Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42479
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧孟愷(Mong-Kai Ku)
dc.contributor.authorChi-Wei Chenen
dc.contributor.author陳其蔚zh_TW
dc.date.accessioned2021-06-15T01:14:30Z-
dc.date.available2019-08-01
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation[1] R.G. Gallager, “Low-Density Parity-Check Codes,” IEEE Transactions on
Information Theory, vol. 8, no.1, pp. 21-28, Jan. 1962.
[2] R. Tanner, “A Recursive Approach to Low Complexity Codes”, IEEE Trans.
Information Theory, vol.27, no.5, pp. 533-547, Sep. 1981.
[3] D. MacKay and R. Neal, “Near Shannon Limit Performance of Low Density
Parity Check Codes,' Electronics Letters, vol. 32, pp. 1645-1646, Aug. 1996.
[4] T. Richardson and R. Urbanke, “The Capacity of Low-Density Parity-Check
Codes under Message-Passing Decoding,' IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 599-618, 2001.
[5] S. Chung, G. Forney, T. Richardson and R. Urbanke, “On the Design of
Low-Density Parity-Check Codes within 0.0045dB of the Shannon Limit,” IEEE
Communications Letters, vol. 5, pp. 58-60, Feb. 2001.
[6] Digital Video Broadcasting (DVB) Second Generation Framing Structure for
Broadband Satellite Applications, ETSI Std. EN 302 307 v1.1.1, 2005.
[7] High Throughput Extension to the 802.11 Standard, IEEE Working Draft
Proposed Standard 802.11n, 2007.
[8] IEEE std. 802.16e-2005, “IEEE Standard for Local and MetroPolitan Area
Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access
Systems,” Feb. 28th, 2006.
[9] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of
Capacity-Approaching Irregular Low-Density Parity-Check Codes,' IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 619-637, 2001.
[10] J. Chen, R. Tanner, J. Zhang, and M. Fossorier, “Construction of Irregular LDPC
Codes by Quasi-Cyclic Extension,' IEEE Transactions on Information Theory, vol.
53, no. 4, pp. 1479-1483, 2007.
[11] D. J. C. MacKay, “Good Error-correcting Codes Based on Very Sparse Matrices”,
IEEE Transactions on Information Theory, vol.45, no. 3, pp.399-431, Mar. 1999.
[12] M. Forssorier, M. Milhaljevic and H. Imai, “Reduced Complexity Iterative
Decoding of Low Density Parity Check Codes Based on Belief Propagation,”
IEEE Transactions on Communications, pp. 673-680, May 1999.
[13] J. Heo and K. Chugg, “Optimization of Scaling Soft Information in Iterative
Decoding via Density Evolution Methods,” IEEE Transactions on
Communications, vol. 53, pp. 957-961, Jun. 2005.
[14] H. Song and P. Zhang, “Optimum Offset Factor of LDPC Codes,' Electronics
Letters, vol. 39, no. 14, pp. 1065-1066, 2003.
[15] Jinghu Chen, A. Dholakia, E. Eleftheriou, M.P.C. Fossorier and Xiao-Yu Hu,
“Reduced-Complexity Decoding of LDPC Codes”, IEEE Transactions on
Communications, vol.53, pp.1288-1299, Aug. 2005.
[16] E. Sharon, S. Litsyn and J. Goldberger, “An Efficient Message-Passing
Scheduling for LDPC Decoding,” Proc. 23rd IEEE Convention in Tel-Aviv, pp.
223-226, Sep. 2004.
[17] E. Zimmermann, P. Pattisapu, P. Bora and G. Fettweis, “Reduced Complexity
LDPC Decoding using Forced Convergence,” in Proc. 7th International
Symposium on Wireless Personal Multimedia Communications, Sep. 2004.
[18] G. Fettweis, E.Zimmermann and W.Rave, “Forced Convergence Decoding of
LDPC Codes: EXIT Chart Analysis and Combination with Node Complexity
Reduction Techniques,” in Proc. 11th European Wireless Conference, Apr. 2005.
[19] Shu-Cheng Chou, “Design and Implementation of a Low-Power IEEE 802.16e
LDPC Decoder by Utilizing Decoding Operation Reduction Algorithm”, Master
Thesis, National Taiwan University, 2008.
[20] Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile
Broadband Wirelesss Access Systems Amendment 2: Physical and Medium
Access Control Layers for Combined Fixed and Mobile Operation in Licensed
Bands and Corrigendum 1, IEEE Std. 802.16e, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42479-
dc.description.abstractLDPC (Low-Density Parity-Check) code is an error-correcting code used by the advanced communication standard of the next generation. Its error correction ability can approach the Shannon limit. Sum-product is the most powerful decoding method for LDPC codes. But owing to its high complexity, so its approximation like scaling min-sum is proposed. Although the complexity of it is much less, it suffers some performance loss compared to sum-product. Thereby, in this thesis we try to propose a modified scaling min-sum algorithm. This algorithm improves the coding performance by enhancing the belief propagated conditionally during decoding process. We also propose and implement the serial hardware architecture of our proposed algorithm. The FPGA implementation result shows that our architecture only adds 4.67 % hardware cost on function unit part. Besides that, we also apply the belief enhancement idea on DORA1 to improves its performance and reduce its operation further.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:14:30Z (GMT). No. of bitstreams: 1
ntu-98-R95922110-1.pdf: 1096516 bytes, checksum: fb3494a7f77e8c13dac2713f21766610 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要....................................................................................................................... i
ABSTRACT ................................................................................................................. ii
CONTENTS ................................................................................................................ iii
LIST OF FIGURES ..................................................................................................... vi
LIST OF TABLES ..................................................................................................... viii
Chapter 1 Introduction.......................................................................................... 1
1.1 Overview of Channel Coding in Digital Communication System ................ 1
1.2 Overview of LDPC Codes .......................................................................... 3
1.3 Motivation .................................................................................................. 3
1.4 Thesis Organization .................................................................................... 4
Chapter 2 Backgrounds......................................................................................... 5
2.1 Representation of LDPC Codes................................................................... 5
2.1.1 Matrix Representation........................................................................ 5
2.1.2 Graph Representation ........................................................................ 6
2.1.3 Quasi-Cyclic LDPC Codes ................................................................ 7
2.2 LDPC Decoding Algorithms ....................................................................... 8
2.2.1 Sum-Product Algorithm ..................................................................... 9
2.2.2 Min-Sum Algorithm......................................................................... 13
2.2.3 Complexity Comparison .................................................................. 15
2.3 Decode Scheduling Schemes..................................................................... 16
2.3.1 Two-Phase Scheduling Scheme........................................................ 16
2.3.2 Horizontal Layered Scheduling Scheme........................................... 17
iv
2.4 Value-Reuse Property................................................................................ 20
Chapter 3 The Proposed Algorithm .................................................................... 22
3.1 Overview .................................................................................................. 22
3.1.1 Belief Enhancement for LDPC Decoding......................................... 22
3.1.2 Simulation test and Analysis ............................................................ 22
3.2 Proposed algorithm................................................................................... 28
3.3 Parameter adjustment and Simulation results ............................................ 29
3.3.1 Reliable threshold adjustment .......................................................... 30
3.3.2 Enhanced belief adjustment ............................................................. 30
3.3.3 Fianl simulation result ..................................................................... 31
3.4 Apply Belief Enhancing idea on DORA1.................................................. 32
Chapter 4 The Proposed Hardware Architecture............................................... 34
4.1 IEEE 802.16e LDPC Code Parity-Check Matrix ....................................... 34
4.2 The Decoder Architecture Overview ......................................................... 35
4.2.1 Data Path of the Decoder ................................................................. 35
4.2.2 Control Unit..................................................................................... 36
4.2.3 Decode Processing Unit ................................................................... 37
4.3 Modifications for Proposed Algorithm ...................................................... 38
4.3.1 Modification in GLCIU ................................................................... 38
Chapter 5 FPGA Implementation Results .......................................................... 40
5.1 The FPGA Design Flow............................................................................ 40
5.1.1 System Level ................................................................................... 40
5.1.2 RTL Level ....................................................................................... 42
5.1.3 FPGA Level..................................................................................... 42
5.2 FPGA Implementation Results.................................................................. 44
v
Chapter 6 Conclusion and Future Works ........................................................... 46
6.1 Conclusion................................................................................................ 46
6.2 Future Works ............................................................................................ 46
REFERENCE ............................................................................................................. 47
dc.language.isoen
dc.subject解碼效益zh_TW
dc.subject解碼器zh_TW
dc.subject低密度奇偶校驗碼zh_TW
dc.subject提高信賴值zh_TW
dc.subjectbelief enhancementen
dc.subjectcoding performanceen
dc.subjectdecoderen
dc.subjectLDPCen
dc.title提高信賴值之LDPC 解碼節點處理器zh_TW
dc.titleA Belief Enhancement Node Processor for LDPC Decodingen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪士灝,林宗男,廖俊睿
dc.subject.keyword低密度奇偶校驗碼,解碼器,解碼效益,提高信賴值,zh_TW
dc.subject.keywordLDPC,decoder,coding performance,belief enhancement,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved