Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳家揚(Chia-Yang Chen)
dc.contributor.authorGuang-Wen Lienen
dc.contributor.author連珖彣zh_TW
dc.date.accessioned2021-06-15T01:13:33Z-
dc.date.available2011-09-16
dc.date.copyright2009-09-16
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citationAllen, Y., Scott, A. P., Matthiessen, P., Haworth, S., Thain, J. E., and Feist, S. (1999). Survey of estrogenic activity in United Kingdom estuarine and coastal waters and its effects on gonadal development of the flounder Platichthys flesus. Environ Toxicol Chem 18, 1791-1800.
Anari, M. R., Bakhtiar, R., Zhu, B., Huskey, S., Franklin, R. B., and Evans, D. C. (2002). Derivatization of ethinylestradiol with dansyl chloride to enhance electrospray ionization: application in trace analysis of ethinylestradiol in rhesus monkey plasma. Anal Chem 74, 4136-4144.
Andrews, C. L., Yu, C. P., Yang, E., and Vouros, P. (2004). Improved liquid chromatography-mass spectrometry performance in quantitative analysis using a nanosplitter interface. J Chromatogr A 1053, 151-159.
Baronti, C., Curini, R., D'Ascenzo, G., Di Corcia, A., Gentili, A., and Samperi, R. (2000). Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol 34, 5059-5066.
Beck, I. C., Bruhn, R., and Gandrass, J. (2006). Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere 63, 1870-1878.
Benijts, T., Dams, R., Lambert, W., and De Leenheer, A. (2004). Countering matrix effects in environmental liquid chromatography-electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals. J Chromatogr A 1029, 153-159.
Bodzek, M., and Dudziak, M. (2006). Elimination of steroidal sex hormones by conventional water treatment and membrane processes. Desalination 198, 24-32.
Cai, S. S., Short, L. C., Syage, J. A., Potvin, M., and Curtis, J. M. (2007). Liquid chromatography-atmospheric pressure photoionization-mass spectrometry analysis of triacylglycerol lipids--effects of mobile phases on sensitivity. J Chromatogr A 1173, 88-97.
Carr, B. R., and Griffin, J. E. (1998). Fertility controls and its complications. In Williams Textbook of Endocrinology (J. D. Wilson, D. W. Foster, H. M. Kronenberg, and L. P. Reed, Eds.), pp. 901-925. W. B. Saunders Company, Philadelphia.
Chen, C. Y., Wen, T. Y., Wang, G. S., Cheng, H. W., Lin, Y. H., and Lien, G. W. (2007). Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Sci Total Environ 378, 352-365.
Chen, H. C., Wang, P. L., and Ding, W. H. (2008). Using liquid chromatography-ion trap mass spectrometry to determine pharmaceutical residues in Taiwanese rivers and wastewaters. Chemosphere 72, 863-869.
Cheng, C. Y., Wu, C. Y., Wang, C. H., and Ding, W. H. (2006). Determination and distribution characteristics of degradation products of nonylphenol polyethoxylates in the rivers of Taiwan. Chemosphere 65, 2275-2281.
Chico, J., Meca, S., Companyo, R., Prat, M. D., and Granados, M. (2008). Restricted access materials for sample clean-up in the analysis of trace levels of tetracyclines by liquid chromatography. Application to food and environmental analysis. J Chromatogr A 1181, 1-8.
Choi, K., Kim, S., Kim, C., and Park, J. (2006). Removal efficiencies of endocrine disrupting chemicals by coagulation/flocculation, ozonation, powdered/granular activated carbon adsorption, and chlorination. Korean J Chem Engin 23, 399-408.
Deborde, M., Rabouan, S., Gallard, H., and Legube, B. (2004). Aqueous chlorination kinetics of some endocrine disruptors. Environ Sci Technol 38, 5577-5583.
Deruiter, C., Otten, R. R., Brinkman, U. A. T., and Frei, R. W. (1988). Rapid and Simple Dansylation of Phenolic Steroids Using a 2-Phase System and Phase-Transfer Catalysis. J Chromatogr 436, 429-436.
Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., and Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32, 1549-1558.
Diaz, A., Ventura, F., and Galcera, M. T. (2002). Development of a solid-phase microextraction method for the determination of short-ethoxy-chain nonylphenols and their brominated analogs in raw and treated water. J Chromatogr A 963, 159-167.
Ding, W. H., and Wu, C. Y. (2000). Determination of estrogenic nonylphenol and bisphenol A in river water by solid-phase extraction and gas chromatography-mass spectrometry. J Chin Chem Soc-Taip 47, 1155-1160.
Gangl, E. T., Annan, M. M., Spooner, N., and Vouros, P. (2001). Reduction of signal suppression effects in ESI-MS using a nanosplitting device. Anal Chem 73, 5635-5644.
Garcia-Reyero, N., Grau, E., Castillo, M., De Alda, M. J. L., Barcelo, D., and Pina, B. (2001). Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Environ Toxicol Chem 20, 1152-1158.
Gercken, J., and Sordyl, H. (2002). Intersex in feral marine and freshwater fish from northeastern Germany. Mar Environ Res 54, 651-655.
Giger, W., Brunner, P. H., and Schaffner, C. (1984). 4-Nonylphenol in Sewage-Sludge - Accumulation of Toxic Metabolites from Nonionic Surfactants. Science 225, 623-625.
Gray, M. A., and Metcalfe, C. D. (1997). Induction of testis-ova in Japanese medaka (Oryzias latipes) exposed to p-nonylphenol. Environ Toxicol Chem 16, 1082-1086.
Greenspan, F. S., and Gardner, D. G. (2001). Basic & clinical endocrinology. Lange Medical Books/McGraw-Hill, New York .
Gutendorf, B., and Westendorf, J. (2001). Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 166, 79-89.
Harshbarger, J. C., Coffey, M. J., and Young, M. Y. (2000). Intersexes in Mississippi River shovelnose sturgeon sampled below Saint Louis, Missouri, USA. Mar Environ Res 50, 247-250.
Hashimoto, S., Bessho, H., Hara, A., Nakamura, M., Iguchi, T., and Fujita, K. (2000). Elevated serum vitellogenin levels and gonadal abnormalities in wild male flounder (Pleuronectes yokohamae) from Tokyo Bay, Japan. Mar Environ Res 49, 37-53.
Hogendoorn, E. A., Dijkman, E., Baumann, B., Hidalgo, C., Sancho, J. V., and Hernandez, F. (1999). Strategies in using analytical restricted access media columns for the removal of humic acid interferences in the trace analysis of acidic herbicides in water samples by coupled column liquid chromatography with UV detection. Anal Chem 71, 1111-1118.
Hu, J. Y., Xie, G. H., and Aizawa, T. (2002). Products of aqueous chlorination of 4-nonylphenol and their estrogenic activity. Environ Toxicol Chem 21, 2034-2039.
Huang, C. H., and Sedlak, D. L. (2001). Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environ Toxicol Chem 20, 133-139.
Isobe, T., Nishiyama, H., Nakashima, A., and Takada, H. (2001). Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ Sci Technol 35, 1041-1049.
Jin, S., Yang, F., Liao, T., Hui, Y., and Xu, Y. (2008). Seasonal variations of estrogenic compounds and their estrogenicities in influent and effluent from a municipal sewage treatment plant in China. Environ Toxicol Chem 27, 146-153.
Jobling, S., Nolan, M., Tyler, C. R., Brighty, G., and Sumpter, J. P. (1998). Widespread sexual disruption in wild fish. Environ Sci Technol 32, 2498-2506.
Johnson, A. C., Belfroid, A., and Di Corcia, A. (2000). Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci Total Environ 256, 163-173.
Kauppila, T. J., Bruins, A. P., and Kostiainen, R. (2005). Effect of the solvent flow rate on the ionization efficiency in atmospheric pressure photoionization-mass spectrometry. J Am Soc for Mass Spectrom 16, 1399-1407.
Kloepfer, A., Quintana, J. B., and Reemtsma, T. (2005). Operational options to reduce matrix effects in liquid chromatography-electrospray ionization-mass spectrometry analysis of aqueous environmental samples. J Chromatogr A 1067, 153-160.
Kondo, H., Okada, Y., Shimbo, K., and Fusho, Y. (2006). Improved Mixed-mode column with size-exclusion and reversed-phase for the analysis of drugs. Eastern Analytical Symposium and Exhibit (EAS), Somerset, New Jersey, U.S.
Kuch, H. M., and Ballschmiter, K. (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol 35, 3201-3206.
