Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42456
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張震東
dc.contributor.authorDer-Yen Leeen
dc.contributor.author李德彥zh_TW
dc.date.accessioned2021-06-15T01:14:05Z-
dc.date.available2011-07-31
dc.date.copyright2009-07-31
dc.date.issued2008
dc.date.submitted2009-07-29
dc.identifier.citation1. Sarkar, N. K., Clarke, D. D., and Waelsch, H. (1957) An enzymically catalyzed incorporation of amines into proteins, Biochim Biophys Acta 25, 451-452.
2. Cariello, L., Velasco, P. T., Wilson, J., Parameswaran, K. N., Karush, F., and Lorand, L. (1990) Probing the transglutaminase-mediated, posttranslational modification of proteins during development, Biochemistry 29, 5103-5108.
3. Pisano, J. J., Finlayson, J. S., and Peyton, M. P. (1968) [Cross-link in fibrin polymerized by factor 13: epsilon-(gamma-glutamyl)lysine.], Science 160, 892-893.
4. Lorand, L. (2001) Factor XIII: structure, activation, and interactions with fibrinogen and fibrin, Ann N Y Acad Sci 936, 291-311.
5. Kalinin, A., Marekov, L. N., and Steinert, P. M. (2001) Assembly of the epidermal cornified cell envelope, J Cell Sci 114, 3069-3070.
6. Williams-Ashman, H. G., Notides, A. C., Pabalan, S. S., and Lorand, L. (1972) Transamidase reactions involved in the enzymic coagulation of semen: isolation of -glutamyl- -lysine dipeptide from clotted secretion protein of guinea pig seminal vesicle, Proc Natl Acad Sci U S A 69, 2322-2325.
7. Lin, H. J., Luo, C. W., and Chen, Y. H. (2002) Localization of the transglutaminase cross-linking site in SVS III, a novel glycoprotein secreted from mouse seminal vesicle, J Biol Chem 277, 3632-3639.
8. Chen, J. S., and Mehta, K. (1999) Tissue transglutaminase: an enzyme with a split personality, Int J Biochem Cell Biol 31, 817-836.
9. Griffin, M., Casadio, R., and Bergamini, C. M. (2002) Transglutaminases: nature's biological glues, Biochem J 368, 377-396.
10. Lorand, L., and Graham, R. M. (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions, Nat Rev Mol Cell Biol 4, 140-156.
11. Sardy, M., Karpati, S., Merkl, B., Paulsson, M., and Smyth, N. (2002) Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis, J Exp Med 195, 747-757.
12. Karpuj, M. V., Becher, M. W., and Steinman, L. (2002) Evidence for a role for transglutaminase in Huntington's disease and the potential therapeutic implications, Neurochem Int 40, 31-36.
13. Vermes, I., Steur, E. N., Jirikowski, G. F., and Haanen, C. (2004) Elevated concentration of cerebrospinal fluid tissue transglutaminase in Parkinson's disease indicating apoptosis, Mov Disord 19, 1252-1254.
14. Lesort, M., Chun, W., Tucholski, J., and Johnson, G. V. (2002) Does tissue transglutaminase play a role in Huntington's disease?, Neurochem Int 40, 37-52.
15. Bergamini, C. M. (2007) Effects of ligands on the stability of tissue transglutaminase: studies in vitro suggest possible modulation by ligands of protein turn-over in vivo, Amino Acids 33, 415-421.
16. Jeong, E. M., Kim, C. W., Cho, S. Y., Jang, G. Y., Shin, D. M., Jeon, J. H., and Kim, I. G. (2009) Degradation of transglutaminase 2 by calcium-mediated ubiquitination responding to high oxidative stress, FEBS Lett 583, 648-654.
17. Antonyak, M. A., Li, B., Regan, A. D., Feng, Q., Dusaban, S. S., and Cerione, R. A. (2009) Tissue transglutaminase is an essential participant in the EGF-stimulated signaling pathway leading to cancer cell migration and invasion, J Biol Chem.
18. Joshi, S., Guleria, R., Pan, J., DiPette, D., and Singh, U. S. (2006) Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells, Oncogene 25, 240-247.
19. Mohan, K., Pinto, D., and Issekutz, T. B. (2003) Identification of tissue transglutaminase as a novel molecule involved in human CD8+ T cell transendothelial migration, J Immunol 171, 3179-3186.
20. Balklava, Z., Verderio, E., Collighan, R., Gross, S., Adams, J., and Griffin, M. (2002) Analysis of tissue transglutaminase function in the migration of Swiss 3T3 fibroblasts: the active-state conformation of the enzyme does not affect cell motility but is important for its secretion, J Biol Chem 277, 16567-16575.
21. Akimov, S. S., and Belkin, A. M. (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin, Blood 98, 1567-1576.
22. McCormack, S. A., Wang, J. Y., Viar, M. J., Tague, L., Davies, P. J., and Johnson, L. R. (1994) Polyamines influence transglutaminase activity and cell migration in two cell lines, Am J Physiol 267, C706-714.
23. Miller, C. C., and Anderton, B. H. (1986) Transglutaminase and the neuronal cytoskeleton in Alzheimer's disease, J Neurochem 46, 1912-1922.
24. Fisher, M., Jones, R. A., Huang, L., Haylor, J. L., El Nahas, M., Griffin, M., and Johnson, T. S. (2009) Modulation of tissue transglutaminase in tubular epithelial cells alters extracellular matrix levels: a potential mechanism of tissue scarring, Matrix Biol 28, 20-31.
25. Naiyer, A. J., Shah, J., Hernandez, L., Kim, S. Y., Ciaccio, E. J., Cheng, J., Manavalan, S., Bhagat, G., and Green, P. H. (2008) Tissue transglutaminase antibodies in individuals with celiac disease bind to thyroid follicles and extracellular matrix and may contribute to thyroid dysfunction, Thyroid 18, 1171-1178.
26. Yuan, L., Siegel, M., Choi, K., Khosla, C., Miller, C. R., Jackson, E. N., Piwnica-Worms, D., and Rich, K. M. (2007) Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy, Oncogene 26, 2563-2573.
27. Mangala, L. S., Arun, B., Sahin, A. A., and Mehta, K. (2005) Tissue transglutaminase-induced alterations in extracellular matrix inhibit tumor invasion, Mol Cancer 4, 33.
28. Guyot, N., Zani, M. L., Maurel, M. C., Dallet-Choisy, S., and Moreau, T. (2005) Elafin and its precursor trappin-2 still inhibit neutrophil serine proteinases when they are covalently bound to extracellular matrix proteins by tissue transglutaminase, Biochemistry 44, 15610-15618.
29. Skill, N. J., Johnson, T. S., Coutts, I. G., Saint, R. E., Fisher, M., Huang, L., El Nahas, A. M., Collighan, R. J., and Griffin, M. (2004) Inhibition of transglutaminase activity reduces extracellular matrix accumulation induced by high glucose levels in proximal tubular epithelial cells, J Biol Chem 279, 47754-47762.
30. Priglinger, S. G., May, C. A., Neubauer, A. S., Alge, C. S., Schonfeld, C. L., Kampik, A., and Welge-Lussen, U. (2003) Tissue transglutaminase as a modifying enzyme of the extracellular matrix in PVR membranes, Invest Ophthalmol Vis Sci 44, 355-364.
31. Summey, B. T., Jr., Graff, R. D., Lai, T. S., Greenberg, C. S., and Lee, G. M. (2002) Tissue transglutaminase localization and activity regulation in the extracellular matrix of articular cartilage, J Orthop Res 20, 76-82.
32. Larreta-Garde, V., and Berry, H. (2002) Modeling extracellular matrix degradation balance with proteinase/transglutaminase cycle, J Theor Biol 217, 105-124.
33. Le, M., Gohr, C. M., and Rosenthal, A. K. (2001) Transglutaminase participates in the incorporation of latent TGFbeta into the extracellular matrix of aging articular chondrocytes, Connect Tissue Res 42, 245-253.
34. Grenard, P., Bresson-Hadni, S., El Alaoui, S., Chevallier, M., Vuitton, D. A., and Ricard-Blum, S. (2001) Transglutaminase-mediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis, J Hepatol 35, 367-375.
35. Piacentini, M., Farrace, M. G., Hassan, C., Serafini, B., and Autuori, F. (1999) 'Tissue' transglutaminase release from apoptotic cells into extracellular matrix during human liver fibrogenesis, J Pathol 189, 92-98.
36. Uhlig, H., Osman, A. A., Tanev, I. D., Viehweg, J., and Mothes, T. (1998) Role of tissue transglutaminase in gliadin binding to reticular extracellular matrix and relation to coeliac disease autoantibodies, Autoimmunity 28, 185-195.
37. Singhal, P. C., Franki, N., Kumari, S., Sanwal, V., Wagner, J. D., and Mattana, J. (1998) Extracellular matrix modulates mesangial cell apoptosis and mRNA expression of cathepsin-B and tissue transglutaminase, J Cell Biochem 68, 22-30.
38. Upchurch, H. F., Conway, E., Patterson, M. K., Jr., and Maxwell, M. D. (1991) Localization of cellular transglutaminase on the extracellular matrix after wounding: characteristics of the matrix bound enzyme, J Cell Physiol 149, 375-382.
39. Battaglia, D. E., and Shapiro, B. M. (1988) Hierarchies of protein cross-linking in the extracellular matrix: involvement of an egg surface transglutaminase in early stages of fertilization envelope assembly, J Cell Biol 107, 2447-2454.
40. Upchurch, H. F., Conway, E., Patterson, M. K., Jr., Birckbichler, P. J., and Maxwell, M. D. (1987) Cellular transglutaminase has affinity for extracellular matrix, In Vitro Cell Dev Biol 23, 795-800.
41. Sarnelli, G., De Giorgio, R., Gentile, F., Cali, G., Grandone, I., Rocco, A., Cosenza, V., Cuomo, R., and D'Argenio, G. (2009) Myenteric neuronal loss in rats with experimental colitis: role of tissue transglutaminase-induced apoptosis, Dig Liver Dis 41, 185-193.
42. Robitaille, K., Daviau, A., Lachance, G., Couture, J. P., and Blouin, R. (2008) Calphostin C-induced apoptosis is mediated by a tissue transglutaminase-dependent mechanism involving the DLK/JNK signaling pathway, Cell Death Differ 15, 1522-1531.
43. Cao, L., Petrusca, D. N., Satpathy, M., Nakshatri, H., Petrache, I., and Matei, D. (2008) Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling, Carcinogenesis 29, 1893-1900.
44. Fok, J. Y., and Mehta, K. (2007) Tissue transglutaminase induces the release of apoptosis inducing factor and results in apoptotic death of pancreatic cancer cells, Apoptosis 12, 1455-1463.
45. Yamaguchi, H., and Wang, H. G. (2006) Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells, Mol Cell Biol 26, 569-579.
46. Wakshlag, J. J., Antonyak, M. A., Boehm, J. E., Boehm, K., and Cerione, R. A. (2006) Effects of tissue transglutaminase on beta -amyloid1-42-induced apoptosis, Protein J 25, 83-94.
47. Fujita, K., Kato, T., Shibayama, K., Imada, H., Yamauchi, M., Yoshimoto, N., Miyachi, E., and Nagata, Y. (2006) Protective effect against 17beta-estradiol on neuronal apoptosis in hippocampus tissue following transient ischemia/recirculation in mongolian gerbils via down-regulation of tissue transglutaminase activity, Neurochem Res 31, 1059-1068.
48. Datta, S., Antonyak, M. A., and Cerione, R. A. (2006) Importance of Ca(2+)-dependent transamidation activity in the protection afforded by tissue transglutaminase against doxorubicin-induced apoptosis, Biochemistry 45, 13163-13174.
49. Linge, C., Richardson, J., Vigor, C., Clayton, E., Hardas, B., and Rolfe, K. (2005) Hypertrophic scar cells fail to undergo a form of apoptosis specific to contractile collagen-the role of tissue transglutaminase, J Invest Dermatol 125, 72-82.
50. Maiuri, L., Luciani, A., Giardino, I., Raia, V., Villella, V. R., D'Apolito, M., Pettoello-Mantovani, M., Guido, S., Ciacci, C., Cimmino, M., Cexus, O. N., Londei, M., and Quaratino, S. (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation, J Immunol 180, 7697-7705.
51. Suh, G. Y., Ham, H. S., Lee, S. H., Choi, J. C., Koh, W. J., Kim, S. Y., Lee, J., Han, J., Kim, H. P., Choi, A. M., and Kwon, O. J. (2006) A Peptide with anti-transglutaminase activity decreases lipopolysaccharide-induced lung inflammation in mice, Exp Lung Res 32, 43-53.
52. Rose, D. M., Sydlaske, A. D., Agha-Babakhani, A., Johnson, K., and Terkeltaub, R. (2006) Transglutaminase 2 limits murine peritoneal acute gout-like inflammation by regulating macrophage clearance of apoptotic neutrophils, Arthritis Rheum 54, 3363-3371.
53. Kim, S. Y. (2006) Transglutaminase 2 in inflammation, Front Biosci 11, 3026-3035.
54. Quan, G., Choi, J. Y., Lee, D. S., and Lee, S. C. (2005) TGF-beta1 up-regulates transglutaminase two and fibronectin in dermal fibroblasts: a possible mechanism for the stabilization of tissue inflammation, Arch Dermatol Res 297, 84-90.
55. Sohn, J., Kim, T. I., Yoon, Y. H., Kim, J. Y., and Kim, S. Y. (2003) Novel transglutaminase inhibitors reverse the inflammation of allergic conjunctivitis, J Clin Invest 111, 121-128.
56. Miele, L. (2003) New weapons against inflammation: dual inhibitors of phospholipase A2 and transglutaminase, J Clin Invest 111, 19-21.
57. Lavie, L., and Weinreb, O. (1996) Age- and strain-related changes in tissue transglutaminase activity in murine macrophages: the effects of inflammation and induction by retinol, Mech Ageing Dev 90, 129-143.
58. D'Argenio, G., Sorrentini, I., Cosenza, V., Gatto, A., Iovino, P., D'Armiento, E. P., Baldassarre, F., and Mazzacca, G. (1992) Serum and tissue transglutaminase correlates with the severity of inflammation in induced colitis in the rat, Scand J Gastroenterol 27, 111-114.
59. Shin, D. M., Jeon, J. H., Kim, C. W., Cho, S. Y., Lee, H. J., Jang, G. Y., Jeong, E. M., Lee, D. S., Kang, J. H., Melino, G., Park, S. C., and Kim, I. G. (2008) TGFbeta mediates activation of transglutaminase 2 in response to oxidative stress that leads to protein aggregation, FASEB J 22, 2498-2507.
60. Ientile, R., Caccamo, D., and Griffin, M. (2007) Tissue transglutaminase and the stress response, Amino Acids 33, 385-394.
61. Yi, S. J., Choi, H. J., Yoo, J. O., Yuk, J. S., Jung, H. I., Lee, S. H., Han, J. A., Kim, Y. M., and Ha, K. S. (2004) Arachidonic acid activates tissue transglutaminase and stress fiber formation via intracellular reactive oxygen species, Biochem Biophys Res Commun 325, 819-826.
62. Shin, D. M., Jeon, J. H., Kim, C. W., Cho, S. Y., Kwon, J. C., Lee, H. J., Choi, K. H., Park, S. C., and Kim, I. G. (2004) Cell type-specific activation of intracellular transglutaminase 2 by oxidative stress or ultraviolet irradiation: implications of transglutaminase 2 in age-related cataractogenesis, J Biol Chem 279, 15032-15039.
63. Piacentini, M., Farrace, M. G., Piredda, L., Matarrese, P., Ciccosanti, F., Falasca, L., Rodolfo, C., Giammarioli, A. M., Verderio, E., Griffin, M., and Malorni, W. (2002) Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress, J Neurochem 81, 1061-1072.
64. Chowdhury, Z. A., Barsigian, C., Chalupowicz, G. D., Bach, T. L., Garcia-Manero, G., and Martinez, J. (1997) Colocalization of tissue transglutaminase and stress fibers in human vascular smooth muscle cells and human umbilical vein endothelial cells, Exp Cell Res 231, 38-49.
65. Wang, J. Y., and Johnson, L. R. (1992) Role of transglutaminase and protein cross-linking in the repair of mucosal stress erosions, Am J Physiol 262, G818-825.
66. Orru, S., Caputo, I., D'Amato, A., Ruoppolo, M., and Esposito, C. (2003) Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease, J Biol Chem 278, 31766-31773.
67. Verma, A., and Mehta, K. (2007) Transglutaminase-mediated activation of nuclear transcription factor-kappaB in cancer cells: a new therapeutic opportunity, Curr Cancer Drug Targets 7, 559-565.
68. Kim, D. S., Park, S. S., Nam, B. H., Kim, I. H., and Kim, S. Y. (2006) Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation, Cancer Res 66, 10936-10943.
69. Mann, A. P., Verma, A., Sethi, G., Manavathi, B., Wang, H., Fok, J. Y., Kunnumakkara, A. B., Kumar, R., Aggarwal, B. B., and Mehta, K. (2006) Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway, Cancer Res 66, 8788-8795.
70. Caccamo, D., Campisi, A., Curro, M., Aguennouz, M., Li Volti, G., Avola, R., and Ientile, R. (2005) Nuclear factor-kappab activation is associated with glutamate-evoked tissue transglutaminase up-regulation in primary astrocyte cultures, J Neurosci Res 82, 858-865.
71. Lee, J., Kim, Y. S., Choi, D. H., Bang, M. S., Han, T. R., Joh, T. H., and Kim, S. Y. (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia, J Biol Chem 279, 53725-53735.
72. Melino, G., Farrace, M. G., Ceru, M. P., and Piacentini, M. (1988) Correlation between transglutaminase activity and polyamine levels in human neuroblastoma cells. Effect of retinoic acid and alpha-difluoromethylornithine, Exp Cell Res 179, 429-445.
73. Tunici, P., Sessa, A., Rabellotti, E., Grant, G., Bardocz, S., and Perin, A. (1999) Polyamine oxidase and tissue transglutaminase activation in rat small intestine by polyamines, Biochim Biophys Acta 1428, 219-224.
74. Facchiano, F., D'Arcangelo, D., Riccomi, A., Lentini, A., Beninati, S., and Capogrossi, M. C. (2001) Transglutaminase activity is involved in polyamine-induced programmed cell death, Exp Cell Res 271, 118-129.
75. Lentini, A., Abbruzzese, A., Caraglia, M., Marra, M., and Beninati, S. (2004) Protein-polyamine conjugation by transglutaminase in cancer cell differentiation: review article, Amino Acids 26, 331-337.
76. Baldini, P. M., Lentini, A., Mattioli, P., Provenzano, B., De Vito, P., Vismara, D., and Beninati, S. (2006) Decrease of polyamine levels and enhancement of transglutaminase activity in selective reduction of B16-F10 melanoma cell proliferation induced by atrial natriuretic peptide, Melanoma Res 16, 501-507.
77. Ohtake, Y., Nagashima, T., Suyama-Satoh, S., Maruko, A., Shimura, N., and Ohkubo, Y. (2007) Transglutaminase catalyzed dissociation and association of protein-polyamine complex, Life Sci 81, 577-584.
78. Jeon, J. H., Choi, K. H., Cho, S. Y., Kim, C. W., Shin, D. M., Kwon, J. C., Song, K. Y., Park, S. C., and Kim, I. G. (2003) Transglutaminase 2 inhibits Rb binding of human papillomavirus E7 by incorporating polyamine, EMBO J 22, 5273-5282.
79. Stamnaes, J., Fleckenstein, B., and Sollid, L. M. (2008) The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions, Biochim Biophys Acta 1784, 1804-1811.
80. van de Wal, Y., Kooy, Y., van Veelen, P., Pena, S., Mearin, L., Papadopoulos, G., and Koning, F. (1998) Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity, J Immunol 161, 1585-1588.
81. Fleckenstein, B., Molberg, O., Qiao, S. W., Schmid, D. G., von der Mulbe, F., Elgstoen, K., Jung, G., and Sollid, L. M. (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process, J Biol Chem 277, 34109-34116.
82. Mazzeo, M. F., De Giulio, B., Senger, S., Rossi, M., Malorni, A., and Siciliano, R. A. (2003) Identification of transglutaminase-mediated deamidation sites in a recombinant alpha-gliadin by advanced mass-spectrometric methodologies, Protein Sci 12, 2434-2442.
83. Dorum, S., Qiao, S. W., Sollid, L. M., and Fleckenstein, B. (2009) A quantitative analysis of transglutaminase 2-mediated deamidation of gluten peptides: implications for the T-cell response in celiac disease, J Proteome Res 8, 1748-1755.
84. Boros, S., Ahrman, E., Wunderink, L., Kamps, B., de Jong, W. W., Boelens, W. C., and Emanuelsson, C. S. (2006) Site-specific transamidation and deamidation of the small heat-shock protein Hsp20 by tissue transglutaminase, Proteins 62, 1044-1052.
85. Boros, S., Wilmarth, P. A., Kamps, B., de Jong, W. W., Bloemendal, H., Lampi, K., and Boelens, W. C. (2008) Tissue transglutaminase catalyzes the deamidation of glutamines in lens betaB(2)- and betaB(3)-crystallins, Exp Eye Res 86, 383-393.
86. Esposito, C., and Caputo, I. (2005) Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance, FEBS J 272, 615-631.
87. Ruoppolo, M., Orru, S., D'Amato, A., Francese, S., Rovero, P., Marino, G., and Esposito, C. (2003) Analysis of transglutaminase protein substrates by functional proteomics, Protein Sci 12, 1290-1297.
88. Vander Jagt, D. L., Hassebrook, R. K., Hunsaker, L. A., Brown, W. M., and Royer, R. E. (2001) Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications, Chem Biol Interact 130-132, 549-562.
89. Vander Jagt, D. L., and Hunsaker, L. A. (2003) Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase, Chem Biol Interact 143-144, 341-351.
90. Mannervik, B. (2008) Molecular enzymology of the glyoxalase system, Drug Metabol Drug Interact 23, 13-27.
91. Kalapos, M. P. (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications, Toxicol Lett 110, 145-175.
92. Shinohara, M., Thornalley, P. J., Giardino, I., Beisswenger, P., Thorpe, S. R., Onorato, J., and Brownlee, M. (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis, J Clin Invest 101, 1142-1147.
93. Riboulet-Chavey, A., Pierron, A., Durand, I., Murdaca, J., Giudicelli, J., and Van Obberghen, E. (2006) Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species, Diabetes 55, 1289-1299.
94. Kim, J., Son, J. W., Lee, J. A., Oh, Y. S., and Shinn, S. H. (2004) Methylglyoxal induces apoptosis mediated by reactive oxygen species in bovine retinal pericytes, J Korean Med Sci 19, 95-100.
95. Laga, M., Cottyn, A., Van Herreweghe, F., Vanden Berghe, W., Haegeman, G., Van Oostveldt, P., Vandekerckhove, J., and Vancompernolle, K. (2007) Methylglyoxal suppresses TNF-alpha-induced NF-kappaB activation by inhibiting NF-kappaB DNA-binding, Biochem Pharmacol 74, 579-589.
96. Du, J., Suzuki, H., Nagase, F., Akhand, A. A., Yokoyama, T., Miyata, T., Kurokawa, K., and Nakashima, I. (2000) Methylglyoxal induces apoptosis in Jurkat leukemia T cells by activating c-Jun N-terminal kinase, J Cell Biochem 77, 333-344.
97. Talukdar, D., Ray, S., Ray, M., and Das, S. (2008) A brief critical overview of the biological effects of methylglyoxal and further evaluation of a methylglyoxal-based anticancer formulation in treating cancer patients, Drug Metabol Drug Interact 23, 175-210.
98. Ranganathan, S., and Tew, K. D. (1993) Analysis of glyoxalase-I from normal and tumor tissue from human colon, Biochim Biophys Acta 1182, 311-316.
99. Sakamoto, H., Mashima, T., Kizaki, A., Dan, S., Hashimoto, Y., Naito, M., and Tsuruo, T. (2000) Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis, Blood 95, 3214-3218.
100. Antognelli, C., Baldracchini, F., Talesa, V. N., Costantini, E., Zucchi, A., and Mearini, E. (2006) Overexpression of glyoxalase system enzymes in human kidney tumor, Cancer J 12, 222-228.
101. Sharkey, E. M., O'Neill, H. B., Kavarana, M. J., Wang, H., Creighton, D. J., Sentz, D. L., and Eiseman, J. L. (2000) Pharmacokinetics and antitumor properties in tumor-bearing mice of an enediol analogue inhibitor of glyoxalase I, Cancer Chemother Pharmacol 46, 156-166.
102. Sakamoto, H., Mashima, T., Sato, S., Hashimoto, Y., Yamori, T., and Tsuruo, T. (2001) Selective activation of apoptosis program by S-p-bromobenzylglutathione cyclopentyl diester in glyoxalase I-overexpressing human lung cancer cells, Clin Cancer Res 7, 2513-2518.
103. Hamilton, D. S., and Creighton, D. J. (1992) Inhibition of glyoxalase I by the enediol mimic S-(N-hydroxy-N-methylcarbamoyl)glutathione. The possible basis of a tumor-selective anticancer strategy, J Biol Chem 267, 24933-24936.
104. Kamiya, D., Uchihata, Y., Ichikawa, E., Kato, K., and Umezawa, K. (2005) Reversal of anticancer drug resistance by COTC based on intracellular glutathione and glyoxalase I, Bioorg Med Chem Lett 15, 1111-1114.
105. Hamilton, D. S., Kavarana, M. J., Sharkey, E. M., Eiseman, J. L., and Creighton, D. J. (1999) A new method for rapidly generating inhibitors of glyoxalase I inside tumor cells using S-(N-aryl-N-hydroxycarbamoyl)ethylsulfoxides, J Med Chem 42, 1823-1827.
106. Thornalley, P. J., Edwards, L. G., Kang, Y., Wyatt, C., Davies, N., Ladan, M. J., and Double, J. (1996) Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis, Biochem Pharmacol 51, 1365-1372.
107. Thornalley, P. J. (1995) Advances in glyoxalase research. Glyoxalase expression in malignancy, anti-proliferative effects of methylglyoxal, glyoxalase I inhibitor diesters and S-D-lactoylglutathione, and methylglyoxal-modified protein binding and endocytosis by the advanced glycation endproduct receptor, Crit Rev Oncol Hematol 20, 99-128.
108. Creighton, D. J., Zheng, Z. B., Holewinski, R., Hamilton, D. S., and Eiseman, J. L. (2003) Glyoxalase I inhibitors in cancer chemotherapy, Biochem Soc Trans 31, 1378-1382.
109. Thornalley, P. J. (2003) Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy, Biochem Soc Trans 31, 1372-1377.
110. Staniszewska, M. M., and Nagaraj, R. H. (2006) Upregulation of glyoxalase I fails to normalize methylglyoxal levels: a possible mechanism for biochemical changes in diabetic mouse lenses, Mol Cell Biochem 288, 29-36.
111. Kawase, M., Tada, M., Akagi, S., and Ohmori, S. (1996) Changes in concentrations of methylglyoxal, D-lactate and glyoxalase activities in liver and plasma of rats fed a 3'-methyl-4-dimethylaminoazobenzene-rich diet, Res Exp Med (Berl) 196, 251-259.
112. Haik, G. M., Jr., Lo, T. W., and Thornalley, P. J. (1994) Methylglyoxal concentration and glyoxalase activities in the human lens, Exp Eye Res 59, 497-500.
113. Verma, A., and Mehta, K. (2007) Tissue transglutaminase-mediated chemoresistance in cancer cells, Drug Resist Updat 10, 144-151.
114. Zemskov, E. A., Loukinova, E., Mikhailenko, I., Coleman, R. A., Strickland, D. K., and Belkin, A. M. (2009) Regulation of PDGF receptor function by integrin-associated cell surface transglutaminase, J Biol Chem.?
115. Tanaka, K., Yokosaki, Y., Higashikawa, F., Saito, Y., Eboshida, A., and Ochi, M. (2007) The integrin alpha5beta1 regulates chondrocyte hypertrophic differentiation induced by GTP-bound transglutaminase 2, Matrix Biol 26, 409-418.
116. Janiak, A., Zemskov, E. A., and Belkin, A. M. (2006) Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway, Mol Biol Cell 17, 1606-1619.
117. Oh, J. E., Kook, J. K., and Min, B. M. (2005) Beta ig-h3 induces keratinocyte differentiation via modulation of involucrin and transglutaminase expression through the integrin alpha3beta1 and the phosphatidylinositol 3-kinase/Akt signaling pathway, J Biol Chem 280, 21629-21637.
118. Belkin, A. M., Tsurupa, G., Zemskov, E., Veklich, Y., Weisel, J. W., and Medved, L. (2005) Transglutaminase-mediated oligomerization of the fibrin(ogen) alphaC domains promotes integrin-dependent cell adhesion and signaling, Blood 105, 3561-3568.
119. Kang, S. K., Yi, K. S., Kwon, N. S., Park, K. H., Kim, U. H., Baek, K. J., and Im, M. J. (2004) Alpha1B-adrenoceptor signaling and cell motility: GTPase function of Gh/transglutaminase 2 inhibits cell migration through interaction with cytoplasmic tail of integrin alpha subunits, J Biol Chem 279, 36593-36600.
120. Verma, A., Guha, S., Wang, H., Fok, J. Y., Koul, D., Abbruzzese, J., and Mehta, K. (2008) Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells, Clin Cancer Res 14, 1997-2005.
121. Jung, S. A., Lee, H. K., Yoon, J. S., Kim, S. J., Kim, C. Y., Song, H., Hwang, K. C., Lee, J. B., and Lee, J. H. (2007) Upregulation of TGF-beta-induced tissue transglutaminase expression by PI3K-Akt pathway activation in human subconjunctival fibroblasts, Invest Ophthalmol Vis Sci 48, 1952-1958.
122. Bae, J., Lee, Y. S., and Jeoung, D. (2006) Down-regulation of transglutaminase II leads to impaired motility of cancer cells by inactivation of the protein kinase, Akt, and decrease of reactive oxygen species, Biotechnol Lett 28, 1151-1158.
123. Schagger, H., and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal Biochem 166, 368-379.
124. Nigam, S. K., Goldberg, A. L., Ho, S., Rohde, M. F., Bush, K. T., and Sherman, M. (1994) A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily, J Biol Chem 269, 1744-1749.
125. Hayes, J. D. (1988) Selective elution of rodent glutathione S-transferases and glyoxalase I from the S-hexyglutathione-Sepharose affinity matrix, Biochem J 255, 913-922.
126. Kellum, M. W., Oray, B., and Norton, S. J. (1978) A convenient quantitative synthesis of methylglyoxal for glyoxalase I assays, Anal Biochem 85, 586-590.
127. Amarzguioui, M. (2004) Improved siRNA-mediated silencing in refractory adherent cell lines by detachment and transfection in suspension, Biotechniques 36, 766-768, 770.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42456-
dc.description.abstract轉穀醯胺酶(TG)是一群催化蛋白質鏈合、胺類修飾以及去胺反應的酵素,而TG的蛋白質受質在各項研究中持續地被發現,TG的修飾作用會影響蛋白質受質的功能,並且有越來越多的證據顯示TG對蛋白質進行轉譯後蛋白質修飾的重要性。由於蛋白質體學的技術以及觀念的發展,鑑定TG的蛋白質受質身分也相對的便捷亦準確,TG重要的生化角色也逐漸的被發現在各種細胞生理的作用中。在此蛋白質體的研究中以酵素以及蛋白質受質之間的交互作用為理論基礎,以部份純化的方法分離出含有富含TG活性的蛋白質樣本,預期在這個樣本中能發現尚未被發現的TG的蛋白質受質。經過質譜鑑定後,目前篩選出二十九個推定的TG的蛋白質受質,研究過程中,其中的VCP、ERp72、GRP78、PDI、14-3-3、PRDX1、PSC2以及glyoxalase I (GlxI)經實驗首次證實結構上為TG的蛋白質受質。另外,GRP78為目前已知可能是TG的蛋白質受質,由質譜以及酵素催化的實驗結果驗證了之前的發現,並且在純化GRP78蛋白質的同時,發現具有活性的TG2也同時被純化,結果顯示GRP78與TG之間除了存在酵素與受質的關係,也可能存在有蛋白質間的交互作用。
在整個研究過程中,除了尋找新的TG蛋白質受質之外,更重要的是找尋這些已知或者新鑑定的TG受質在細胞壓力反應之下是否會參與細胞的生理作用,因此同時也建立細胞壓力反應下造成TG活化的細胞模式。初次發現有TG受質的特性的14-3-3,除了證實會受到TG的修飾,部分結果發現14-3-3可能經由TG修飾所進行的蛋白質鏈合作用而形成二聚體並且改變在細胞中的位置。實驗中當細胞以A23187造成細胞內鈣離子上升藉以活化細胞內TG時,14-3-3由單體轉向成為二聚體之後,傾向從細胞萃取的上清液部分進入沉積物的部分。
最後,在這些新定出的TG的蛋白質受質中,最清楚的發現在於GlxI的修飾與調節,GlxI除了具有TG的蛋白質受質的特性之外,GlxI並且會結合精素(spmermidine)以及精胺(spermine)的多胺類,而結合的強度可以抗sodium dodecyl sulfate (SDS)的變性作用。在TG催化之下,GlxI並不形成二聚體反而進行多胺類的轉胺作用或者去胺作用。同時,結合多胺類也會影響GlxI的活性以及穩定性,經由TG催化之後,多胺類的轉胺作用以及去胺作用更增加GlxI的酵素活性以及穩定性,其中多胺類的轉胺作用更使得GlxI在鹼性溶液中有更好的穩定性。更重要的是TG的作用可以在細胞內調控GlxI對於甲基乙二醛(MG)的去毒作用,以MG處理過的培養細胞,TG的活性會有明顯的增加並且會受到TG抑制劑的抑制,當加入TG的抑制劑到培養細胞後以MG處理,發現抑制TG之後細胞對於MG的抗性有明顯的下降。同時,以RNA干擾的方式降低細胞內TG2的表現量,發現也可以減低細胞對於MG的抗性。另外,細胞內多胺類的含量也會影響細胞對MG的抗性改變,加入二乙基正精胺(DENSPM)到培養細胞以降低細胞內多胺類的含量,再以MG處理細胞則造成了更嚴重的細胞死亡。
這些結果顯示,TG的在細胞壓力反應中,可能具有藉由修飾作用來調節下游蛋白質受質的能力,其中,經由TG所催化的轉胺以及去胺作用來調節細胞內的GlxI的活性與穩定性,使細胞足以反應並去除過盛的MG所造成的細胞毒性。另外,這個結果可能也說明為何癌細胞對於抗癌藥物產生抗藥性的機制,癌細胞過度地表現TG以及GlxI而使癌細胞具有較好的能力可以移除藥物所引發細胞內上升的MG,因而使癌細胞對於抗癌藥物造成細胞內MG增加引起細胞凋亡產生抗藥性。
zh_TW
dc.description.abstractTransglutaminases (TGs) have been characterized as a group of enzymes designated for catalyzing protein cross-linking, polyamine incorporation, and deamidation. Meanwhile, an emerging group of proteins has been cataloged as TG protein substrates in numerous studies, and their functions are affected by the post-translational modifications catalyzed by TGs. This proteomics study was performed in a protein sample enriched in TG2 and protein substrates based on the theoretical interactions of enzymes and substrates. The fraction enriched in TG2 obtained by ion exchanger column chromatography was subjected to proteomics identification of potential TG2 protein substrates. Twenty nine putative TG2 protein substrates of interest were documented from the proteomics identification. VCP, ERp72, PDI, 14-3-3, PRDX1, PSC2, and glyoxalase I (GlxI) were verified as novel TG protein substrates by in vitro transamidation assay. Among the putative TG2 protein substrates, GRP78 has been identified as a TG2 protein substrate. Our results from mass spectrometry analysis and in vitro transamidation experiments confirmed previous descriptions. Moreover, TG2 activity was co-purified with GRP78 by affinity column chromatography indicating that the relationship between TG2 and GRP78 may go beyond that of enzyme and substrates. On the other hand, 14-3-3 was identified as a TG protein substrate for the first time. Dimerization of 14-3-3 was found in cells treated with calcium ionophore, possibly caused as TG2-catalyzed cross-linking and this rendered 14-3-3 insoluble.
We focused on on glyoxalase I (GlxI) and studied in more detail the effect of TG2 on the substrates. Except for being a TG2 protein substrate, GlxI was found as a polyamine binding protein and the interaction between the enzyme and spermidine or spermine was SDS-resistant. Binding of polyamines alone increased the enzyme activity and protein stability in alkaline solution of GlxI. Moreover, polyamine incorporation and deamidation of GlxI were demonstrated by in vitro transamidation assay and competitive transamidation assay, respectively. TG2 catalyzed polyamine incorporation and deamidation of GlxI, instead of protein cross-linking. With TG2 catalysis, polyamine incorporation or deamidation of GlxI enhanced the enzyme activity. However, polyamine incorporation of GlxI not only increased the enzyme activity but also protein stability. More importantly, the modifications of GlxI by TG2 and up-regulation of Glx enzyme activity were found to increase cells’ resistence to methylglyoxal (MG)-induced cytotoxicity. The TG activity of cultured cells was elevated with MG and suppressed with TG inhibitors treatments. The inhibition of endogenous TG activity by TG inhibitors in cultured cells reduced the cell viability on cells challenged with MG. Furthermore, knockdown of TG2 by RNA interference also reduced the cell resistance to MG treatments. Besides, the endogenous polyamines also modulate the endogenous GlxI activity. Depletion of endogenous polyamine by DENSPM caused more cell death when cells were treated with MG. The results indicated that TG2 is able to regulate downstream protein substrates by posttranslational modifications. In this study, polyamine incorporation and deamidation of GlxI by TG2 catalysis are essential for cells to respond to the increasing MG and remove the toxicity of excessive MG. The results also imply that the drug resistance of cancer cells against MG-induced apoptosis may result from the overexpression of TG2 and GlxI.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:14:05Z (GMT). No. of bitstreams: 1
ntu-97-D91242006-1.pdf: 29657048 bytes, checksum: 1bada97e20c13e50250bd28d90b5881c (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsLists of Tables and Figures vii
Lists of Appendices viii
Lists of Abbreviations ix
1. Introduction 1
1.1. TG family 1
1.2. Biological functions of TGs and related diseases 1
1.3. Biological reactions of TGs 3
1.4. Regulations of TG2 activity 4
1.5. Regulation of TG2 protein substrates by TG2 via post-translational modifications: Cross-linking, polyamine incorporation and deamidation 5
1.6. Proteomics identification of TG2 substrates 7
1.7. Glyoxalase (Glx) enzyme system and methylglyoxal (MG) 8
1.8. Drug resistance and GlxI expression 10
1.9. Complexity of TG2 in cell stress responses and detoxification 11
1.10. Specific aims 13
2.1. Materials 14
2.2. Methods 15
2.2.1. Partially purified fraction of TG2 15
2.2.2. In vitro transamidation 15
2.2.3. Affinity purification of biotin labeled proteins from the TMAE partially purified fraction 16
2.2.4. SDS-PAGE 16
2.2.5. Electrophoretic transfer 17
2.2.6. Streptavidin-peroxidase blot overlay 17
2.2.7. In-gel digestion and tandem MS spectrometry 17
2.2.8. Immunoblotting 18
2.2.9. Purification of GRP78 by gelatin-Agarose affinity chromatography 18
2.2.10. Cell culture 19
2.2.11. In situ transamidation assay 19
2.2.12. Purification of glyoxalase I from mouse liver 20
2.2.13. Activity assay of glyoxalase I 20
2.2.14. Cloning and expression of recombinant human GlxI in E. coli BL21 21
2.2.15. Detection for deamidation of rhGlxI 22
2.2.15. MTT assay 22
2.2.16. Cell transfection 23
2.2.17. Short interfering RNA 23
3. Results and Discussion 25
3.1. Proteomics identification of TG protein substrates 25
3.2. Verification of the proteomics identification of TG2 protein substrates 26
3.3. The association of TG2 and GRP78 27
3.4. Activation of endogenous TG2 in cultured cells by a series of chemical assaults 28
3.5. Formation of 14-3-3 oligomers by TG2 catalysis 29
3.6. Identification and verification of GlxI as a TG2 substrate 30
3.7. GlxI and polyamines 31
3.8. Polyamine incorporation of GlxI by TG2 catalysis 32
3.9. Deamination of GlxI by TG2 catalysis 33
3.10. Modulation of GlxI activity and stability by polyamine binding or polyamine incorporation and deamidation by TG2 catalysis 34
3.11. Inhibition of endogenous TG2 activity or depletion of endogenous polyamines decreased the resistance of HeLa cells to MG 35
3.12. MG resistance in HeLa cells at high MG concentrations and MG-induced activation of endogenous TG2 37
3.13. Induction of endogenous TG2 activity by MG and suppression of endogenous TG2 activty by TG2 inhibitors 37
3.14. Specific knockdown of endogenous TG2 protein level sensitized HeLa cells and HepG2 cells to MG treatment 38
4. Conclusions/ perspectives 41
References 69
dc.language.isoen
dc.subject轉榖醯胺&#37238zh_TW
dc.subject細胞壓力反應zh_TW
dc.subject蛋白質修飾zh_TW
dc.subjectglyoxalase Ien
dc.subjectprotein modificationen
dc.subjecttransglutaminaseen
dc.subjectcell stress responseen
dc.title細胞壓力反應下轉穀醯胺酶催化蛋白質修飾作用之研究zh_TW
dc.titleThe studies on transglutaminase-mediated protein modifications in cell stress responsesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃銓珍,李明亭,陳宏文,張茂山
dc.subject.keyword細胞壓力反應,轉榖醯胺&#37238,蛋白質修飾,zh_TW
dc.subject.keywordcell stress response,transglutaminase,protein modification,glyoxalase I,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
28.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved