Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42480
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁博煌(Po-Huang Liang)
dc.contributor.authorWen-Jou Jungen
dc.contributor.author鍾雯州zh_TW
dc.date.accessioned2021-06-15T01:14:32Z-
dc.date.available2012-08-03
dc.date.copyright2009-08-03
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation1.Carere, C. R., Sparling, R., Cicek, N., Levin, D .B.,
Third Generation Biofuels via Direct Cellulose
Fermentation. Int J Mol Sci,, 2008. 9(7): p. 1342-1360.
2.Demain, A. L., Newcomb, M., Wu, J. H., Cellulase,
Clostridia, and Ethanol. Microbiol. Mol. Biol. Rev.
2005., 69(1): p. 124-154.
3.Mousdale, D. M., Nhuan, N. P., Walker, T. H., Biofuels.
biotechnology, chemistry, and sustainable development,
Boca Raton CRC Press, New York, 2008, chap.2
4.Sun, Y., Cheng, J., Hydrolysis of lignocellulosic
materials for ethanol production: a review. Bioresour.
Technol., 2002. 83(1): p. 1-11.
5.Gray, K. A., Zhao, L., Emptage, M., Bioethanol. Curr Opin
Chem Biol., 2006. 10(2): p. 141-146.
6.McCann, M. C., Wells, B., Roberts, K., Direct
visualization of cross-links in the primary plant cell
wall. J. Cell. Sci., 1990. 96(2): p. 323-334.
7.Dhawan, S., Kaur, J., Microbial Mannanases: An Overview
of Production and Applications. Crit. Rev. Biotechnol.,
2007. 27(4): p. 197 - 216.
8.Moreira, L., Filho, E., An overview of mannan structure
and mannan-degrading enzyme systems. Appl. Microbiol.
Biotechnol., 2008. 79(2): p. 165-178.
9.Hong, S. Y., Lee, J. S., Cho, K. M., Math, R. K., Kim, Y.
H., Hong, S. J., Cho, Y. U., Cho, S. J., Kim, H., Yun, H.
D., Construction of the bifunctional enzyme cellulase-β-
glucosidase from the hyperthermophilic bacterium
Thermotoga maritima. Biotechnol. Lett., 2007. 29(6): p.
931-936.
10.Henrissat, B., A classification of glycosyl hydrolases
based on amino acid sequence similarities. Biochem. J.,
1991. 280(2): p. 309-316.
11.Kurokawa, J., Hemjinda, E., Arai, T., Karita, S.,
Kimura, T., Sakka, K., Ohmiya, K., Sequence of the
Clostridium thermocellum Mannanase Gene man26B and
Characterization of the Translated Product. Biosci.
Biotechnol. Biochem., 2001. 65(3): p. 548-554.
12.Handford, M. G., Baldwin, T. C., Goubet, F., Prime, T.
A., Miles, J., Yu, X., Dupree, P., Localisation and
characterisation of cell wall mannan polysaccharides in
Arabidopsis thaliana. Planta., 2003. 218(1): p. 27-36.
13.Jiang, Z., Wei, Y., Li, D. Li, L., Chai, P., Kusakabe,
I., High-level production, purification and
characterization of a thermostable beta-mannanase from
the newly isolated Bacillus subtilis WY34. Carbohydr
Polym., 2006. 66(1): p. 88-96.
14.Riedel, K., Bronnenmeier, K., Intramolecular synergism
in an engineered exo-endo-1,4-beta--glucanase fusion
protein. Mol. Microbiol., 1998. 28(4): p. 767-775.
15.Karita, S., Sakka, K., Ohmiya, K., Cellulose-binding
domains confer an enhanced activity against insoluble
cellulose to Ruminococcus albus endoglucanase IV. J.
Ferment. Bioeng., 1996. 81(6): p. 553-556.
16.Pagès, S., Gal, L., Bélaïch, A., Gaudin, C., Tardif, C.,
Bélaïch, J. P., Role of scaffolding protein CipC of
Clostridium cellulolyticum in cellulose degradation. J.
Bacteriol., 1997. 179(9): p. 2810-2816.
17.Burstein, T., Shulman, M., Jindou, S., Petkun, S.,
Frolow, F., Shoham, Y., Bayer, E. A., Lamed, R.,
Physical association of the catalytic and helper modules
of a family-9 glycoside hydrolase is essential for
activity. FEBS Letters, 2009. 583(5): p. 879-884.
18.Levy, I., Shani, Z., Shoseyov, O., Modification of
polysaccharides and plant cell wall by endo-1,4-beta-
glucanase and cellulose-binding domains. Biomol. Eng.,
2002. 19(1): p. 17-30.
19.Freier, D., Mothershed, C. P., Wiegel, J.,
Characterization of Clostridium thermocellum JW20. Appl.
Environ. Microbiol., 1988. 54(1): p. 204-211.