Lange, R., Hutchinson, T. H., Croudace, C. P., and Siegmund, F. (2001). Effects of the synthetic estrogen 17 alpha-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20, 1216-1227.
Laws, S. C., Carey, S. A., Ferrell, J. M., Bodman, G. J., and Cooper, R. L. (2000). Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci 54, 154-167.
Lin, A. Y., Yu, T. H., and Lin, C. F. (2008). Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 74, 131-141.
Lin, Y. H., Chen, C. Y., and Wang, G. S. (2007). Analysis of steroid estrogens in water using liquid chromatography/tandem mass spectrometry with chemical derivatizations. Rapid Commun Mass Spetrom 21, 1973-1983.
Lu, Y. Y., Chen, M. L., Sung, F. C., Wang, P. S., and Mao, I. F. (2007). Daily intake of 4-nonylphenol in Taiwanese. Environ Int 33, 903-910.
Metcalfe, C. D., Metcalfe, T. L., Kiparissis, Y., Koenig, B. G., Khan, C., Hughes, R. J., Croley, T. R., March, R. E., and Potter, T. (2001). Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicol Chem 20, 297-308.
Mohamed, R., Hammel, Y. A., LeBreton, M. H., Tabet, J. C., Jullien, L., and Guy, P. A. (2007). Evaluation of atmospheric pressure ionization interfaces for quantitative measurement of sulfonamides in honey using isotope dilution liquid chromatography coupled with tandem mass spectrometry techniques. J Chromatogr A 1160, 194-205.
Nelson, R. E., Grebe, S. K., DJ, O. K., and Singh, R. J. (2004). Liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin Chem 50, 373-384.
Nghiem, L. D., Schafer, A. I., and Waite, T. D. (2002). Dsorption of estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment. Water Sci Technol 46, 265-272.
Penzes, L. P., and Oertel, G. W. (1970). Determination of steroids by densitometry of derivatives. II. Direct fluorometry of DANSYL estrogens. J Chromatogr 51, 325-327.
Petrovic, M., Diaz, A., Ventura, F., and Barcelo, D. (2003). Occurrence and removal of estrogenic short-chain ethoxy nonylphenolic compounds and their halogenated derivatives during drinking water production. Environ Sci Technol 37, 4442-4448.
Petrovic, M., Eljarrat, E., de Alda, M. J. L., and Barcelo, D. (2004). Endocrine disrupting compounds and other emerging contaminants in the environment: A survey on new monitoring strategies and occurrence data. Anal Bioanaly Chem 378, 549-562.
Qin, F., Zhao, Y. Y., Sawyer, M. B., and Li, X. F. (2008). Column-switching reversed phase-hydrophilic interaction liquid chromatography/tandem mass spectrometry method for determination of free estrogens and their conjugates in river water. Anal Chim Acta 627, 91-98.
Robb, D. B., and Blades, M. W. (2005). Effects of solvent flow, dopant flow, and lamp current on dopant-assisted atmospheric pressure photoionization (DA-APPI) for LC-MS. Ionization via proton transfer. J Am Soc Mass Spectrom 16, 1275-1290.
Robb, D. B., and Blades, M. W. (2006). Factors affecting primary ionization in dopant-assisted atmospheric pressure photoionization (DA-APPI) for LC/MS. J Am Soc Mass Spectrom 17, 130-138.
Rodriguez-Mozaz, S., de Alda, M. J., and Barcelo, D. (2004a). Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. J Chromatogr A 1045, 85-92.
Rodriguez-Mozaz, S., Lopez de Alda, M. J., and Barcelo, D. (2004b). Picogram per liter level determination of estrogens in natural waters and waterworks by a fully automated on-line solid-phase extraction-liquid chromatography-electrospray tandem mass spectrometry method. Anal Chem 76, 6998-7006.
Routledge, E. J., Sheahan, D., Desbrow, C., Brighty, G. C., Waldock, M., and Sumpter, J. P. (1998). Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ Sci Technol 32, 1559-1565.
Safe, S. H. (1995). Environmental and dietary estrogens and human health: is there a problem? Environ Health Perspect 103, 346-351.
Salste, L., Leskinen, P., Virta, M., and Kronberg, L. (2007). Determination of estrogens and estrogenic activity in wastewater effluent by chemical analysis and the bioluminescent yeast assay. Sci Total Environ 378, 343-351.
Short, L. C., Cai, S. S., and Syage, J. A. (2007a). APPI-MS: effects of mobile phases and VUV lamps on the detection of PAH compounds. J Am Soc Mass Spectrom 18, 589-599.
Short, L. C., Hanold, K. A., Cai, S. S., and Syage, J. A. (2007b). Electrospray ionization/atmospheric pressure photoionization multimode source for low-flow liquid chromatography/mass spectrometric analysis. Rapid Commun Mass Spectrom 21, 1561-1566.
Shou, W. Z., Jiang, X. Y., and Weng, N. D. (2004). Development and validation of a high-sensitivity liquid chromatography/tandem mass spectrometry (LC/MS/MS) method with chemical derivatization for the determination of ethinyl estradiol in human plasma. Biomed Chromatogr 18, 414-421.
Singh, G., Gutierrez, A., Xu, K., and Blair, I. A. (2000). Liquid chromatography/electron capture atmospheric pressure chemical ionization/mass spectrometry: analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Anal Chem 72, 3007-3013.
Snyder, S. A., Keith, T. L., Verbrugge, D. A., Snyder, E. M., Gross, T. S., Kannan, K., and Giesy, J. P. (1999). Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environ Sci Technol 33, 2814-2820.
Song, L., Wellman, A. D., Yao, H., and Adcock, J. (2007). Electron capture atmospheric pressure photoionization mass spectrometry: analysis of fullerenes, perfluorinated compounds, and pentafluorobenzyl derivatives. Rapid Commun Mass Spectrom 21, 1343-1351.
Stackelberg, P. E., Gibs, J., Furlong, E. T., Meyer, M. T., Zaugg, S. D., and Lippincott, R. L. (2007). Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci Total Environ 377, 255-272.
Stavrakakis, C., Colin, R., Hequet, V., Faur, C., and Le Cloirec, P. (2008). Analysis of endocrine disrupting compounds in wastewater and drinking water treatment plants at the nanogram per litre level. Environ Technol 29, 279 - 286.
Tai, S. S. C., and Welsh, M. J. (2005). Development and evaluation of a reference measurement procedure for the determination of estradiol-17 beta in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 77, 6359-6363.
Takadate, A., Hiraga, H., Fujino, H., and Goya, S. (1985). A Convenient Derivatization with Anion-Exchange Resin Catalysts for High-Performance Liquid-Chromatographic Analysis .1. Derivatization of Estrogens with Dansyl Chloride. Chem Pharm Bull 33, 5092-5095.
Tanaka, H., Yakou, Y., Takahashi, A., Higashitani, T., and Komori, K. (2001). Comparison between estrogenicities estimated from DNA recombinant yeast assay and from chemical analyses of endocrine disruptors during sewage treatment. Water Sci Technol 43, 125-132.
Thomson, B. M., Cressey, P. J., and Shaw, I. C. (2003). Dietary exposure to xenoestrogens in New Zealand. J Environ Monit 5, 229-235.
Thorpe, K. L., Cummings, R. I., Hutchinson, T. H., Scholze, M., Brighty, G., Sumpter, J. P., and Tyler, C. R. (2003). Relative potencies and combination effects of steroidal estrogens in fish. Environ Sci Technol 37, 1142-1149.
Tsuchiya, H., Tatsumi, M., Takagi, N., Koike, T., Yamaguchi, H., and Hayashi, T. (1986). High-Performance Liquid-Chromatographic Determination of Urinary Catecholamines by Precolumn Solid-Phase Dansylation on Alumina. Anal Biochem 155, 28-33.
Vulliet, E., Wiest, L., Baudot, R., and Grenier-Loustalot, M. F. (2008). Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1210, 84-91.
Westerhoff, P., Yoon, Y., Snyder, S., and Wert, E. (2005). Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39, 6649-6663.
Yamamoto, A., Kakutani, N., Yamamoto, K., Kamiura, T., and Miyakoda, H. (2006). Steroid hormone profiles of urban and tidal rivers using LC/MS/MS equipped with electrospray ionization and atmospheric pressure photoionization sources. Environ Sci Technol 40, 4132-4137.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42424-
dc.description.abstract分布於環境水體的雌激性內分泌干擾物質 (estrogenic enocrine-disrupting chemicals, EDCs),濃度雖低,卻可能足以改變水生生物的生殖表現。這些受汙染的表面水若進入飲用水源,可能干擾人類的內分泌系統。目前這類活性物質在各淨水處理單元的含量和移除所知有限,主因為其所含之EDCs濃度甚低,不易分析。因此,本研究目的是開發極致液相層析/串聯式質譜儀 (UPLC/MS/MS) 結合化學衍生,並透過層析技術降低真實樣品的基質干擾,以改進偵測在水環境中EDCs的靈敏度。
EDCs若具有酚類官能基,可與丹磺酰氯 (dansyl chloride) 或五氟溴甲苯(pentafluorobenzyl bromide, PFBBr) 化學試劑進行衍生反應,以增強待測物在液相層析/串聯式質譜儀之游離效率,改善偵測之靈敏度。本研究針對雌素酮 (estrone, E1)、動情激素 (17β-estradiol, E2)、雌素醇 (estriol, E3)、乙炔動情激素 (17α-ethinyl estradiol, EE2)、壬基酚 (4-nonylphenol, NP)、辛基酚 (4-tert-octylphenol, OP)、雙酚A (bisphenol A, BPA) 以及合成丹磺酰氯和五氟溴甲苯衍生之待測物,進行電灑游離法 (electrospray ionization, ESI)、大氣壓化學游離法 (atmospheric pressure chemical ionization, APCI)、大氣壓光游離法 (atmospheric pressure photoionization, APPI),以及APCI/APPI雙重游離等四種游離源之靈敏度比較,同時評估極致液相層析管柱 (UPLC column)、管柱後分流 (post-column split)、複合式管柱 (mixed-mode column) 以及二維層析 (2D-LC) 四種方法之基質效應與方法表現。
本研究採集原水 (raw water) 基質,於固相萃取後添加標準品 (post-extraction addition),以Waters 極致液相層析 (Acquity UPLC) 結合 Waters Quattro Premier XE三段式四極棒質譜儀 (triple-quadrupole mass spectrometer) 分析。結果顯示,未衍生之待測物在電灑游離法、丹磺酰氯衍生之待測物在三種游離法 (除大氣壓光游離法之外) 和五氟溴甲苯衍生之待測物在大氣壓化學游離法,於上述四種層析方法之間,其基質效應並無顯著差異。
丹磺酰氯衍生之待測物於電灑游離法具有優異之偵測靈敏度,其次是大氣壓光游離法,兩者訊號強度相較於未衍生之待測物均可提升三個數量級 (order of magnitude)。五氟溴甲苯衍生之待測物,其訊號強度亦可高於未衍生之待測物一個數量級。丹磺酰氯衍生之待測物在四種游離源下的訊號強度均優於五氟溴甲苯衍生之待測物。待測物在雙重APCI/APPI游離法和單一APCI游離法的訊號強度旗鼓相當,顯示雙重游離模式並未增強離子化效率。整體而言,以電灑游離法配合丹磺酰氯衍生技術並採用極致液相層析下,擁有最佳的靈敏度且相對上基質效應較低。
本研究進一步以UPLC/ESI(+)/MS/MS結合丹磺酰氯衍生技術,採集河水和汙水處理廠之放流水進行方法驗證 (method validation);丹磺酰氯衍生之待測物 (E1, E2, E3 and EE2) 採用選擇性離子偵測 (selected ion monitoring, SIM) 和選擇性反應偵測 (selected reaction monitoring, SRM) 的on-column偵測極限,定義為三倍的訊雜比,分別為 0.44-1.5 pg以及0.05-0.20 pg,而污水處理廠之放流水和河水採選擇性反應偵測的偵測極限分別為0.23-0.52 ng/L 以及 0.56-0.91 ng/L。
本研究亦針對五個代表性飲用水淨水廠於不同單元之樣本進行檢測。類固醇雌激素於原水採選擇性離子偵測和選擇性反應偵測時之偵測極限分別為0.20-0.68 ng/L 和0.04-0.15 ng/L。原水中類固醇雌激素濃度範圍介於 < LOD-5.5 ng/L,透過多步驟淨水處理單元已明顯降低,清水中的濃度範圍則介於 < LOD-1.17 ng/L。壬基酚於各淨水單元皆能檢出,其濃度變異較大,介於25-378 ng/L; 而清水中的壬基酚濃度則低於83 ng/L。辛基酚和雙酚A於各淨水單元的濃度,則近於分析背景值。儘管各水廠水源不同,原水中類固醇雌激素濃度相似; 透過傳統處理或增設高級處理程序,清水中的濃度並無顯著差異。
開發偵測水體中雌激性化合物定性兼定量分析方法,加速樣本液相層析分離的速度 (< 5 min),而且在搭配化學衍生後,環境樣本採用選擇性離子偵測模式 (單一質譜) 的偵測極限亦可達sub-ng/L,且其所定量之濃度與選擇性反應偵測模式 (串聯式質譜) 所量測者相符為本研究重要貢獻。此外,本研究發展之相關分析技術可拓展至其他基質或化合物,例如組織、血液和食品樣本,為微量有機分析另闢蹊徑。大規模的飲用水廠檢測證實EDCs確實存在飲用水中,特別是雌素酮、乙炔動情激素和壬基酚化合物。水處理技術成本高,對於這些微汙染物 (濃度接近偵測極限) 能再進一步改善移除效果的空間有限;相較之下,原水水源的保護和降低汙染來源可能是更為有效的作法。
zh_TW
dc.description.abstractEstrogenic endocrine-disrupting chemicals (EDCs) are widely distributed over the aquatic environment and may interfere with reproductive functions of aquatic creatures even at trace levels. EDCs may also disturb the endocrine system of human beings if they exist in drinking water. Currently little is known about the levels and removal of these bioactive substances in each step of drinking water treatment. One of the major obstacles to the relating studies is how to detect trace amount of EDCs in complex environmental matrixes. This study aimed at employing ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) coupled with chemical derivatization and decreasing the matrix effects from real samples through chromatographic technique to improve the detection sensitivity of EDCs in water.
Derivatization of phenolic EDCs using dansyl chloride and pentafluorobenzyl bromide (PFBBr) can enhance the ionization efficiency and improve the sensitivity on MS. Consequently, this study compared the sensitivities and matrix effects of four ionization methods combined with four liquid chromatographic systems on estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), 4-nonylphenol (NP), 4-tert-octylphenol (OP), bisphenol A (BPA) and their derivatives of dansyl chloride or PFBBr. The four ion sources were electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI) and APCI/APPI, respectively; the four liquid chromatography (LC) systems were UPLC method with and without post-column split (5:1), a mixed mode column and two-dimensional LC (2D-LC) method.
This study evaluated the matrix effects and the performance of ionization methods using raw water with post-extraction spike. The analysis was carried out using a Waters Acquity UPLC coupled with a Waters Quattro Premier XE triple-quadrupole mass spectrometer. The results showed no significant differences in matrix effects among native analytes using ESI, dansylated analytes using each ion source except for APPI, and PFBBr derivatives using APCI for the above four LC methods.
Dansylated compounds produced the most intense signals using ESI and then APPI, which were both up to three orders of magnitude than that without derivatization. PFBBr derivatization increased the signal intensity of analytes up to one order of magnitude than those of underivatized ones. The signal intensity of dansylated compounds was higher than those of PFBBr derivatives. The response of analytes using APCI/APPI mode was similar to that at APCI mode; the dual-source ionization did not improve the signals.
Dansylated compounds using ESI under UPLC system yielded the strongest signals and were less susceptible to matrix effect; consequently, this combination was further evaluated and validated by sewage treatment plant effluents and river water. The on-column detection limit of dansylated compounds (E1, E2, E3 and EE2) using selected ion monitoring (SIM) and selected reaction monitoring (SRM) modes, defined as a signal-to-noise ratio of three, ranged from 0.44 to 1.5 pg and from 0.05 to 0.20 pg, respectively. The limits of detection (LODs) with SRM in sewage treatment plant effluents and river water were 0.23-0.52 and 0.56-0.91 ng/L, respectively.
Using the developed method, the study surveyed the levels of these EDCs in different treatment steps of five representative drinking water treatment plants. The LODs of steroid estrogens in raw water with SIM and SRM were 0.20-0.68 ng/L and 0.04-015 ng/L, respectively. The four steroid estrogens in raw water and finished water ranged from < LOD to 5.5 ng/L and < LOD to 1.17 ng/L, respectively. NP survived in each treatment step and the concentrations ranged from 25 to 378 ng/L, and its levels in finished water were all below 83 ng/L. The levels of OP and BPA in most samples were close to the backgrounds in lab blanks. The levels of the steroid estrogens in raw water were similar among the five plants even though their locations and water sources are different. Most of the estrogenic chemicals can be removed effectively through drinking water treatment steps except for NP, and there were no differences in the removal efficiency between conventional steps only and those with additional advanced procedures.
In conclusion, this study developed and validated a qualitative and quantitative method on detecting EDCs with dansyl chloride derivatization by UPLC/MS and UPLC/MS/MS. The new method provided a fast chromatographic separation (< 5 min) and the LODs of the EDCs in environmental waters using SIM reached low-ng/L, and the quantitative results were comparable with those of SRM. In addition, levels of the analytes were not significantly different in the finished water between conventional and advanced treatment processes; the four estrogens at levels of few ng/L cannot be further reduced after the treatment of activated carbon adsorption or reverse osmosis process. It is still essential to prevent water sources from contaminations of EDCs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:33Z (GMT). No. of bitstreams: 1
ntu-98-F92844007-1.pdf: 2316556 bytes, checksum: 0ad86c94b93bc9082fb758a51169eb30 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌 謝 i
中文摘要 iii
ABSTRACT vi
LIST OF FIGURES xii
LIST OF TABLES xiii
Chapter One: Introduction 1
1.1 Backgrounds 1
1.2 Objectives 12
Chapter Two: Materials and Methods 15
2.1 Chemicals and reagents 15
2.2 Extraction 16
2.3 Synthesis of derivatized products 16
2.3.1 Dansyl chloride derivatization 16
2.3.2 PFBBr derivatization 18
2.4 LC systems and analytical columns 18
2.4.1 The UPLC with or without post-column split 18
2.4.2 The mixed-mode column 19
2.4.3 2D-LC system with RAM pre-column 19
2.5 Instrumental Analysis 20
2.5.1 Dansyl derivatives 21
3.5.2 PFBBr derivatives 24
2.5.3 Native analytes 24
2.6 Method comparisons 27
2.7 Method validation 28
2.8 Sample collection of drinking water 29
2.9 QA/QC, quantification and data analysis 30
Chapter Three: Results and Discussion 33
3.1 Comparisons between ESI, APPI, APCI and APCI/APPI 33
3.1.1 Effects of dopant, mobile phase flow rates and compositions on APPI sensitivity 33
3.1.2 Sensitivity among different LC systems and ionization modes for both derivatized and underivatized analytes 36
3.1.3 Matrix effects 38
3.1.4 Method validation 40
3.2 Levels of feminizing chemicals in drinking water treatment processes 44
3.2.1 Method recovery and detection limits 44
3.2.2 Steroid estrogens in the five drinking water treatment plants (DWTPs) 45
3.2.3 Xenoestrogens in the five drinking water treatment plants (DWTPs) 48
Chapter Four: Conclusions 51
ACKNOWLEDGENTS 54
REFERENCES 55
FIGURES 63
TABLES 77
RELATED PUBLISHED PAPERS 94
APPENDICES 97
APPENDIX A: Glossary 97
APPENDIX B: Chromatograms of native analytes in ESI mode 98
APPENDIX C: Chromatograms of PFBBr derivatized analytes in APCI mode 99
APPENDIX D:Chromatograms of background NP, OP and their derivatives in different samples 100
dc.language.isoen
dc.subject化學衍生zh_TW
dc.subject丹磺&#37232zh_TW
dc.subject氯zh_TW
dc.subject五氟溴甲苯zh_TW
dc.subject飲用水處理zh_TW
dc.subject內分泌干擾物質zh_TW
dc.subjectendocrine-disrupting chemicalsen
dc.subjectchemical derivatizationen
dc.subjectdansyl chlorideen
dc.subjectpentafluorobenzyl bromideen
dc.subjectdrinking water treatmenten
dc.title以極致液相層析/串聯式質譜儀偵測水體中雌激性
化合物之方法開發與應用
zh_TW
dc.titleDetermination of Feminizing Chemicals in Water using Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry: Method Development and Applicationsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee王根樹(Gen-Shuh Wang),陳美蓮,吳焜裕,林郁真
dc.subject.keyword化學衍生,丹磺&#37232,氯,五氟溴甲苯,飲用水處理,內分泌干擾物質,zh_TW
dc.subject.keywordchemical derivatization,dansyl chloride,pentafluorobenzyl bromide,drinking water treatment,endocrine-disrupting chemicals,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved