Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨
dc.contributor.authorRen-Jun Hsuen
dc.contributor.author許仁駿zh_TW
dc.date.accessioned2021-06-15T01:14:18Z-
dc.date.available2014-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citationReferences
1. Pownall ME, Gustafsson MK, Emerson Jr CP (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu. Rev. Cell. Dev. Biol. 18:747-83.
2. Buckingham M (1992) Making muscle in mammals. Trends Genet. 8:144-8.
3. Hacker A, Guthrie S (1998) A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125:3461-72.
4. Hirsinger, E (2001) Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 128:107-16.
5. Chen YH, Lee WC, Liu CF, Tsai HJ (2001) Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis 29:22-35.
6. Hadchouel J, Tajbakhsh S, Primig M, Chang TH, Daubas P, Rocancourt D, Buckingham M (2000) Modular long-range regulation of Myf5 reveals unexpected heterogeneity between skeletal muscles in the mouse embryo. Development 127:4455-67.
7. Summerbell D, Ashby PR, Coutelle O, Cox D, Yee S, Rigby PW(2000) The expression of Myf5 in the developing mouse embryo is controlled by discrete and dispersed enhancers specific for particular populations of skeletal muscle precursors. Development 127:3745-57.
8. Carvajal JJ, Cox D, Summerbell D, Rigby PW (2001) A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development. Development 128:1857-68.
9. Mei W, Yang J, Tao Q, Geng X, Rupp RA, Ding X (2001) An interferon regulatory factor-like binding element restricts Xmyf-5 expression in the posterior somites during Xenopus myogenesis. FEBS Lett. 505:47-52.
10. Yang J, Mei W, Otto A, Xiao L, Tao Q, Geng X, Rupp RA,. Ding X (2002) Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm. Mech. Dev. 115:79-89.
11. Coutelle O, Blagden CS, Hampson R, Halai C, Rigby PW, Hughes SM (2001) Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev. Biol. 236:136-50.
12. Chen YH, Lee HC, Liu CF, Lin CY, Tsai HJ (2003) Novel regulatory sequence -82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5. Dev. Dyn. 228:41-50.
13. Lee HC, Huang HY, Lin CY, Chen YH, Tsai HJ (2006) Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev. Biol. 290:359-72.
14. Chen YH, Wang YH, Chang MY, Lin CY, Weng CW, Westerfield M, Tsai HJ (2007) Multiple upstream modules regulate zebrafish myf5 expression. BMC Dev. Biol. 3, 7:1
15. Lin CY, Chen YH, Lee HC, Tsai HJ (2004) Novel cis-element in intron 1 represses somite expression of zebrafish myf-5. Gene 334:63-72.
16. Rooij Van E, et al. (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575-9.
17. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14: 1902-10.
18. Chen JF, et al. (2005) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38:228-33.
19. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 174:677-87.
20. Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ (2006) MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J. Cell Biol. 175:77-85.
21. Giraldez AJ, et al. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312: 75-9
22. Lee HC, Huang HY, Lin CY, Chen YH, Tsai HJ (2006) Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev. Biol. 290:359-72.
23.Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH. (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310-1.
References
1. Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, DL., Fire, A., Ruvkun, G. and Mello, C.C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106, 23-24.
2. Hutvágner, G., McLachlan, J., Pasquinelli, A.E,, Bálint, E., Tuschl, T. and Zamore, P.D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293, 834-838.
3. Lee, Y., Ahn, C., Han J, Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S. et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415-419.
4. Bernstein, E,, Caudy, A.A., Hammond, S.M. and Hannon, G.J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363-366.
5. Chen, C.Z., Li, L., Lodish, H.F. and Bartel, D.P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science, 303, 83-86.
6. Yekta, S., Shih, I.H. and Bartel, D.P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304, 594-596.
7. Wienholds, E., Koudijs, MJ., Eeden, F.J., Cuppen, E. and Plasterk, R.H. (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet., 35, 217-218.
8. Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P. and Schier, A.F. (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833-838.
9. Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-854.
10. Moss, E.G., Lee, R.C. and Ambros, V. (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell, 88, 637-641.
11. Rooij,Van. E., Sutherland,L.B., Qi,X., Richardson,J.A., Hill,J. and Olson,E.N. (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575-579.
12. Berezikov, E., Guryev, V., Belt, J., Wienholds, E., Plasterk, R.H. and Cuppen, E. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120, 21-24.
13. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. and Burge, C.B. (2003) Prediction of mammalian microRNA targets. Cell, 115, 787-798.
14. Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., Bruijn,E., Horvitz, H.R., Kauppinen, S. and Plasterk, R.H. (2005) MicroRNA expression in zebrafish embryonic development. Science, 309, 310-311.
15. Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C. and Marks, D.S. (2003) MicroRNA targets in Drosophila. Genome Biol., 5, R1.
16. Doench, J.G. and Sharp, P.A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev., 18, 504-511.
17 Li, N., Flynt, A.S., Kim, H.R., Solnica-Krezel, L. and Patton, J.G. (2008) Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. Nucleic Acids Res., 13, 4277-4285.
18. Esquela-Kerscher, A., Johnson, SM., Bai, L., Saito, K., Partridge, J., Reinert, K.L. and Slack, F.J. (2005) Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system. Dev. Dyn., 234, 868-877.
19. Easow, G., Teleman, A.A. and Cohen, S.M. (2007) Isolation of microRNA targets by miRNP immunopurification. RNA, 13, 1198-204.
20. Beitzinger, M., Peters, L., Zhu, J.Y., Kremmer, E. and Meister, G. (2007) Identification of Human microRNA Targets from Isolated Argonaute Protein Complexes. RNA Biol., 2, 76-84.
21. Mili, S. and Steitz, J.A. (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA, 10, 1692-4.
22. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics, 77, 71-94.
23. Chen, Y.H., Lee, W.C., Liu, C.F. and Tsai, H.J. (2001) Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis, 29, 22-35.
24. Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J. and Tsai, H.J. (2003) Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn., 228, 30-40.
25. Wang, T.M., Chen, Y.H., Liu, C.F. and Tsai, H.J. (2002) Functional analysis of the proximal promoter regions of fish rhodopsin and myf-5 genes using transgenesis. Mar. Biotechnol., 4, 247-255.
26. Ørom, U.A., Nielsen, F.C. and Lund, A.H. (2008) MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell., 30, 460–47.
27. Zhao, Y., Samal, E. and Srivastava, D. (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214-220.
28. Kloosterman, W.P., Wienholds, E., Ketting, R.F., and Plasterk, R.H. (2004) Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res., 32, 6284-6291.
29. Lin, S.Y., Johnson, S.M., Abraham, M., Vella, M.C., Pasquinelli, A., Gamberi, C., Gottlieb, E. and Slack, F.J. (2003) The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell, 4, 639-650.
30. Vella, M.C., Choi, E.Y., Lin, S.Y., Reinert, K. and Slack, F.J. (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes Dev., 18, 132-137.
31. Griffiths-Jones, S. (2004) The microRNA Registry. Nucleic Acids Res., 32, D109-11.
32. Kim,H.K., Lee,Y.S., Sivaprasad,U., Malhotra,A. and Dutta,A. (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 174, 677-687.
33. Rosenberg,M.I., Georges,S.A., Asawachaicharn,A., Analau,E. and Tapscott,S.J. (2006) MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J. Cell Biol. 175, 77-85.
34. Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J.P. and Thisse, C. (2004) Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol., 77, 505-519.
35. Varambally, S., Cao, Q., Mani, R.S., Shankar, S., Wang, X., Ateeq, B., Laxman, B., Cao, X., Jing, X. and Ramnarayanan, K. (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322, 1695-1699.
References
1. Pownall,M.E., Gustafsson,M.K. and Emerson,Jr.CP. (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu. Rev. Cell. Dev. Biol. 18, 747-783.
2. Buckingham,M. (1992) Making muscle in mammals. Trends Genet. 8, 144-148.
3. Hacker,A. and Guthrie,S. (1998) A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125, 3461-3472.
4. Hirsinger,E. (2001) Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 128, 107-116.
5. Chen,Y.H., Lee,W.C., Liu,C.F. and Tsai,H.J. (2001) Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis 29, 22-35.
6. Coutelle,O., Blagden,C.S., Hampson,R., Halai,C., Rigby,P.W. and Hughes,S.M. (2001) Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev. Biol. 236, 136-150.
7. Chen,Y.H., Lee,H.C., Liu,C.F., Lin,C.Y. and Tsai,H.J. (2003) Novel regulatory sequence -82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5. Dev. Dyn. 228, 41-50.
8. Lee,H.C., Huang,H.Y., Lin,C.Y., Chen,Y.H. and Tsai,H.J. (2006) Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev. Biol. 290, 359-372.
9. Lin,C.Y., Chen,Y.H., Lee,H.C. and Tsai,H.J. (2004) Novel cis-element in intron 1 represses somite expression of zebrafish myf-5. Gene 334, 63-72.
10. Lee,R.C., Feinbaum,R.L. and Ambros,V. (1993) C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-848.
11. Lagos-Quintana,M., Rauhut,R., Yalcin,A., Meyer,J., Lendeckel,W. and Tuschl,T. (2002) Identification of tissue-specific microRNAs from mouse. Curr. Biol. 312, 735-739.
12. Ambros,V. and Lee,R.C. (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol. Biol. 265, 131-158.
13. Lim,L.P., Glasner,M.E., Yekta,S., Burge,C.B. and Bartel,D.P. (2003) Vertebrate microRNA genes. Science 299, 1540.
14. Llave,C., Xie,Z., Kasschau,K.D. and Carrington,J.C. (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053-2056.
15. Reinhart,B.J. and Bartel,D.P. (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831.
16. Watanabe,T., Takeda,A., Mise,K., Okuno,T., Suzuki,T., Minami,N. and Imai,H. (2005) Stage-specific expression of microRNAs during Xenopus development. FEBS Lett. 579, 318-324.
17. Lin,S.L., Miller,J.D., and Ying,S.Y. (2006) Intronic MicroRNA (miRNA). J. Biomed. Biotechnol. 2006, 26818.
18. Rooij,Van. E., Sutherland,L.B., Qi,X., Richardson,J.A., Hill,J. and Olson,E.N. (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575-579.
19. Chen,Y.H., Wang,Y.H., Chang,M.Y., Lin,C.Y., Weng,C.W., Westerfield,M. and Tsai,H.J. (2007) Multiple upstream modules regulate zebrafish myf5 expression. BMC Dev. Biol. 3, 7:1
20. Rodriguez,A., Griffiths-Jones,S., Ashurst,J.L. and Bradley,A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902-1910.
21. Giraldez,A.J., Mishima,Y., Rihel,J., Grocock,R.J., Van Dongen,S., Inoue,K., Enright,A.J. and Schier,A.F. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75-79
22. Krupnik,V.E., Sharp,J.D., Jiang,C., Robison,K., Chickering,T.W., Amaravadi,L., Brown,D.E., Guyot, D., Mays,G. and Leiby,K. et al. (1999) Functional and structural diversity of the human Dickkopf gene family. Gene 238, 301-313.
23. Mao,B., Wu,W., Li,Y., Hoppe,D., Stannek,P., Glinka,A. and Niehrs,C. (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321-325.
24. Yue,W., Sun,Q., Dacic,S., Landreneau,R.J., Siegfried,J.M., Yu,J., and Zhang,L. (2008) Downregulation of Dkk3 activates beta-catenin/TCF-4 signaling in lung cancer. Carcinogenesi. 29, 84-92.
25. Kuphal,S., Lodermeyer,S., Bataille,F., Schuierer,M., Hoang,B.H., and Bosserhoff,A.K. (2006) Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene 25, 5027-5036.
26. Pinhob,S. and Niehrs,C. (2007) Dkk3 is required for TGF-beta signaling during Xenopus mesoderm induction. Differentiation. 75, 957-967
27. Monaghan,A.P., Kioschis,P., Wu,W., Zuniga,A., Bock,D., Poustka,A., Delius,H. and Niehrs,C. (1999) Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech. Dev. 87, 45-56.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42468-
dc.description.abstractMyf5 是屬於肌肉發育調控因子之一,在肌肉細胞的特化與分化上都扮演著相當重要的角色。而myf5 的活化與抑制則受到嚴謹的調控,因此使得myf5在體節的表現具有時間與位置的特異性。我的研究發現斑馬魚 myf5 的intron I含有一個新的intronic microRNA (miR-In300),可以抑制myf5啟動子表現的能力,並透過抑制myf5的表現達到調控肌肉的發育。然而,對於miR-In300是透過抑制哪些基因轉譯成蛋白質,而調控myf5在體節的表現。利用LAMP這個我所開發新技術找到一個可能是miR-In300目標基因 Dickkopf-3 (dkk-3)。whole-mount in situ hybridization實驗結果顯示dkk-3在體節的表現和myf5有相似的情形。這也暗示說dkk-3 和myf5在體節的表現有關。利用胚胎發育抑制劑抑制 (morpholino, MO) knock down dkk-3 的表現會造成myf5在體節的表現下降但在presomitic mesoderm的表現則不受影響。而且注射dkk-3 MO胚胎的表型和注射myf5 morphant的結果也很類似。同時,注射dkk-3 MO到myf5綠螢光轉殖魚胚胎可以明顯觀察到在體節部分的綠螢光表現下降。顯示說dkk-3會影響myf5啟動子在體節的活性。從dual-luciferase assay與Western blot的結果,證實miR-In300確實能夠抑制dkk-3的蛋白質表現。因此miR-In300是透過抑制目標基因 dkk-3蛋白質的表現,進而抑制myf5啟動子在體節的活性,形成一個自我負回饋的調控機制。zh_TW
dc.description.abstractAlthough a strong, negative cis-regulatory motif located at the first intron +502/+835 (I300) of zebrafish myf5 was reported, the detailed molecular mechanism underlying the negative modulation remains unclear. To understand this repression network, we microinjected zebrafish eggs with RNA corresponding to the sense strand of I300, resulting in the dramatic reduction of luciferase reporter activity driven by the myf5 promoter. Within this I300 segment, we identified an intronic microRNA located at +610/+632 (miR-In300) and observed that it appeared predominately at the mature somites, but weakly at newly formed somites, which were opposed to the expression patterns of zebrafish myf5. By using the novel method we developed, labeled miRNA pull-down assay system (LAMP), we subsequently screened the Dickkopf-3 gene (dkk3) and identified it as the target gene of miR-In300. Inhibition of the dkk3 translation by microinjection of the dkk3-specific antisense oligonucleotide (MO) did result in down-regulation of myf5 transcripts in somites, whereas co-injection of myf5 mRNA with dkk3-MO enabled rescue of the defects induced by microinjection of dkk3-MO alone. In addition, microinjection of the miR-In300-MO enhanced myf5 transcripts in somites and Dkk3 protein level in zebrafish embryos. We concluded that miR-In300 binds to the dkk3, which, in turn, inhibits the translation of the dkk3 mRNA and results in suppressing the promoter activity of zebrafish myf5.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:14:18Z (GMT). No. of bitstreams: 1
ntu-98-D93b43004-1.pdf: 5222899 bytes, checksum: addb5d6b59b68f81c8c374bdd92ae224 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
中文摘要------------------------------------------------------1
英文摘要------------------------------------------------------2
論文說明------------------------------------------------------3
Chapter I: microRNA within myf5 intron I represses myf5
promoter activity in Danio rerio------------------------------ 6
Introduction --------------------------------------------------7
Results -----------------------------------------------------8
Discussion ----------------------------------------------------- 12
References-----------------------------------------------------14
Chapter II: Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs ----------------------------------------18
Introduction ----------------------------------------------------19
Results ----------------------------------------------------------- 21
Discussion ------------------------------------------------------25
References---------------------------------------------------------31
Chapter III: An intronic microRNA ( miR-In300) targets dickkopf-3 and represses the gene expression of myogenic regulatory factor myf5 during myogenesis of zebrafish embryos------------------------------ 35
Introduction ---------------------------------------------------- 36
Results ---------------------------------------------------------- 38
Discussion ----------------------------------------------------44
References----------------------------------------------------------48
Materials and Methods ----------------------------------------------52
Figures
Chapter I -------------------------------------------------------61
Chapter II ------------------------------------------------------69
Chapter III ------------------------------------------------------82
Publications-------------------------------------------------------100
dc.language.isoen
dc.subject核酸抑制zh_TW
dc.subject微小核酸zh_TW
dc.subject肌肉發育zh_TW
dc.subject斑馬魚zh_TW
dc.subject啟動子zh_TW
dc.subjectmyf5zh_TW
dc.subjectsomitesen
dc.subjectpromoteren
dc.subjectmyf5en
dc.subjectzebrafishen
dc.subjectmicroRNAen
dc.subjectRNAien
dc.title斑馬魚肌肉調控因子 Myf5 啟動子活性之負調控分子機制zh_TW
dc.titleThe negative regulatory mechanism of myogneic regulatory factor myf5 promoter activity of Zebrafishen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭明良,周子賓,孫以瀚,吳素幸
dc.subject.keyword微小核酸,肌肉發育,斑馬魚,啟動子,myf5,核酸抑制,zh_TW
dc.subject.keywordmicroRNA,somites,zebrafish,myf5,promoter,RNAi,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
5.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved