (2001). Current standards of care in small-cell and non-small-cell lung cancer. Oncology 61 Suppl 1, 3-13. Schiller, J.H., Harrington, D., Belani, C.P., Langer, C., Sandler, A., Krook, J., Zhu, J., and Johnson, D.H. (2002). Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. The New England Journal of Medicine 346, 92-98. Schrump, D.S., Altorki, N.K., Henschke, C.L., Carter, D., Turrisi, A.T., Gutierrez, M.E. (2005). Cancer of the Lung. DeVita, V.T., Hellman, S., Rosenberg, S.A. Cancer: Principles & Practice of Oncology, Seventh Edition. Lippincott Williams & Wilkins. Scott, J. K., and Smith, G. P. (1990). Searching for peptide ligands with an epitope library. Science 249, 386-390. Senior, J., Delgado, C., Fisher, D., Tilcock, C., and Gregoriadis, G. (1991). Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochimica et Biophysica Acta 1062, 77-82. Shaw, E.G., Bonner, J.A., Foote, R.L., Martenson, J.A.,Frytak, S., Dechamps, C., and McDougall, J.C. (1993). Role of radiation therapy in the management of lung cancer. Mayo Clinical Proceedings 68, 593-602. Shepherd, F.A., Rodrigues Pereira, J., Ciuleanu, T., Tan, E.H., Hirsh, V., Thongprasert, S., Campos, D., Maoleekoonpiroj, S., Smylie, M., Martins, R., van Kooten, M., Dediu, M., Findlay, B., Tu, D., Johnston, D., Bezjak, A., Clark, G., Santabárbara, P., Seymour, L., and National Cancer Institute of Canada Clinical Trials Group. (2005). Erlotinib in previously treated non-small-cell lung cancer. New England Journal of Medicine 353, 123-32. Sherman, D.M., Weichselbaum, R., and Hellman, S. (1981). The characteristics of long-term survivors of lung cancer treated with radiation. Cancer 47, 2575-2580. Siegal, T., Horowitz, A., and Gabizon, A. (1995). Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. Journal of Neurosurgery 83, 1029-1037. Smith, G.P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315-1317. Speth, P.A., van Hoesel, Q.G., and Haanen, C. (1988). Clinical pharmacokinetics of doxorubicin. Clinical Pharmacokinetics 15, 15-31. Sprensen, H.R., Lund, C., and Alstrup, P. (1986). Survival in small cell lung carcinoma after surgery. Thorax 41, 479-482. Strauss, G.M., Herndon, J.E., Maddaus, M.A., Johnstone, D.W., Johnson, E.A., Harpole, D.H., Gillenwater, H.H., Watson, D.M., Sugarbaker, D.J., Schilsky, R.L., Vokes, E.E., and Green, M.R. (2008). Adjuvant paclitaxel plus carboplatin compared with observation in stage IB non-small-cell lung cancer: CALGB 9633 with the Cancer and Leukemia Group B, Radiation Therapy Oncology Group, and North Central Cancer Treatment Group Study Groups. Journal of Clinical Oncology 26, 5043-5051. Symon, Z., Peyser, A., Tzemach, D., Lyass, O., Sucher, E., Shezen, E., and Gabizon, A. (1999). Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 86, 72-78. Tong, R.T., Boucher, Y., Kozin, S.V., Winkler, F., Hicklin, D.J., Jain, R.K. (2004). Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Research 64, 3731-3736. Vaage, J., Donovan, D., Uster, P., and Working, P. (1997). Tumour uptake of doxorubicin in polyethylene glycol-coated liposomes and therapeutic effect against a xenografted human pancreatic carcinoma. British Journal of Cancer 75, 482-486. Vasey, P.A., Kaye, S.B., Morrison, R., Twelves, C., Wilson, P., Duncan, R., Thomson, A.H., Murray, L.S., Hilditch, T.E., Murray, T., Burtles, S., Fraier, D., Frigerio, E., Cassidy, J., and on behalf of the Cancer Research Campaign Phase I/II Committee. (1999). Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clinical Cancer Research 5, 83-94. Verheul, H. M., and Pinedo, H. M. (2007). Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nature Reviews Cancer 7, 475-485. Vincent, T.N., Satterfield, J.V., and Ackerman, L.V. (1965). Carcinoma of the lung in women. Cancer 18, 559-570. Vineis, P., and Berwick, M. (2006). The population dynamics of cancer: a Darwinian perspective. International Journal of Epidemiology 35, 1151-1159. Willett, C.G., Boucher, Y., Di Tomaso, E., Duda, D.G., Munn, L.L., Tong, R.T., Chung, D.C., Sahani, D.V., Kalva, S.P., Kozin, S.V., Mino, M., Cohen, K.S., Scadden, D.T., Hartford, A.C., Fischman, A.J., Clark, J.W., Ryan, D.P., Zhu, A.X., Blaszkowsky, L.S., Chen, H.X., Shellito, P.C., Lauwers, G.Y., and Jain, R.K. (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Medicine 10, 145-147. Winkler, F., Kozin, S.V., Tong, R.T., Chae, S.S., Booth, M.F., Garkavtsev, I., Xu, L., Hicklin, D.J., Fukumura, D., di Tomaso, E., Munn, L.L., and Jain, R.K. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1 and matrix metalloproteinases. Cancer Cell 6, 553-563. World Health Organization http://www.who.int/tobacco/research/cancer/en/index.html Wu, H.C., Chang, D.K., and Huang, C.T. (2006). Targeted-therapy for cancer. Journal of Cancer Molecules 2, 57-66. Wu, H. C., Huang, C. T., and Chang, D. K. (2008). Anti-angiogenic therapeutic drugs for treatment of human cancer. Journal of Cancer Molecules 4, 37-45. Wu, H.C., Jung, M.Y., Chiu, C.Y., Chao, T.T., Lai, S.C., Jan, J.T., and Shaio, M.F. (2003). Identification of a dengue virus type 2 (DEN-2) serotype-specific B-cell epitope and detection of DEN-2-immunized animal serum samples using an epitope-based peptide antigen. Journal of General Virology 84, 2771-2779. Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D.A., Torchilin, V.P., and Jain, R.K. (1995). Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Research 55, 3752-3756. Zhang, H., and Cai, B. (2003). The impact of tobacco on lung health in China. Respirology 8, 17. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42482 | - |
dc.description.abstract | 肺癌,是所有癌中的魁首,也是目前全世界癌症死因的第一名,且罹癌死亡人數依舊每年持續增加。其中,導致化學治療低療效的一個主要因素是抗癌藥物缺乏腫瘤專一性,因而對人體產生毒性。配體藥引之藥物傳輸系統(ligand-mediated drug delivery system)可以給予化學藥物對抗腫瘤細胞更高的療效,以及對正常組織產生較低的毒性。本研究中,利用噬菌體顯現法(phage display)已尋找出能與非小細胞肺癌細胞株結合的一新穎胜肽。表現此胜肽之噬菌體能與數種非小細胞肺癌細胞株結合但卻不與正常細胞產生作用,同時,其所表現的胜肽也具有相同功能;而此二者辨識人類非小細胞肺癌組織檢體樣本可高達75%。於免疫不全鼠上移植人類腫瘤後,施打此噬菌體,發現此噬菌體能專一地結合至腫瘤組織。再者,當同時施打此噬菌體與其相同序列的胜肽,此胜肽會和噬菌體競爭與腫瘤的結合,因而抑制了噬菌體與腫瘤的結合能力;然而,若施打的是作為對照組或突變的胜肽則無法抑制噬菌體的腫瘤結合能力。結合標的胜肽與包覆抗癌藥物之微脂體(liposomes carrying doxorubicin)後,施打於帶有人類非小細胞肺癌的老鼠,可發現其明顯抑制了腫瘤的生長、增進了化學藥物的治療療效,並改善了其存活率。更甚者,此標的微脂體增加了抗癌藥物累積於腫瘤組織中,相對於游離態的化學藥物(free drug)而言,其劑量提高了五點七倍。此外,此標的微脂體也因其提高了生物利用的藥物濃度,進而引發了癌細胞進行細胞凋亡程序。本研究顯示此腫瘤專一性胜肽能用於增進化學療法的腫瘤專一性,以期有對非小細胞肺癌較佳治療療效,且也能用於偵檢惡性腫瘤。 | zh_TW |
dc.description.abstract | Lung cancer is the leading cause of cancer-related mortality worldwide. The lack of tumor specificity remains a major drawback for effective chemotherapies and results in dose-limiting toxicities. However, a ligand-mediated drug delivery system should be able to render chemotherapy more specific to tumor cells and less toxic to normal tissues. In this study, we isolated a novel peptide ligand from a phage-displayed peptide library that bound to non-small cell lung cancer (NSCLC) cell lines. The targeting phage bound to several NSCLC cell lines but not to normal cells. Both the targeting phage and the synthetic peptide recognized the surgical specimens of NSCLC with a positive rate of 75% (27 of 36 specimens). In severe combined immunodeficiency (SCID) mice bearing NSCLC xenografts, the targeting phage specifically bound to tumor masses. The tumor homing ability of the targeting phage was inhibited by the cognate synthetic peptide, but not by a control or a WTY-mutated peptide. When the targeting peptide was coupled to liposomes carrying doxorubicin or vinorelbine, the therapeutic index of the chemotherapeutic agents and the survival rates of mice with human lung cancer xenografts markedly increased. Furthermore, the targeting liposomes increased drug accumulation in tumor tissues by 5.7-fold compared with free drugs and enhanced cancer cell apoptosis resulting from a higher concentration of bioavailable doxorubicin. The current study suggests that this tumor-specific peptide may be used to create chemotherapies specifically targeting tumor cells in the treatment of NSCLC and to design targeted gene transfer vectors or it may be used one in the diagnosis of this malignancy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:14:35Z (GMT). No. of bitstreams: 1 ntu-98-D94444002-1.pdf: 26171585 bytes, checksum: 88a7b8543d0aba3e877a3034f67d6789 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Table of Contents
口試委員會審定書......................................2 PART 1.............................................................3 中文摘要.......................................................4 Abstract............................................................5 Introduction.....................................................12 Materials and Methods....................................23 Results.............................................................33 Discussion........................................................46 References........................................................55 Table………......................................................65 Figure…………………………..………...…………67 PART-2…………………..………...…….........……85 中文摘要.......................................................86 Abstract............................................................87 Introduction.......................................................93 Materials and Methods.....................................98 Results.............................................................105 Discussion........................................................112 References........................................................119 Table……….....................................................125 Figure…………………………..………...………..128 | |
dc.language.iso | en | |
dc.title | 新穎標的微脂體於肺癌治療之研究 | zh_TW |
dc.title | Study of novel targeting liposomes in lung cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林欽塘(Chin-Tarng Lin),蘇燦隆(Tsann-Long Su),李德章(Te-Chang Lee),林中梧(Chung-Wu Lin),郭明良(Min-Liang Kuo),周綠蘋(Lu-Ping Chow) | |
dc.subject.keyword | 肺癌,配體傳達藥物運輸系統,噬菌體顯現法,標的微脂體,腫瘤標的胜肽, | zh_TW |
dc.subject.keyword | lung cancer,ligand-mediated drug delivery system,phage-displayed peptide library,targeting liposomes,tumor-specific peptide, | en |
dc.relation.page | 141 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 病理學研究所 | zh_TW |
顯示於系所單位: | 病理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 25.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。