20.Bayer, E. A., Shimon, L. J., Shoham, Y., Lamed, R.,
Cellulosomes--Structure and Ultrastructure. J. Struct.
Biol., 1998. 124(2-3): p. 221-234.
21.Zhang, Y. H., Cui, J., Lynd, L. R., Kuang, L. R., A
Transition from Cellulose Swelling to Cellulose
Dissolution by o-Phosphoric Acid:  Evidence from
Enzymatic Hydrolysis and Supramolecular Structure.
Biomacromolecules, 2006. 7(2): p. 644-648.
22.Shih, Y. P., Kung, W. M., Chen, J. C., Yeh, C. H., Wang,
A. H., Wang, T. F. High-throughput screening of soluble
recombinant proteins. Protein Sci., 2002. 11(7): p. 1714-
1719.
23.Miller, G. L., Use of Dinitrosalicylic Acid Reagent for
Determination of Reducing Sugar. Anal. Chem., 1959. 31
(3): p. 426-428.
24.Sambrook, J., Molecular cloning. a laboratory manual /.
2001, Cold Spring Harbor, N.Y. Cold Spring Harbor
Laboratory Press.
25.Zhang, Z., Xie, J., Zhang, F., Linhardt, R. J., Thin-
layer chromatography for the analysis of
glycosaminoglycan oligosaccharides. Anal. Biochem., 2007.
371(1): p. 118-120.
26.Kurokawa, J., Hemjinda, E., Arai, T., Kimura, T., Sakka,
K., Ohmiya, K., Clostridium thermocellum cellulase CelT,
a family 9 endoglucanase without an Ig-like domain or
family 3c carbohydrate-binding module. Appl. Microbiol.
Biotechnol., 2002. 59(4): p. 455-461.
27.Murashima, K., Kosugi, A., Doi, R. H., Synergistic
Effects on Crystalline Cellulose Degradation between
Cellulosomal Cellulases from Clostridium cellulovorans.
J. Bacteriol., 2002. 184(18): p. 5088-5095.
28.Murashima, K., Chen, C. L., Kosugi, A., Tamaru, Y., Doi,
R. H., Wong, S. L., Heterologous Production of
Clostridium cellulovorans engB, Using Protease-Deficient
Bacillus subtilis, and Preparation of Active Recombinant
Cellulosomes. J. Bacteriol., 2002. 184(1): p. 76-81.
29.Bolam, D. N., Ciruela, A., McQueen-Mason, S., Simpson,
P., Williamson, M. P., Rixon, J. E., Boraston, A.,
Hazlewood, G. P., Gilbert, H. J., Pseudomonas cellulose-
binding domains mediate their effects by increasing
enzyme substrate proximity. Biochem. J., 1998. 331(3):
p. 775-781.
30.Hall, J., Black, G. W., Ferreira, L. M., Millward-
Sadler, S. J., Ali, B. R., Hazlewood, G. P., Gilbert, H.
J., The non-catalytic cellulose-binding domain of a
novel cellulase from Pseudomonas fluorescens subsp.
cellulosa is important for the efficient hydrolysis of
Avicel. Biochem. J., 1995. 309(3): p. 749-756.
31.Irwin, D., Shin, D. H., Zhang, S., Barr, B. K., Sakon,
J., Karplus, P. A., Wilson, D. B., Roles of the
Catalytic Domain and Two Cellulose Binding Domains of
Thermomonospora fusca E4 in Cellulose Hydrolysis. J.
Bacteriol., 1998. 180(7): p. 1709-1714.
32.Sakon, J., Irwin, D., Wilson, D. B., Karplus, P. A.,
Structure and mechanism of endo/exocellulase E4 from
Thermomonospora fusca. Nat. Struct. Biol., 1997. 4(10):
p. 810-818.
33.Meinke, A., Gilkes, N. R., Kilburn, D. G., Miller, R. C.
Jr., Warren, R. A., Cellulose-binding polypeptides from
Cellulomonas fimi: endoglucanase D (CenD), a family A
beta-1,4-glucanase. J. Bacteriol., 1993. 175(7): p. 1910-
1918.
34.Fukumura, M. B., A. Kruus, K. Wu, J. H. David,
Interactions and synergism between the recombinant CelD,
an endoglucanase, and the cellulosome-integrating
protein (CipA) of Clostridium thermocellum. J. Ferment.
Bioeng., 1997. 83(2): p. 146-151.
35.Coutinho, J. B., Gilkes, N. R., Kilburn, D. G., Warren,
R. A. J., Miller Jr, R. C. , The nature of the cellulose-
binding domain effects the activities of a bacterial
endoglucanase on different forms of cellulose. FEMS
Microbiol. Lett., 1993. 113(2): p. 211-218.
36.Tomme, P., Driver, D. P., Amandoron, E. A., Miller, R.
C. Jr., Antony, R., Warren, J., Kilburn, D. G.,
Comparison of a fungal (family I) and bacterial (family
II) cellulose- binding domain. J. Bacteriol., 1995. 177
(15): p.4356-4363.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42480-
dc.description.abstractClostridium thermocellum endoglucanase CelT hydrolyzes internal β-1,4-glucosidic linkages along the cellulose chains to release shorter fragments. The CelT consists of a family-9 catalytic domain of the glycoside hydrolases, and a dockerin domain responsible for cellulosome assembly, but lacks a cellulose-binding domain, which is often found with family 9 catalytic domains.
This study is focused on improving cellulolytic efficiency of CelT. The family-3 cellulose binding domain (CBD) from C. thermocellum cel9I was fused to the catalytic domain of CelT to generate CelT-CBD fusion protein. CelT-CBD is more active toward insoluble celluloses than the CelT (devoid of the region encoding the dockerin domain). The result indicates that the construction of a fusion protein using CBD from another thermophilic endoglucanase represents a possible strategy for obtaining higher activity toward insoluble cellulose substrates. In the case of the CelT-CBD catalyzed hydrolysis of phosphoric acid-swollen cellulose (PASC), the soluble sugars were released at a 4-fold higher rate to compared with wild type CelT.
Due to the heterogeneity in the composition and the structure of the plant cell wall, a wide range of enzymes is required for the biodegradation of these polysaccharides. Previous studies also showed that cellulosomal enzymes work synergistically for efficient lignocelluloses degradation. To improve efficiently of plant cell wall degradation, the synergistic interactions of endoglucanse (CelT△doc) and β-mannanase (ManCthe0032△doc) were determined on the degradation of rice straw biomass. The results showed an increased rate of reducing sugar production by the addition of CelT△doc and ManCthe0032△doc when comparing to the sum of the individual activities of the corresponding enzymes.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:14:32Z (GMT). No. of bitstreams: 1
ntu-98-R96b46031-1.pdf: 17553680 bytes, checksum: faf8cba3874404931deb9fb1b577cd18 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 ………………………………………………………………1
ABSTRACT……………………………………………………………… 3
ABBREVIATION………………………………………………………… 5
(1) INTRODUCTION
1-1 Need for Alternative Energy Source……………………6
1-2 Cell Wall Polysaccharides ………………………………7
1-3 Clostridium thermocellum…………………………………8
1-4 Glycoside hydrolases………………………………………10
1-5 Cellulose Binding Domains(CBD) ………………………10
1-6 Specific Aims of This Study ……………………………12
(2) MATERIALS AND METHODS
2-1 Chemicals ……………………………………………………14
2-2 Strains and vectors ………………………………………14
2-3 Cloning of recombinant proteins ………………………15
2-4 Recombinant fusion gene construction…………………17
2-5 Protein determination ……………………………………19
2-6 Western blotting …………………………………………19
2-7 Determination of enzyme activity………………………20
2-8 Expression of recombinant proteins……………………22
2-9 Purification of recombinant proteins…………………23
2-10 Temperature and pH optimum………………………………24
2-11 End-product determinationv………………………………25
2-12 Effect of metal ions and organic reagents …………26
(3) RESULTS
3-1 Construction of the studied gene………………………27
3-2 Expression and purification of three truncated
forms of CelT, ManCthe0032, ManCthe2811 and chimeric
protein CelT-CBD……………………………………………28
3-3 Characterization of recombinant CelT and fusion
protein CelT-CBD …………………………………………29
3-4 Characterization of recombinant mannanase
ManCthe0032 and ManCthe2811 ……………………………31
3-5 Synergism between endoglucanase and mannanase in
degrading biomass …………………………………………33
(4) DISCUSSION
4-1 Cellulose-binding domain enhance activity against
insoluble cellulose ………………………………………35
4-2 Synergism between endoglucanase and mannanase ……37
(5) REFERENCE ……………………………………………………40~45
(6) FIGURE…………………………………………………………46~68
(7) TABLE …………………………………………………………69~73
dc.language.isoen
dc.subject纖維素水解&#37238zh_TW
dc.subject酵素zh_TW
dc.subject生質能zh_TW
dc.subjectenzymeen
dc.subjectbioethanolen
dc.subjectcellulaseen
dc.title改造嗜熱菌株之纖維素水解酶與甘露糖水解酶並研究其酵素特性以及分解纖維素產生生質能之應用zh_TW
dc.titleExpression, characterization, and engineering of endoglucanase and mannanase from Clostridium thermocellum for degrading cellulose and biofuel productionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡蔭和(Inn-Ho Tsai),林俊宏(Chun-Hung Lin)
dc.subject.keyword酵素,生質能,纖維素水解&#37238,zh_TW
dc.subject.keywordcellulase,bioethanol,enzyme,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
17.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved