Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁詩同
dc.contributor.authorYu-Jen Chenen
dc.contributor.author陳郁仁zh_TW
dc.date.accessioned2021-06-15T01:13:54Z-
dc.date.available2011-07-31
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citationAltomonte, J. et al. 2004. Foxo1 mediates insulin action on apoc-iii and triglyceride metabolism. J Clin Invest 114: 1493-1503.
Altomonte, J. et al. 2003. Inhibition of foxo1 function is associated with improved fasting glycemia in diabetic mice. Am J Physiol Endocrinol Metab 285: E718-728.
Antrasferry, J., P. Robin, D. Robin, and C. Forest. 1995. Fatty-acids and fibrates are potent inducers of transcription of the phosphenolpyruvate carboxykinase gene in adipocytes. European Journal of Biochemistry 234: 390-396.
Armoni, M. et al. 2003. Peroxisome proliferator-activated receptor-gamma represses glut4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem 278: 30614-30623.
Barish, G. D., V. A. Narkar, and R. M. Evans. 2006. Ppar delta: A dagger in the heart of the metabolic syndrome. J Clin Invest 116: 590-597.
Barthel, A., D. Schmoll, and T. G. Unterman. 2005. Foxo proteins in insulin action and metabolism. Trends Endocrinol Metab 16: 183-189.
Berthou, L. et al. 1995. Regulation of rat liver apolipoprotein a-i, apolipoprotein a-ii and acyl-coenzyme a oxidase gene expression by fibrates and dietary fatty acids. Eur J Biochem 232: 179-187.
Biggs, W. H., 3rd, W. K. Cavenee, and K. C. Arden. 2001. Identification and characterization of members of the fkhr (fox o) subclass of winged-helix transcription factors in the mouse. Mamm Genome 12: 416-425.
Birkenkamp, K. U., and P. J. Coffer. 2003. Foxo transcription factors as regulators of immune homeostasis: Molecules to die for? J Immunol 171: 1623-1629.
Blake, W. L., and S. D. Clarke. 1990. Suppression of rat hepatic fatty acid synthase and s14 gene transcription by dietary polyunsaturated fat. J Nutr 120: 1727-1729.
Bouhlel, M. A. et al. 2007. Ppargamma activation primes human monocytes into alternative m2 macrophages with anti-inflammatory properties. Cell Metab 6: 137-143.
Chomczynski, P., and N. Sacchi. 1987. Single-step method of rna isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159.
Cinti, S., S. Eberbach, M. Castellucci, and D. Accili. 1998. Lack of insulin receptors affects the formation of white adipose tissue in mice. A morphometric and ultrastructural analysis. Diabetologia 41: 171-177.
Cinti, S. et al. 2005. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46: 2347-2355.
Considine, R. V. et al. 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334: 292-295.
Consoli, A., N. Nurjhan, F. Capani, and J. Gerich. 1989. Predominant role of gluconeogenesis in increased hepatic glucose production in niddm. Diabetes 38: 550-557.
Curat, C. A. et al. 2006. Macrophages in human visceral adipose tissue: Increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49: 744-747.
Daval, M., F. Foufelle, and P. Ferre. 2006. Functions of amp-activated protein kinase in adipose tissue. J Physiol 574: 55-62.
Dentin, R. et al. 2005. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of chrebp nuclear protein translocation. J Clin Invest 115: 2843-2854.
Ding, S. T., R. L. McNeel, and H. J. Mersmann. 2002. Modulation of adipocyte determination and differentiation-dependent factor 1 by selected polyunsaturated fatty acids. In Vitro Cell Dev Biol Anim 38: 352-357.
Dowell, P., T. C. Otto, S. Adi, and M. D. Lane. 2003. Convergence of peroxisome proliferator-activated receptor gamma and foxo1 signaling pathways. J Biol Chem 278: 45485-45491.
Festa, A., R. D'Agostino, Jr., R. P. Tracy, and S. M. Haffner. 2002. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes 51: 1131-1137.
Friedberg, C. E., M. J. Janssen, R. J. Heine, and D. E. Grobbee. 1998. Fish oil and glycemic control in diabetes. A meta-analysis. Diabetes Care 21: 494-500.
Furuyama, T., T. Nakazawa, I. Nakano, and N. Mori. 2000. Identification of the differential distribution patterns of mrnas and consensus binding sequences for mouse daf-16 homologues. Biochem J 349: 629-634.
Gabler, N. K., J. D. Spencer, D. M. Webel, and M. E. Spurlock. 2008. N-3 pufa attenuate lipopolysaccharide-induced down-regulation of toll-like receptor 4 expression in porcine adipose tissue but does not alter the expression of other immune modulators. J Nutr Biochem 19: 8-15.
Ganrot, P. O., K. Gydell, and H. Ekelund. 1967. Serum concentration of α-2-macroglobulin, haptoglobin and α-1-antitrypsin in diabetes mellitus. Acta Endocrinol (Copenh) 55: 537-544.
Gerhardt, C. C., I. A. Romero, R. Cancello, L. Camoin, and A. D. Strosberg. 2001. Chemokines control fat accumulation and leptin secretion by cultured human adipocytes. Mol Cell Endocrinol 175: 81-92.
Gordon, S. 2003. Alternative activation of macrophages. Nat Rev Immunol 3: 23-35.
Green, A., S. B. Dobias, D. J. Walters, and A. R. Brasier. 1994. Tumor necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase. Endocrinology 134: 2581-2588.
Hayhurst, G. P., Y. H. Lee, G. Lambert, J. M. Ward, and F. J. Gonzalez. 2001. Hepatocyte nuclear factor 4α (nuclear receptor 2a1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21: 1393-1403.
Herzberg, G. R., and M. Rogerson. 1988. Hepatic fatty acid synthesis and triglyceride secretion in rats fed fructose- or glucose-based diets containing corn oil, tallow or marine oil. J Nutr 118: 1061-1067.
Hevener, A. L. et al. 2007. Macrophage ppar gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 117: 1658-1669.
Hill, J. O., H. R. Wyatt, G. W. Reed, and J. C. Peters. 2003. Obesity and the environment: Where do we go from here? Science 299: 853-855.
Hotamisligil, G. S., N. S. Shargill, and B. M. Spiegelman. 1993. Adipose expression of tumor necrosis factor-α: Direct role in obesity-linked insulin resistance. Science 259: 87-91.
Hsu, J. M., and S. T. Ding. 2003. Effect of polyunsaturated fatty acids on the expression of transcription factor adipocyte determination and differentiation-dependent factor 1 and of lipogenic and fatty acid oxidation enzymes in porcine differentiating adipocytes. Br J Nutr 90: 507-513.
Hsu, J. M., P. H. Wang, B. H. Liu, and S. T. Ding. 2004. The effect of dietary docosahexaenoic acid on the expression of porcine lipid metabolism-related genes. J Anim Sci 82: 683-689.
Huang, H., and D. J. Tindall. 2007. Dynamic foxo transcription factors. J Cell Sci 120: 2479-2487.
Ito, Y., H. Daitoku, and A. Fukamizu. 2009. Foxo1 increases pro-inflammatory gene expression by inducing c/ebpbeta in tnf-α-treated adipocytes. Biochem Biophys Res Commun 378: 290-295.
Janke, J. et al. 2006. Retinol-binding protein 4 in human obesity. Diabetes 55: 2805-2810.
Jiao, P. et al. 2009. Obesity-related upregulation of monocyte chemotactic factors in adipocytes: Involvement of nuclear factor-kappab and c-jun nh2-terminal kinase pathways. Diabetes 58: 104-115.
Kamagate, A. et al. 2008. Foxo1 mediates insulin-dependent regulation of hepatic vldl production in mice. J Clin Invest 118: 2347-2364.
Kamei, N. et al. 2006. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281: 26602-26614.
Kang, K. et al. 2008. Adipocyte-derived th2 cytokines and myeloid ppardelta regulate macrophage polarization and insulin sensitivity. Cell Metab 7: 485-495.
Kern, P. A., S. Ranganathan, C. Li, L. Wood, and G. Ranganathan. 2001. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280: E745-751.
Kim, C. S. et al. 2006. Circulating levels of mcp-1 and il-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond) 30: 1347-1355.
Kim, H. J., M. Takahashi, and O. Ezaki. 1999. Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (srebp-1) by down-regulation of srebp-1c mrna in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mrnas. J Biol Chem 274: 25892-25898.
Kim, J. J. et al. 2009. Foxo1 haploinsufficiency protects against high-fat diet-induced insulin resistance with enhanced peroxisome proliferator-activated receptor gamma activation in adipose tissue. Diabetes 58: 1275-1282.
Klimes, I., E. Sebokova, A. Vrana, and L. Kazdova. 1993. Raised dietary intake of n-3 polyunsaturated fatty acids in high sucrose-induced insulin resistance. Animal studies. Ann N Y Acad Sci 683: 69-81.
Kopelman, P. G. 2000. Obesity as a medical problem. Nature 404: 635-643.
Liu, B. H. et al. 2005. The effects of docosahexaenoic acid oil and soybean oil on the expression of lipid metabolism related mrna in pigs. Asian-Australasian Journal of Animal Sciences 18: 1451-1456.
Liu, L. 2009. Serum amyloid a induced lipolysis signal transduction pathway. Master thesis.
Lumeng, C. N., J. L. Bodzin, and A. R. Saltiel. 2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117: 175-184.
Maiese, K., Z. Z. Chong, and Y. C. Shang. 2007. 'Sly as a foxo': New paths with forkhead signaling in the brain. Curr Neurovasc Res 4: 295-302.
Maiese, K., Z. Z. Chong, and Y. C. Shang. 2008. Outfoxoing disease and disability: The therapeutic potential of targeting foxo proteins. Trends Mol Med 14: 219-227.
Matsumoto, M., A. Pocai, L. Rossetti, R. A. Depinho, and D. Accili. 2007. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor foxo1 in liver. Cell Metab 6: 208-216.
Moller, D. E., and K. D. Kaufman. 2005. Metabolic syndrome: A clinical and molecular perspective. Annu Rev Med 56: 45-62.
Myatt, S. S., and E. W. Lam. 2007. The emerging roles of forkhead box (fox) proteins in cancer. Nat Rev Cancer 7: 847-859.
Nakae, J. et al. 2002. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor foxo1. Nat Genet 32: 245-253.
Nakae, J. et al. 2003. The forkhead transcription factor foxo1 regulates adipocyte differentiation. Dev Cell 4: 119-129.
Nakae, J., M. Oki, and Y. Cao. 2008. The foxo transcription factors and metabolic regulation. FEBS Lett 582: 54-67.
O'Brien, R. M., and D. K. Granner. 1996. Regulation of gene expression by insulin. Physiol Rev 76: 1109-1161.
O'Brien, R. M., R. S. Streeper, J. E. Ayala, B. T. Stadelmaier, and L. A. Hornbuckle. 2001. Insulin-regulated gene expression. Biochem Soc Trans 29: 552-558.
Odegaard, J. I. et al. 2008. Alternative m2 activation of kupffer cells by ppardelta ameliorates obesity-induced insulin resistance. Cell Metab 7: 496-507.
Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time rt-pcr. Nucleic Acids Res 29: e45.
Pickup, J. C., M. B. Mattock, G. D. Chusney, and D. Burt. 1997. Niddm as a disease of the innate immune system: Association of acute-phase reactants and interleukin-6 with metabolic syndrome x. Diabetologia 40: 1286-1292.
Podolin, D. A., E. C. Gayles, Y. R. Wei, J. S. Thresher, and M. J. Pagliassotti. 1998. Menhaden oil prevents but does not reverse sucrose-induced insulin resistance in rats. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 43: R840-R848.
Postic, C., R. Dentin, and J. Girard. 2004. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 30: 398-408.
Pradhan, A. D., J. E. Manson, N. Rifai, J. E. Buring, and P. M. Ridker. 2001. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286: 327-334.
Puigserver, P. et al. 2003. Insulin-regulated hepatic gluconeogenesis through foxo1-pgc-1α interaction. Nature 423: 550-555.
Raclot, T., R. Groscolas, D. Langin, and P. Ferre. 1997. Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues. J Lipid Res 38: 1963-1972.
Rahmouni, K., A. L. Mark, W. G. Haynes, and C. D. Sigmund. 2004. Adipose depot-specific modulation of angiotensinogen gene expression in diet-induced obesity. Am J Physiol Endocrinol Metab 286: E891-895.
Rajas, F., A. Gautier, I. Bady, S. Montano, and G. Mithieux. 2002. Polyunsaturated fatty acyl coenzyme a suppress the glucose-6-phosphatase promoter activity by modulating the DNA binding of hepatocyte nuclear factor 4 α. J Biol Chem 277: 15736-15744.
Rivellese, A. A., and S. Lilli. 2003. Quality of dietary fatty acids, insulin sensitivity and type 2 diabetes. Biomed Pharmacother 57: 84-87.
Rotter, V., I. Nagaev, and U. Smith. 2003. Interleukin-6 (il-6) induces insulin resistance in 3t3-l1 adipocytes and is, like il-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278: 45777-45784.
Rubin, C. S., E. Lai, and O. M. Rosen. 1977. Acquisition of increased hormone sensitivity during in vitro adipocyte development. J Biol Chem 252: 3554-3557.
Samuel, V. T. et al. 2006. Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes 55: 2042-2050.
Sartipy, P., and D. J. Loskutoff. 2003. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 100: 7265-7270.
Storlien, L. H. et al. 1991. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 40: 280-289.
Storlien, L. H. et al. 1987. Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237: 885-888.
van der Horst, A., and B. M. Burgering. 2007. Stressing the role of foxo proteins in lifespan and disease. Nat Rev Mol Cell Biol 8: 440-450.
Wang, Y. C. et al. 2009. Docosahexaenoic acid regulates serum amyloid a protein to promote lipolysis through down regulation of perilipin. J Nutr Biochem.
Weisberg, S. P. et al. 2006. Ccr2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116: 115-124.
Weisberg, S. P. et al. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796-1808.
Wijchers, P. J., J. P. Burbach, and M. P. Smidt. 2006. In control of biology: Of mice, men and foxes. Biochem J 397: 233-246.
Winder, W. W., and D. G. Hardie. 1999. Amp-activated protein kinase, a metabolic master switch: Possible roles in type 2 diabetes. Am J Physiol 277: E1-10.
Worgall, T. S., R. A. Johnson, T. Seo, H. Gierens, and R. J. Deckelbaum. 2002. Unsaturated fatty acid-mediated decreases in sterol regulatory element-mediated gene transcription are linked to cellular sphingolipid metabolism. J Biol Chem 277: 3878-3885.
Xu, H. et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112: 1821-1830.
Xu, H., and G. S. Hotamisligil. 2001. Signaling pathways utilized by tumor necrosis factor receptor 1 in adipocytes to suppress differentiation. FEBS Lett 506: 97-102.
Xu, H., J. K. Sethi, and G. S. Hotamisligil. 1999a. Transmembrane tumor necrosis factor (tnf)-α inhibits adipocyte differentiation by selectively activating tnf receptor 1. J Biol Chem 274: 26287-26295.
Xu, H., K. T. Uysal, J. D. Becherer, P. Arner, and G. S. Hotamisligil. 2002. Altered tumor necrosis factor-α (tnf-α) processing in adipocytes and increased expression of transmembrane tnf-α in obesity. Diabetes 51: 1876-1883.
Xu, J., M. T. Nakamura, H. P. Cho, and S. D. Clarke. 1999b. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J Biol Chem 274: 23577-23583.
Yahagi, N. et al. 1999. A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J Biol Chem 274: 35840-35844.
Yang, R. Z. et al. 2006. Acute-phase serum amyloid a: An inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med 3: e287.
Yoon, J. C. et al. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator pgc-1. Nature 413: 131-138.
Yoshikawa, T. et al. 2001. Identification of liver x receptor-retinoid x receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol 21: 2991-3000.
Zhang, W. et al. 2006. Foxo1 regulates multiple metabolic pathways in the liver: Effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 281: 10105-10117.
Zhao, Y., S. Joshi-Barve, S. Barve, and L. H. Chen. 2004. Eicosapentaenoic acid prevents lps-induced tnf-α expression by preventing nf-kappab activation. J Am Coll Nutr 23: 71-78.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42446-
dc.description.abstract肥胖與胰島素拮抗、二型糖尿病、高血壓、動脈粥狀硬化、葡萄糖不耐症、血脂異常及慢性發炎息息相關,這些病症統稱為代謝症候群。二十二碳六烯酸(DHA)為一種n-3族多不飽和脂肪酸,美國食品和藥物管理局於2004年宣布日常食物中DHA和EPA可降低罹患冠心病及相關疾病之風險。
本研究目的旨在找出DHA對脂質和醣類代謝途徑之影響,30頭離乳仔豬隨機分成3組分別餵予2%牛油、大豆油或DHA油30天。實驗結束時豬隻經電昏後收集血液及臟器進行後續分析。抽取組織總RNA並設計引子篩選可能受DHA調控之相關基因參與脂質、醣類代謝和慢性炎症之反應。豬隻餵飼2%DHA油30天不影響脂肪組織抗或促發炎因子之表現,包括細胞介白素4(IL4)、IL6、 IL10、IL13和腫瘤壞死因子α(TNFα)。我們也發現一個新的受DHA調控之轉錄因子。餵飼2%DHA於豬隻可顯著降低肝臟和脂肪組織之叉頭轉錄因子(FoxO)包括FoxO1和FoxO3基因表現。同時豬隻餵予2%DHA可顯著降低肝臟和脂肪組織中叉頭轉錄因子輔因子PGC1α表現,但對SIRT表現並無顯著影響。在人類和豬的脂肪細胞處理DHA 24小時可得類似之結果。且豬隻餵予2%DHA可顯著降低FoxO下游基因包括參與肝臟VLDL組裝之微粒體三酸甘油酯轉移蛋白(MTTP)、參加糖質新生之葡萄糖-六-磷酸酶(G6Pase)、參與三酸甘油酯分泌之載脂蛋白CⅢ(apoCⅢ)和胰島素生長因子結合蛋白1(IGFBP1)之基因表現。餵予DHA之豬隻同時降低血漿中總膽固醇及三酸甘油酯之含量。綜合上述,DHA可能透過抑制FoxO基因表現進而影響豬隻脂質和醣類代謝。伴隨著降低三酸甘油酯和脂蛋白VLDL組裝之相關基因表現可能可解釋DHA對預防或改善代謝綜合症候群之益處。
zh_TW
dc.description.abstractObesity is closely linked to insulin resistance or type 2 diabetes mellitus. Obesity is also associated with hypertension, atheroschlerosis, glucose intolerance, dyslipidemia, and chronic inflammation, also known as the metabolic syndrome. Docosahexaenoic acid (DHA) is one of the n-3 polyunsaturated fatty acids and USA FDA had announced on 2004 that DHA and EPA could reduce the risk of coronary heart disease in conventional foods.
To decipher beneficial effects of DHA on lipid and glucose metabolism, thirty weaned pigs were divided into three groups and fed ad librium for thirty days with a diet plus either 2% tallow, soybean or DHA oil, respectively. At the end of experiment, pigs were sedated and killed by electrical stunning. Viscera and blood samples were collected. Tissues were homogenized and total RNA was extracted for mRNA determination. Primers were designed for screening several genes involved in lipid metabolism and chronic inflammatory markers which may be regulated by supplementation of DHA oil. Supplementation of DHA on pig diets didn’t influence the expression of anti- or pro-infiltration cytokines, including interleukin 4 (IL4), IL6, IL10, IL13 and Tumor necrosis factor α (TNFα) in adipose tissues. Herein, we demonstrated a new transcription factor which DHA regulates. The class O of forkhead box transcription factors (FoxO) including FoxO1 and FoxO3 were decreased in the liver and adipose tissues of DHA-supplemented pigs compared with tallow-supplemented pigs. Pig diets containing DHA also decreased the cofactor of FoxO, PPARγ coactivator-1α (PGC1α), expression in both liver and adipose tissues. Similar results could also be found in human and pig primary adipocytes treated with DHA for 24 hours. Pigs fed with diets supplemented with DHA also down-regulated FoxO-target genes such as microsomal triglyceride transfer protein (MTTP), a protein which is involved in hepatic VLDL assembly. Expression of Glucose-6-phosphatase (G6Pase) participated in gluconeogenesis, apolipoprotein CⅢ (apoCⅢ) involved in TG secretion and insulin-like growth factor binding protein 1 (IGFBP1) was also reduced. Pigs supplemented with DHA also reduced plasma total cholesterol and triglyceride concentrations.
In conclusion, DHA may partially act through down-regulation of FoxO function to influence lipid and glucose metabolism. Down-regulation of genes related triglyceride metabolism and VLDL assemble may implicate the prevention and beneficial role of DHA on metabolic syndrome.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:54Z (GMT). No. of bitstreams: 1
ntu-98-R96626006-1.pdf: 987777 bytes, checksum: 6110e92b21f849fb2204e9ab7705332f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 I
目錄 IV
圖目錄 V
表目錄 VI
Introduction 1
Part 1: Obesity, inflammation, and macrophage infiltration 1
Adipose tissue macrophage 2
Macrophage polarization 4
Part 2: Forkhead box O and metabolic regulation 6
Liver 7
Adipose tissue 9
Experimental design 11
Materials and methods 12
Animals and Diets 12
Sample and data collection 12
Plasma glucose, triacylglycerol and cholesterol determination  13
Isolation of porcine stromal/vascular cells 13
Cell culture and differentiation of porcine adipocytes 14
Real-time quantitative PCR analysis 14
Data Analysis 15
Results 18
Discussion 31
References 37
dc.language.isoen
dc.subject二十二碳六烯酸zh_TW
dc.subject代謝症候群zh_TW
dc.subject離乳仔豬zh_TW
dc.subject叉頭轉錄因子zh_TW
dc.subjectWeaned pigDHAen
dc.subjectmetabolic syndromeen
dc.subjectFoxOen
dc.title二十二碳六烯酸對叉頭轉錄因子O之調控zh_TW
dc.titleRegulation of Forkhead Box O Transcription Factors by Docosahexaenoic Aciden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁詩同,林紹品,陳洵一,歐柏榮
dc.subject.keyword離乳仔豬,二十二碳六烯酸,叉頭轉錄因子,代謝症候群,zh_TW
dc.subject.keywordWeaned pigDHA,FoxO,metabolic syndrome,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
964.63 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved