Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42452
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成(Chien-Cheng Chang)
dc.contributor.authorZheng-Wei Xuen
dc.contributor.author許正緯zh_TW
dc.date.accessioned2021-06-15T01:14:00Z-
dc.date.available2014-07-31
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation[1] J. D. Enderle, J. D. Bronzino, and S. M. Blanchard, Introduction to biomedical engineering, 2 ed.: Academic Press, 2005.
[2] K. K. Shung, G. A. Thieme, and F. Dunn, 'Ultrasonic Scattering in Biological Tissues,' J. Acoust. Soc. Am., vol. 94, p. 3033, 1993.
[3] N. K. Arden, J. Baker, C. Hogg, K. Baan, and T. D. Spector, 'The Heritability of Bone Mineral Density, Ultrasound of the Calcaneus and Hip Axis Length: A Study of Postmenopausal Twins,' J. Bone Miner. Res., vol. 11, pp. 530-534, 1996.
[4] T. A. Whittingham, 'Medical diagnostic applications and sources,' Prog. Biophys. Mol. Biol., vol. 93, pp. 84-110, 2007.
[5] D. A. Christensen, Ultrasonic bioinstrumentation. New York: Wiley, 1988.
[6] C. Guy and D. Ffytche, Introduction to the Principles of Medical Imaging, Revised Edition ed.: Imperial College Press, 2005.
[7] K. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues. Boca Raton: CRC Press, 1993.
[8] L. L. Fellingham and F. G. Sommer, 'Ultrasonic Characterization of Tissue Structure in the In Vivo Human Liver and Spleen,' IEEE Trans. Sonics Ultrason., vol. 31, pp. 418-428, 1984.
[9] R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, 'Statistics of Speckle in Ultrasound B-Scans,' IEEE Trans. Sonics Ultrason., vol. 30, pp. 156-163, 1983.
[10] P. M. Shankar and V. L. Newhouse, 'Speckle Reduction with Improved Resolution in Ultrasound Images,' IEEE Trans. Sonics Ultrason., vol. 32, pp. 537-543, 1985.
[11] T. Lin, J. Ophir, and G. Potter, 'Correlations of sound speed with tissue constituents in normal and diffuse liver disease,' Ultrason. Imaging, vol. 9, pp. 29-40, 1987.
[12] G. Haïta, F. Padilla, R. Barkmann, S. Kolta, C. Latremouille, C. C. Glüer, and P. Laugier, 'In vitro speed of sound measurement at intact human femur specimens,' Ultrasound in Med. & Biol., vol. 31, pp. 987-996, 2005.
[13] B. S. Garra, M. F. Insana, T. H. Shawker, and M. A. Russell, 'Quantitative estimation of liver attenuation and echogenicity: normal state versus diffuse liver disease,' Radiology, vol. 162, pp. 61-67, 1987.
[14] N. Parmar and M. C. Kolios, 'An investigation of the use of transmission ultrasound to measure acoustic attenuation changes in thermal therapy,' Med. Biol. Eng. Comput., vol. 44, pp. 583-91, 2006.
[15] P. D. Bevan and M. D. Sherar, 'B-scan ultrasound imaging of thermal coagulation in bovine liver: log envelope slope attenuation mapping,' Ultrasound in Med. & Biol., vol. 27, pp. 379-87, 2001.
[16] Z. F. Lu, J. A. Zagzebski, and F. T. Lee, 'Ultrasound backscatter and attenuation in human liver with diffuse disease,' Ultrasound in Med. & Biol., vol. 25, p. 1047, 1999.
[17] X. Z. Liu, X. F. Gong, C. Yin, J. L. Li, and D. Zhang, 'Noninvasive Estimation of Temperature Elevations in Biological Tissues Using Acoustic Nonlinearity Parameter Imaging,' Ultrasound in Med. & Biol., vol. 33, pp. 414-424, 2008.
[18] P. H. Tsui, C. K. Yeh, C. C. Chang, and Y. Y. Liao, 'Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study,' Phys. Med. Biol., vol. 53, pp. 6027-6044, 2008.
[19] P. M. Shankar, 'A general statistical model for ultrasonic backscattering from tissues,' IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 47, pp. 727-736, 2000.
[20] C. B. Burckhardt, 'Speckle in Ultrasound B-Mode Scans,' IEEE Trans. Sonics Ultrason., vol. 25, pp. 1-6, 1978.
[21] T. A. Tuthill, R. H. Sperry, and K. J. Parker, 'Deviations from Rayleigh statistics in ultrasonic speckle,' Ultrason. Imaging, vol. 10, pp. 81-89, 1988.
[22] E. Jakeman and P. Pusey, 'A model for non-Rayleigh sea echo,' IEEE Trans. Antennas Propag., vol. 24, pp. 806-814, 1976.
[23] L. Weng, J. M. Reid, P. M. Shankar, and K. Soetanto, 'Ultrasound speckle analysis based on the K distribution,' J. Acoust. Soc. Am., vol. 89, pp. 2992-2995, 1991.
[24] P. M. Shankar, J. M. Reid, H. Ortega, C. W. Piccoli, and B. B. Goldberg, 'Use of non-Rayleigh statistics for the identification of tumors in ultrasonic B-scans of the breast,' IEEE Trans. Med. Imaging, vol. 12, pp. 687-692, 1993.
[25] V. M. Narayanan, P. M. Shankar, and J. M. Reid, 'Non-Rayleigh statistics of ultrasonic backscattered signals,' IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 41, pp. 845-852, 1994.
[26] P. M. Shankar, R. Molthen, V. M. Narayanan, J. M. Reid, V. Genis, F. Forsberg, C. W. Piccoli, A. E. Lindenmayer, and B. B. Goldberg, 'Studies on the use of non-Rayleigh statistics for ultrasonic tissue characterization,' Ultrasound in Med. & Biol., vol. 22, pp. 873-882, 1996.
[27] R. C. Molthen, P. M. Shankar, J. M. Reid, F. Forsberg, E. J. Halpern, C. W. Piccoli, and B. B. Goldberg, 'Comparisons of the Rayleigh and K-distribution models using in vivo breast and liver tissue,' Ultrasound in Med. & Biol., vol. 24, pp. 93-100, 1998.
[28] V. Dutt and J. F. Greenleaf, 'Ultrasound echo envelope analysis using a homodyned K distribution signal model,' Ultrason. Imaging, vol. 16, pp. 265-287, 1994.
[29] P. M. Shankar, 'A model for ultrasonic scattering from tissues based on the K distribution,' Phys. Med. Biol., vol. 40, pp. 1633-1649, 1995.
[30] P. Mohana Shankar, 'A general statistical model for ultrasonic backscattering from tissues,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 47, pp. 727-736, 2000.
[31] P. M. Shankar, V. A. Dumane, J. M. Reid, V. Genis, F. Forsberg, C. W. Piccoli, and B. B. Goldberg, 'Classification of ultrasonic B-mode images of breast masses using Nakagami distribution,' IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 48, pp. 569-580, 2001.
[32] V. A. Dumane and P. M. Shankar, 'Use of frequency diversity and Nakagami statistics in ultrasonic tissue characterization,' IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 48, pp. 1139-1146, 2001.
[33] P. M. Shankar, 'Estimation of the Nakagami parameter from log-compressed ultrasonic backscattered envelopes (L),' J. Acoust. Soc. Am., vol. 114, pp. 70-72, 2003.
[34] P. H. Tsui and S. H. Wang, 'The effect of transducer characteristics on the estimation of Nakagami paramater as a function of scatterer concentration,' Ultrasound in Med. & Biol., vol. 30, pp. 1345-1353, 2004.
[35] C. C. Huang, P. H. Tsui, and S. H. Wang, 'Detection of coagulating blood under steady flow by statistical analysis of backscattered signals,' IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 54, pp. 435-442, 2007.
[36] P. H. Tsui and C. C. Chang, 'Imaging Local Scatterer Concentrations by the Nakagami Statistical Model,' Ultrasound in Med. & Biol., vol. 33, pp. 608-619, 2007.
[37] P. H. Tsui, C. C. Huang, C. C. Chang, S. H. Wang, and K. K. Shung, 'Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro,' Phys. Med. Biol., vol. 52, pp. 6413-6426, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42452-
dc.description.abstract今日超音波影像在各大醫院已經成為不可或缺的第一線診斷工具,是因為其具有非侵入式、人體無害、成本較低、機動性高與即時成像等優點。傳統上使用的超音波B-mode影像可用來檢測生物組織的內部結構,但不能完整能描述來自於組織內的真實情況,因此發展出許多有用的超音波定量方式來定量組織特性,在這些方法之中,Nakagami參數被證實應用在不同散射子濃度的偵測上有著顯著的能力。其後發展出以Nakagami參數為基礎的超音波Nakagami影像,更可將散射子特性視覺化。而為了改善Nakagami影像解析度並且包含更多的生物組織資訊,本研究將發展三維Nakagami影像。
  在本論文中,我們將使用仿體實驗與離體纖維化大鼠肝臟之檢測,來探討三維Nakagami影像的可能性。我們需要從不同散射子濃度仿體的超音波逆散射訊號中,來求得最適當的三維Nakagami影像之計算方塊大小。結果顯示以八倍的超音波解析體大小來建立三維Nakagami影像是最合適的尺寸,在這狀況下二維Nakagami影像將得到更好的空間解析度。
  接下來使用相同的方塊去計算不同纖維化程度的大鼠肝臟逆散射訊號,建立肝臟的三維Nakagami影像,並且比較不同纖維化程度的肝臟其Nakagami參數值與他們的Hematoxylin & Eosin和Masson's trichrome切片染色分析。結果顯示三維Nakagami影像確實可以分辨不同階段的肝臟纖維化,再者也增加了二維Nakagami影像的解析度並減少了subresolvable效應的影響,這是因為三維Nakagami影像提供了更多組織或是器官的資訊,將來該方式或許有潛力發展成為臨床診斷技術。
zh_TW
dc.description.abstractNowadays, ultrasound imaging has become the most used clinical tool in hospitals. The ultrasonic B-mode image is used to examine the internal structures of the biological tissue. Due to the fact that the conventional B-scan cannot fully reflect the nature of the tissue, some useful quantitative method has been applied to quantify the properties of tissue. Among various possibilities, the Nakagami parameter was demonstrated to have an outstanding ability to detect the variation of the scatterer concentration. The ultrasonic Nakagami imaging based on the Nakagami parametric map has also been developed for visualizing the scatterer properties. In order to improve the Nakagami imaging resolution and involve more information from biological tissues, this study was aimed to further develop three-dimensional Nakagami image.
  In this study, phantom experiments and in vitro measurements on liver fibrosis were carried out to explore the feasibility of the three-dimensional Nakagami image. The ultrasonic backscattered signals were acquired from phantoms with different scatterer concentrations to evaluate an appropriate voxel size for constructing the three-dimensional Nakagami image. The result showed that the voxel with a volume corresponding to 8 times that of the transducer resolution cell is the most appropriate size for constructing the three-dimensional Nakagami image. In such a condition, the two-dimensional Nakagami image can get a better spatial resolution.
We then used the same voxel size to create the three-dimensional Nakagami images of rat livers with varying degrees of fibrosis. Then we compare the Nakagami parameter values of different rat livers with their Hematoxylin & Eosin stain and Masson's trichrome stain results.
  The results showed that three-dimensional Nakagami image indeed can quantify different stages of liver fibrosis. Moreover, it has a better image resolution and also reduces the subresolvable effect of two-dimensional Nakagami image. In such a condition, the three-dimensional Nakagami image provided more information of tissues and organs, and it may have potential in future developments of diagnostic techniques.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:14:00Z (GMT). No. of bitstreams: 1
ntu-98-R96543073-1.pdf: 10256348 bytes, checksum: 473dc9cf486df33e59586cc0210edfc9 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
第1章 序論 1
1.1 簡介 1
1.2 研究背景 2
1.3 文獻回顧 4
1.4 研究目的 7
第2章 理論介紹 8
2.1 超音波簡介 8
2.1.1 超音波基本原理 8
2.1.2 超音波之衰減 10
2.1.3 超音波之反射與折射 11
2.1.4 超音波換能器 12
2.2 超音波之散射 15
2.2.1 僅單一散射子時之情況 16
2.2.2 多散射子時之情況 18
2.2.3 超音波之逆散射訊號統計模型 19
第3章 實驗材料與方法 24
3.1 三維超音波掃描系統 24
3.1.1 系統架構 24
3.1.2 系統掃描方式 26
3.2 仿體實驗 27
3.3 大鼠肝臟實驗 28
3.4 Nakagami参數計算與成像 29
3.4.1 仿體實驗數據處理 29
3.4.2 大鼠肝臟數據處理 31
第4章 實驗結果與討論 32
4.1 仿體實驗 32
4.1.1 仿體之B-mode成像 32
4.1.2 計算各種仿體濃度之Nakagami參數值 40
4.1.3 決定三維Nakagami參數計算方塊之大小 41
4.1.4 仿體之Nakagami參數成像 42
4.2 大鼠肝臟實驗 48
4.2.1 大鼠肝臟Nakagami參數值與切片染色分析 48
4.2.2 大鼠肝臟之二維影像 52
4.2.3 大鼠肝臟之三維成像 60
第5章 結論與展望 68
5.1 結論 68
5.2 未來展望 69
參考文獻 70
dc.language.isozh-TW
dc.title以Nakagami分布為基礎之三維定量超音波成像及其在生物組織上之應用zh_TW
dc.titleThree-dimensional Quantitative Ultrasound Imaging Based on Nakagami Distribution and Its Applications to Biological Tissuesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱錦洲,崔博翔,黃執中,蘇正瑜
dc.subject.keyword超音波影像、超音波逆散射,Nakagami分布,三維定量影像,肝臟纖維化,zh_TW
dc.subject.keywordUltrasound image,Ultrasonic backscattering,Nakagami distribution,Three-dimensional quantitative image,Liver fibrosis,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
10.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved