Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42442
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧家綺(Chia-Chi Ku)
dc.contributor.authorYi-Hsun Chenen
dc.contributor.author陳奕勳zh_TW
dc.date.accessioned2021-06-15T01:13:51Z-
dc.date.available2013-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-22
dc.identifier.citation1 Almeida, J. D., Howatson, A. F. & Williams, M. G. Morphology of varicella (chicken pox) virus. Virology 16, 353-355 (1962).
2 Baiker, A. et al. The immediate-early 63 protein of Varicella-Zoster virus: analysis of functional domains required for replication in vitro and for T-cell and skin tropism in the SCIDhu model in vivo. J Virol 78, 1181-1194 (2004).
3 Baudoux, L., Defechereux, P., Rentier, B. & Piette, J. Gene activation by Varicella-zoster virus IE4 protein requires its dimerization and involves both the arginine-rich sequence, the central part, and the carboxyl-terminal cysteine-rich region. J Biol Chem 275, 32822-32831, (2000).
4 Baudoux, L. et al. Mutational analysis of varicella-zoster virus major immediate-early protein IE62. Nucleic Acids Res 23, 1341-1349, (1995).
5 Bontems, S. et al. Phosphorylation of varicella-zoster virus IE63 protein by casein kinases influences its cellular localization and gene regulation activity.J Biol Chem 277, 21050-21060, (2002).
6 Chaudhuri, V., Sommer, M., Rajamani, J., Zerboni, L. & Arvin, A. M.Functions of Varicella-zoster virus ORF23 capsid protein in viral replication and the pathogenesis of skin infection. J Virol 82, 10231-10246, (2008).
7 Chen, I. H., Sciabica, K. S. & Sandri-Goldin, R. M. ICP27 interacts with the RNA export factor Aly/REF to direct herpes simplex virus type 1 intronless mRNAs to the TAP export pathway. J Virol 76, 12877-12889 (2002).
8 Chen, J., Baig, E. & Fish, E. N. Diversity and relatedness among the type Iinterferons. J Interferon Cytokine Res 24, 687-698, (2004).
9 Chevaliez, S. & Pawlotsky, J. M. Interferons and their use in persistent viral infections. Handb Exp Pharmacol, 203-241, (2009).
10 Clemens, M. J. Interferons and apoptosis. J Interferon Cytokine Res 23, 277-292, (2003).
11 Cohen, J. I., Cox, E., Pesnicak, L., Srinivas, S. & Krogmann, T. The varicella-zoster virus open reading frame 63 latency-associated protein is critical for establishment of latency. J Virol 78, 11833-11840, (2004).
12 Cohen, J. I., Krogmann, T., Bontems, S., Sadzot-Delvaux, C. & Pesnicak, L.Regions of the varicella-zoster virus open reading frame 63
latency-associated protein important for replication in vitro are also critical for efficient establishment of latency. J Virol 79, 5069-5077, (2005).
13 Cohen, J. I., Krogmann, T., Ross, J. P., Pesnicak, L. & Prikhod'ko, E. A. 33
Varicella-zoster virus ORF4 latency-associated protein is important for establishment of latency. J Virol 79, 6969-6975, (2005).
14 Cohen, J. I. & Nguyen, H. Varicella-zoster virus ORF61 deletion mutants replicate in cell culture, but a mutant with stop codons in ORF61 reverts to wild-type virus. Virology 246, 306-316, (1998).
15 de Maisieres, P. D. et al. Activation of the human immunodeficiency viruslong terminal repeat by varicella-zoster virus IE4 protein requires nuclear factor-kappaB and involves both the amino-terminal and the
carboxyl-terminal cysteine-rich region. J Biol Chem 273, 13636-13644 (1998).
16 Debrus, S., Sadzot-Delvaux, C., Nikkels, A. F., Piette, J. & Rentier, B. Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latency. J Virol 69, 3240-3245 (1995).
17 Defechereux, P., Debrus, S., Baudoux, L., Rentier, B. & Piette, J. Varicella-zoster virus open reading frame 4 encodes an immediate-early protein with posttranscriptional regulatory properties. J Virol 71, 7073-7079 (1997).
18 del Rio, T., Ch'ng, T. H., Flood, E. A., Gross, S. P. & Enquist, L. W. Heterogeneity of a fluorescent tegument component in single pseudorabies virus virions and enveloped axonal assemblies. J Virol 79, 3903-3919, (2005).
19 Desai, P., DeLuca, N. A. & Person, S. Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice. Virology 247, 115-124, doi:S0042-6822(98)99230-3 (1998).
20 Disney, G. H. & Everett, R. D. A herpes simplex virus type 1 recombinant with both copies of the Vmw175 coding sequences replaced by the
homologous varicella-zoster virus open reading frame. J Gen Virol 71 ( Pt 11), 2681-2689 (1990).
21 Dohner, K., Radtke, K., Schmidt, S. & Sodeik, B. Eclipse phase of herpes simplex virus type 1 infection: Efficient dynein-mediated capsid transport without the small capsid protein VP26. J Virol 80, 8211-8224, (2006).
22 Doyle, S. E. et al. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology 44, 896-906, (2006).
23 Dumoutier, L. et al. Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling. J Biol Chem 279, 32269-32274, (2004).
24 Duus, K. M., Hatfield, C. & Grose, C. Cell surface expression and fusion by the varicella-zoster virus gH:gL glycoprotein complex: analysis by laser scanning confocal microscopy. Virology 210, 429-440, (1995).
25 Felser, J. M., Kinchington, P. R., Inchauspe, G., Straus, S. E. & Ostrove, J. M. Cell lines containing varicella-zoster virus open reading frame 62 and expressing the 'IE' 175 protein complement ICP4 mutants of herpes simplex virus type 1. J Virol 62, 2076-2082 (1988).
26 Felser, J. M., Straus, S. E. & Ostrove, J. M. Varicella-zoster virus complements herpes simplex virus type 1 temperature-sensitive mutants. J Virol 61, 225-228 (1987).
27 Forghani, B., Mahalingam, R., Vafai, A., Hurst, J. W. & Dupuis, K. W. Monoclonal antibody to immediate early protein encoded by varicella-zoster virus gene 62. Virus Res 16, 195-210, (1990).
28 Gale, M., Jr. & Foy, E. M. Evasion of intracellular host defence by hepatitis C virus. Nature 436, 939-945, (2005).
29 Gershon, A. A. et al. Intracellular transport of newly synthesized varicella-zoster virus: final envelopment in the trans-Golgi network. J Virol 68, 6372-6390 (1994).
30 Grose, C. Glycoproteins encoded by varicella-zoster virus: biosynthesis, phosphorylation, and intracellular trafficking. Annu Rev Microbiol 44, 59-80, (1990).
31 Habran, L., Bontems, S., Di Valentin, E., Sadzot-Delvaux, C. & Piette, J. Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J Biol Chem 280, 29135-29143, (2005).
32 Harson, R. & Grose, C. Egress of varicella-zoster virus from the melanomacell: a tropism for the melanocyte. J Virol 69, 4994-5010 (1995).
33 Hoover, S. E. et al. Downregulation of varicella-zoster virus (VZV) immediate-early ORF62 transcription by VZV ORF63 correlates with virus replication in vitro and with latency. J Virol 80, (2006).
34 Jackers, P. et al. Characterization of regulatory functions of the varicella-zoster virus gene 63-encoded protein. J Virol 66, 3899-3903 (1992).
35 Jacquet, A. et al. The varicella zoster virus glycoprotein B (gB) plays a role in virus binding to cell surface heparan sulfate proteoglycans. Virus Res 53, (1998).
36 Jones, K. A. & Tjian, R. Sp1 binds to promoter sequences and activates herpes simplex virus 'immediate-early' gene transcription in vitro. Nature 317, 179-182 (1985).
37 Kenyon, T. K., Cohen, J. I. & Grose, C. Phosphorylation by the varicella-zoster virus ORF47 protein serine kinase determines whether endocytosed viral gE traffics to the trans-Golgi network or recycles to the cell membrane. J Virol 76, 10980-10993 (2002).
38 Kim, D. B. & DeLuca, N. A. Phosphorylation of transcription factor Sp1 during herpes simplex virus type 1 infection. J Virol 76, 6473-6479 (2002).
39 Kinchington, P. R., Bookey, D. & Turse, S. E. The transcriptional regulatory proteins encoded by varicella-zoster virus open reading frames (ORFs) 4 and 63, but not ORF 61, are associated with purified virus particles. J Virol 69, 4274-4282 (1995).
40 Kinchington, P. R., Fite, K., Seman, A. & Turse, S. E. Virion association of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, requires expression of the VZV open reading frame 66 protein kinase. J Virol 75, 9106-9113, (2001).
41 Kinchington, P. R., Fite, K. & Turse, S. E. Nuclear accumulation of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, is inhibited by phosphorylation mediated by the VZV open reading frame 66 protein kinase. J Virol 74, 2265-2277 (2000).
42 Kinchington, P. R., Hougland, J. K., Arvin, A. M., Ruyechan, W. T. & Hay, J. The varicella-zoster virus immediate-early protein IE62 is a major component of virus particles. J Virol 66, 359-366 (1992).
43 Kost, R. G., Kupinsky, H. & Straus, S. E. Varicella-zoster virus gene 63: transcript mapping and regulatory activity. Virology 209, 218-224, (1995).
44 LaFleur, D. W. et al. Interferon-kappa, a novel type I interferon expressed in human keratinocytes. J Biol Chem 276, 39765-39771, (2001).
45 Ling, P., Kinchington, P. R., Ruyechan, W. T. & Hay, J. A detailed analysis of transcripts mapping to varicella zoster virus gene 14 (glycoprotein V). Virology 184, 625-635 (1991).
46 Litwin, V., Jackson, W. & Grose, C. Receptor properties of two varicella-zoster virus glycoproteins, gpI and gpIV, homologous to herpes simplex virus gE and gI. J Virol 66, 3643-3651 (1992).
47 Lynch, J. M., Kenyon, T. K., Grose, C., Hay, J. & Ruyechan, W. T. Physical and functional interaction between the varicella zoster virus IE63 and IE62 proteins. Virology 302, 71-82, (2002).
48 Martal, J. L. et al. IFN-tau: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochimie 80, 755-777, (1998).
49 McNabb, D. S. & Courtney, R. J. Identification and characterization of the herpes simplex virus type 1 virion protein encoded by the UL35 open reading frame. J Virol 66, 2653-2663 (1992).
50 Mo, C., Lee, J., Sommer, M., Grose, C. & Arvin, A. M. The requirement of varicella zoster virus glycoprotein E (gE) for viral replication and effects of glycoprotein I on gE in melanoma cells. Virology 304, 176-186, (2002).
51 Mo, C., Suen, J., Sommer, M. & Arvin, A. Characterization of Varicella-Zoster virus glycoprotein K (open reading frame 5) and its role in virus growth. J Virol 73, 4197-4207 (1999).
52 Montalvo, E. A., Parmley, R. T. & Grose, C. Structural analysis of the varicella-zoster virus gp98-gp62 complex: posttranslational addition of N-linked and O-linked oligosaccharide moieties. J Virol 53, 761-770 (1985).
53 Moriuchi, H., Moriuchi, M., Smith, H. A., Straus, S. E. & Cohen, J. I. Varicella-zoster virus open reading frame 61 protein is functionally homologous to herpes simplex virus type 1 ICP0. J Virol 66, 7303-7308 (1992).
54 Moriuchi, H., Moriuchi, M., Straus, S. E. & Cohen, J. I. Varicella-zoster virus (VZV) open reading frame 61 protein transactivates VZV gene promoters and enhances the infectivity of VZV DNA. J Virol 67, 4290-4295 (1993).
55 Ng, T. I., Keenan, L., Kinchington, P. R. & Grose, C. Phosphorylation of varicella-zoster virus open reading frame (ORF) 62 regulatory product by viral ORF 47-associated protein kinase. J Virol 68, 1350-1359 (1994).
56 Ote, I. et al. Varicella-zoster virus IE4 protein interacts with SR proteins and exports mRNAs through the TAP/NXF1 pathway. PLoS One 4, e7882, (2009).
57 Perera, L. P. et al. Varicella-zoster virus open reading frame 4 encodes a transcriptional activator that is functionally distinct from that of herpes simplex virus homology ICP27. J Virol 68, 2468-2477 (1994).
58 Perera, L. P., Mosca, J. D., Ruyechan, W. T. & Hay, J. Regulation of varicella-zoster virus gene expression in human T lymphocytes. J Virol 66, 5298-5304 (1992).
59 Pestka, S., Krause, C. D. & Walter, M. R. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202, 8-32, (2004).
60 Puvion-Dutilleul, F., Pichard, E., Laithier, M. & Leduc, E. H. Effect of dehydrating agents on DNA organization in herpes viruses. J Histochem Cytochem 35, 635-645 (1987).
61 Reichelt, M., Brady, J. & Arvin, A. M. The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell level. J Virol 83, 3904-3918, (2009).
62 Rosewicz, S., Detjen, K., Scholz, A. & von Marschall, Z. Interferon-alpha: regulatory effects on cell cycle and angiogenesis. Neuroendocrinology 80 Suppl 1, 85-93, (2004).
63 Sato, B. et al. Mutational analysis of open reading frames 62 and 71, encoding the varicella-zoster virus immediate-early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J Virol 77, 5607-5620 (2003).
64 Stevenson, D., Colman, K. L. & Davison, A. J. Characterization of the varicella-zoster virus gene 61 protein. J Gen Virol 73 ( Pt 3), 521-530 (1992).
65 Stevenson, D., Colman, K. L. & Davison, A. J. Characterization of the putative protein kinases specified by varicella-zoster virus genes 47 and 66. J Gen Virol 75 ( Pt 2), 317-326 (1994).
66 Stevenson, D., Colman, K. L. & Davison, A. J. Delineation of a sequence required for nuclear localization of the protein encoded by varicella-zoster virus gene 61. J Gen Virol 75 ( Pt 11), 3229-3233 (1994).
67 Takaoka, A. & Yanai, H. Interferon signalling network in innate defence. Cell Microbiol 8, 907-922, (2006).
68 Wang, L., Sommer, M., Rajamani, J. & Arvin, A. M. Regulation of the ORF61 promoter and ORF61 functions in varicella-zoster virus replication and pathogenesis. J Virol 83, 7560-7572, (2009).
69 Zhu, Z., Gershon, M. D., Ambron, R., Gabel, C. & Gershon, A. A. Infection of cells by varicella zoster virus: inhibition of viral entry by mannose 6-phosphate and heparin. Proc Natl Acad Sci U S A 92, 3546-3550 (1995).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42442-
dc.description.abstractVaricella-zoster virus (VZV) 是感染人類常見的α形疱疹病毒,初次感染時會形成水痘,並有機會進入感覺神經節而潛伏,當被重新活化後則會產生帶狀疱疹。干擾素的抗病毒機制在免疫系統中扮演極重要的角色。從感染VZV的病人血清中發現含有高量的IFN-α,顯示IFN-α是抵禦VZV感染的重要激素。過去利用移植人類皮膚至SCIDhu mice感染VZV模式實驗顯示在阻斷了IFN-α的訊號傳遞後,會增加VZV感染皮膚細胞的能力;IFN-α具有抑制VZV感染纖維母細胞能力的實驗結果均顯示IFN-α不論是在體內或體外條件都具有抑制VZV感染的功能。病毒從進入細胞、釋出核殼體、完成病毒基因的複製到最終離開細胞等包含多重步驟,其中哪些步驟可能是IFN-α抑制病毒感染標的則為本篇論文想要研究探討的重點。為達此一目的,本論文設計如下:將經過CellTracker標定過的VZV感染細胞分別與經過IFN-α處理或是不經過IFN-α處理的纖維母細胞共同培養,在經過2、4、6、9、12與24小時後,以免疫螢光染色方法觀察VZV核殼體蛋白ORF23與轉錄蛋白IE62在新感染細胞內的表現情形;其次,以RT-PCR的方法分析IFN-α對於VZV在新感染細胞內的基因轉錄的作用。實驗結果發現感染後2-6小時,不論細胞是否經過IFN-α處理,病毒核殼體蛋白ORF23表現並無顯著差異,顯示IFN-α並不影響病毒進入細胞;但是感染後12小時,IFN-α處理後的細胞表現ORF23的比率較未處理的細胞減少了20%,顯示有較少的細胞在這段時間內成功地合成ORF23,顯示IFN-α並不會抑制病毒進入細胞。觀察IE62在感染後4-12小時的細胞內分布型態發現沒有經過IFN-α處理的細胞,IE62在感染細胞核內的表現由點狀、球狀到散布在核中,呈現典型的感染狀態;在IFN-α處理過的狀況下,不但IE62陽性細胞比例大幅減少,在感染的細胞核內直到24小時都維持著點狀結構,顯見IFN-α抑制IE62及IE62所啟動的病毒基因轉錄。利用RT-PCR的方式觀察病毒複製不同時期(IE、E、L)的基因表現實驗結果顯示在處理的情況下,ORF4(IE)、IE62(IE)、ORF61(IE)、ORF63(IE)、ORF68(L)相較於不經過IFN-α處理的情況有顯著減少的情形,顯示IFN-α可能是透過影響病毒複製的早期(IE)過程達到抑制VZV 感染的效果。zh_TW
dc.description.abstractVaricella-zoster virus (VZV) is a ubiquitous human alpha-herpesvirus that causes chickenpox during primary infection and may reactivate to cause herpes zoster from latent dorsal root ganglia. The elevated level of interferon (IFN-α) production in VZV patient serum has suggested that IFN-α is an important cytokine in response to VZV infection. Blocking of IFN-α signal transduction in human skin xenografts enhances VZV infectivity in SCIDhu mouse model as well as the results that IFN-α inhibits VZV infection in IFN-α pretreated human embryonic lung fibroblasts in vitro has suggested that IFN-α inhibits VZV infection both in vitro and in vivo. However, which steps following viral entry including uncoating, DNA nuclear transport, DNA replication and viral assembly is or are target by IFN-α remains unclear.
In this study, we have used CellTracker dye to label VZV cell inoculums (input cells) and co-cultured them with un-infected cell monolayer (output cells) to investigate the expression of viral nucleocapsid protein ORF23 and major viral transactivator IE62 by immunofluorescence staining at different time points after VZV infection. The results showed that no significant difference in ORF23 expression between mock-treated and IFN-α treated HELFs at 2-6 hours after infection, indicating that IFN-α did not affect the viral penetration. However, the percentage of newly infected cells expressing ORF23 was reduced by 20% in IFN-α treated cells as compared with mock-treated cells at 9-12h after infection. The percentages of IE62-positive cells in IFN-α-pretreated HELFs was lower than that in mock-treated HELFs. Moreover, IE62 expression profile exhibited as punctate, globular and diffused patterns in the nuclei of VZV-infected cells at 6-12h, expression of IE62 in HELFs pretreated with IFN-α remained punctate from 9h to 24h after infection, indicating that IFN-α inhibited VZV DNA replication. To further determined which stage of viral replication can be affected by IFN-α, we investigated the transcription of genes that are expressed at IE, E or L genes after infection by RT-PCR. The results showed that expression of all IE genes including IE4, IE62, ORF61, ORF63 and L gene ORF68 were reduced in HELFs pretreated with IFN-α, indicating that IFN-α inhibits IE stage of viral replication. Our results suggested that IFN-α may affect IE stage of viral replication to inhibit virus infection.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:51Z (GMT). No. of bitstreams: 1
ntu-100-R98449009-1.pdf: 1379844 bytes, checksum: 02ca15b07e96f9dbc192ec5d39c2dfdc (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝………………………………………………………………i
摘要………………………………………………………………ii
Abstract………………………………………………………………iv
目錄……………………………………………………………………vi
圖表目錄………………………………………………………………viii
第一章:緒論……………………………………………………………1
第二章:文獻探討……………………………………………………………………3
第一節:水痘帶狀疱疹病毒…………………………………………………….3
第二節:第一型干擾素…………………………………………………………10
第三章:材料與方法………………………………………………………………..14
第一節:水痘帶狀皰疹病毒培養和感染方式…………………………………14
第二節:免疫螢光染色…………………………………………………………15
第三節:RNA 的萃取…………………………………………………………..15
第四節:DNase 的處理………………………………………………………..16
第五節:反轉錄聚合酶連鎖反應………………………………………………16
第六節:實驗用化學溶液配置方法……………………………………………18
第七節:實驗用抗體資料………………………………………………………19
第八節:基本化學藥品試劑……………………………………………………19
第四章:實驗結果…………………………………………………………………..21
第一節:CellTracker 的作用濃度………………………………………………21
第二節:IFN-α 對VZV 感染細胞過程的影響…………………………………22
第三節:病毒基因表現的定量分析…………………………………………..24
第五章:討論………………………………………………………………………..28
第一節:IFN-α 與病毒進入細胞及複製……………………………………….28
vii
第二節:IFN-α 與病毒的基因表現……………………………………………29
第三節:總結…………………………………………………………………..30
第六章:參考文獻……………………………………………………………………32
第七章:圖表…………………………………………………………………………38
附錄…………………………………………………………………………………..50
表附錄一:實驗用引子資料……………………………………………………50
dc.language.isozh-TW
dc.title探討第一型干擾素對於水痘疱疹病毒
感染人類胚胎纖維母細胞的病毒基因表現的影響
zh_TW
dc.titleThe Effects of the IFN-α on the Expression Profiles of
Varizella-Zoster Virus Genes in Human Embryonic
Lung Fibroblast
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee繆希椿(Shi-Chuen Miaw),羅清維(Ching-Wei Luo)
dc.subject.keyword第一型干擾素,水痘疱,疹病毒,人類胚胎肺臟纖維母細胞,zh_TW
dc.subject.keywordIFN-α,Varicella-zoster virus,Human embryonic lung fibroblast,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2011-08-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved