請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42418
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾顯雄 | |
dc.contributor.author | Song-Min Wang | en |
dc.contributor.author | 王淞民 | zh_TW |
dc.date.accessioned | 2021-06-15T01:13:27Z | - |
dc.date.available | 2014-07-30 | |
dc.date.copyright | 2009-07-30 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-29 | |
dc.identifier.citation | 陸、參考文獻
曾敏南. 2001. 黑殭菌 (Metarhizium anisopliae var. anisopliae)耐高溫突變株之篩選及其生理、病原性之探討. 國立台灣大學植物病理學研究所碩士論文. 鐘珮哲. 2005. 轉殖蟲生真菌黑色素生合成基因以增加其逆境之抗性. 國立台灣 大學植物病理與微生物所碩士論文. Abu-Arish, A., Frenkiel-Krispin, D., Fricke, T., Tzfira, T., Citovsky, V., Grayer Wolf, S., and Elbaum, M. 2004. Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA. J. Biol. Chem. 279: 25359–25363. Abuodeh, R. O., Orbach, M.J., Mandel, M.A., Das, A., and Galgiani, J.N. 2000. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J. Infect Dis. 181:2106–2110. Alicja, Z., Thomas, M., Fabrice, S., Barbara, H., and Luca, R. 2001. Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell. 13:369-383. Alonso, J. M., Anna, S. N., Thomas, L. J., Christopher, K. J., Huaming, C., Paul, S., Denise S. K., Justin, Z. B., Pascual, Cheuk, Rosa, Gadrinab, Carmelita, Heller, Collen, Jeske, Albert, Koesema, Eric, Meyers, Cristina C., Parker, Holly, Prednis, Lance, Ansari, Yasser, Choy, and Nathan. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 301:653-657. Ankenbauer, R. G., and Nester, E. W. 1990. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes : structural specificity and activities of monosaccharides. J. Bacteriol. 172:6442-6446. Baek, J. M., Howell, C. R., and Kenerley, C. M. 1999. The role of extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr. Genet. 35:41-50. Bakó, L., Umeda, M., Tiburcio, A. F., Schell, J., and Koncz, C. 2003. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc. Natl. Acad. Sci. USA. 100: 10108–10113. Bartnicki-García, S. 1968. Cell wall chemistry, morphogenesis and taxonomy of fungi. Annu. Rev. Microbiol. 22:87-108. Bell, A. A., and Wheeler, M. H. 1986. Biosynthesis and functions of fungal melanins. Annu. Rev. Phytopatol. 24:411-451. Benítez, T., Delgado-Jarana, J., Rincón, A. M., Rey, M.,and Limón, M. C. 1998. Biofungicides: Trichoderma as a biocontrol agent against phytopathogenic fungi. In: Pandalai SG (ed) Recent Research Developments in Microbiology, vol. 2, pp 129-150. Research Signpost, Trivandrum. Benítez, T., Rincón, A. M., Limón, M. C., and Codón, A. C. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7:249-260. Benoît, L., Tzvi, T., Alexander, V., and Vitaly, C.2006. A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet. 22 : 29-37. Butler, M. J., and Day, A. W. 1998. Fungal melanin:a review. Can. J. Microbiol. 44:1115-1136. Butler, M. J., Gardiner, R. B., and Day, A. W. 2004. Use of the black yeast Phaeococcomyces fungal melanin model system for preparation of 1,3,6,8-tetrahydroxynaphthalene and the other components of the DHN fungal melanin pathway. Int. J. Plant Sci. 165:787-793. Campoy, S., Perez, F., Martin, J.F., Gutierrez, S., and Liras, P. 2003. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr. Genet. 43:447–452. Casadevall, A.,Rosas, A. L.,Nosanchuk, J. D. 2000. Melanin and virulence in Cryptococcus neoformans. Curr. Opin. Microbiol.3:354-358. Chelico, L. C., Haughian, J. L., Woytowich, A. E., and Khachatourians, G. G. 2005. Quantification of ultraviolet-C irradiation induced cyclobutane pyrimidine dimmers and their removal in Beauveria bassiana conidiospore DNA. Mycologia 97: 621-627. Chelico, L., Haughian, J. L., and Khachatourians, G. G. 2005. Nucleotide excision repair and photoreactivation in the entomopathogenic fungi Beauveria bassiana, Beauveria brongniartii, Beauveria nivea, Metarhizium anisopliae, Paecilomyces farinosus and Verticillum lecanii. J. Appl. Microbiol. 100: 964-972. Chen, X., Stone, M., Schlagnhaufer, C., and Romaine, C. P. 2000. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66:4510–4513. Chet, I.,and Inbar, J. 1994. Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37-43. Chet, I., Inbar, J., and Hadar, I. 1997. Fungal antagonists and mycoparasites. In: Wicklow, D. T., and Söderström. B.(eds) The Mycota IV: Environmental and microbial relationships, pp 165-184. Springer-Verlag, Berlin. Citovsky, V., Kapelnikov, A., Oliel, S., Zakai, N., Rojas, M. R., Gilbertson, R.L., et al. 2004. Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J. Biol. Chem. 279: 29528–29533. Combier, J. P., Melayah, D., Raffier, C., Gay, G., and Marmeisse, R. 2003. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol. Lett. 220:141–148. Covert, S. F., Kapoor, P., Lee, M., Briley, A., and Nairn, C. J. 2001. Agrobacterium-mediated transformation of Fusarium circinatum. Mycol. Res. 105:259–264 de Groot, M. J. A., Bundock, P., Hooykaas, P. J. J., and Beijersbergen, A. G. M. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fugi. Nat. Biotech. 16:839-842. Danielson, R. M., and Davey, C. B. 1973. Non nutritional factors affecting the growth of Trichoderma in culture. Soil Biol. Biochem. 5: 495–504. Delgado-Jarana, J., Moreno-Mateos, M. A.,and Benítez, T. 2003. Glucose uptake in Trichoderma harzianum: role of gtt1. Euk. Cell 2:708-717. Di Pietro, A., Lorito, M., Hayes, C. K., Broadway, R. M., and Harman, G. E. 1993. Endochitinase from Gliocladium virens: Isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308-313. Dombek, P., and Ream, L. W. 1997. Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J. Bacteriol. 179: 1165–1173. Eastburn, D., M., and Bulter, E., E. 1991. Effects of soil moisture and temperature on saprophytic ability of Trichoderma harzianum. Mycologia 83:257-263. Eisendle, M., Oberegger, H., Buttinger, R., Illmer, P.,and Haas, H. 2004. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Euk. Cell 3:561-563. Elad, Y., and Kapat, A. 1999. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 105:177-189. El-Katatny, M. H., Gudelj M., Robra, K. H., Elnaghy, M. A.,and Gubitz, G. M. 2001. Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol. 56:137-143. Filippova, S. N., Kuznetsov, V. D., and Zaslavskaya, P. L. 1987. Production of melanins by Streptomyces galbus as a response to the elevated temperature of its cultivation and melanin localization. Mikrobiologiya. 56: 710-712. Fogarty, R. V., and Tobin, J. M. 1996. Fungal melanins and their interactions with metals. Enzyme Microb. Techol. 19:311-317. Gardiner, D. M., and Howlett, B. J. 2004. Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr. Genet. 45:249–255. Guralnick, B., Thomsen, G., and Citovsky, V. 1996. Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 8: 363–373. Hallsworth, E. J., and Magan, N. 1995. Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology. 141: 1109-1115. Harman, G. E. 2000. Myths and dogmas of biocontrol:Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis. 84:377-393. Harman, G. E. 2005. Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 96:190-194. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., and Lorito, M. 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2:43-56. Ho, M. S., Tsai, P. I., and Chien, C. T. 2006. F-box proteins: the key to protein degradation. J. Biomed. Sci. 13: 181–191. Hooykass, J. J. P., and Beijersbergen, G. M. A. 1994. The virulence system of Agrobacterium tumefaciens. Annu. Rev. Phytopathol. 32:157-179. Howard, R. J.,Ferrari, M . A., Roach,D. H.,and Money,N. P.1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl, Acad. Sci. U.S.A. 88: 111281 -11284. Howell, C. R., and Stipanovic, R. D. 1983. Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can. J. Microbiol. 29:321-324. Howell, C. R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases:The history and evolution of current concepts. Plant Dis. 87:4-10. Hwang, H. H., and Gelvin, S. B. 2004. Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell. 16: 3148–3167. Ignoffo, C. M. and Garcia, C. 1992. Influence of conidial color on inactivation of several entomogenous fungi (Hyphomycetes) by simulated sunlight. Ann. Entomol. Soc. Am. 21:913-917. Jacobson, E. S., and Tinnell, S. B. 1993. Antioxidant function of fungal melanin. J. Bacteriol. 175:7102-7104. James, S., and Kira, J. W. 2001. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18: 380-416. Joshua, D. N., and Arturo, C. 2003. The contribution of melanin to microbial pathogenesis. Cell. Microbiol. 5: 203-223. Kapat, A., Zimand, G., and Elad, Y. 1998. Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiol. Mol. Plant Pathol. 52:127-137. Kawamura, C., Moriwaki, J., Kimura, N., Fujita, Y., Fuji, S., Hirano, T., Koizumi, S., and Tsuge, T. 1997. Biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Mol. Plant Microbe Interact. 10:446-453. Kawamura, C., Tsujimoto, T., and Tsuge, T. 1999. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol. Plant Microbe Interact. 12:59-63. Kimura, N., and Tsuge, T. 1993. Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J. Bacteriol. 175:4427-4435. Kredics, L., Antal, Z., Manczinger, L., Szekeres, A., Kevei, F., and Nagy, E. 2003. Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol. Biotechnol. 41:37-42. Kredics, L., Antal, Z., and Manczinger, L. 2000. Influence of water potential on growth, enzyme secretion and in vitro enzymeactivities of Trichoderma harzianum at different temperatures. Curr. Microbiol. 40:310–314. Kredics, L., Dóczi, I., Antal, Z., and Manczinger, L. 2001. Effect of heavy metals on growth and extracellular enzyme activities of mycoparasitic Trichoderma Strains. Bull. Environ. Contam. Toxicol. 66:249–254. Lacroix, B., Vaidya, M., Tzfira, T., and Citovsky, V. 2005. The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J. 24: 428–437. Lacroix, B., Li, J., Tzfira, T., and Citovsky, V. 2006. Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell. Can. J. Physiol. Pharmacol. 84: 333–345. Langfelder, K., Streibel, M., Jahn, B., Haase, G., and Brakhage, A. A. 2003. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 38:143-158. Leclerque, A., Wan, H., Abschutz, A., Chen, S., Mitina, G. V., Zimmermann, G., and Schairer, H. U. 2003. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr. Genet. 45:111–119. Li, J., Krichevsky, A., Vaidya, M., Tzfira, T., and Citovsky, V. 2005. Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl. Acad. Sci. USA. 102: 5733–5738. Liu, Y.-T., Sui, M.-J., Ji, D.-D., Wu, I.-H., Chou, C.-C., and Chen, C.-C. 1993. Protection from ultraviolet irradiation by melanin of mosquitocidal activity of Bacillus thurigiensis var. isaelensis. J. Invertebr. Pathol. 62:131-136. Lorito, M., Hayes, C. K., Pietro, A. Di, Harman, G. E. 1993. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr. Genet. 24:349-356. Lorito, M., Woo, S. L., Fernandez, I. G., Collucci, G., Harman, G. E., Pintor-Toros, J. A., Filippone, E., Muccifora, S., Lawrence, C. B., Zoina, A., Tuzun, S., and Scala, F. 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc. Natl. Acad. Sci. USA 95:7860-7865. Loyter, A., Rosenbluh, J., Zakai, N., Li, J., Kozlovsky, S. V., Tzfira, T., and Citovsky, V. 2005. The plant VirE2 interacting protein 1. A molecular link between the Agrobacterium T-complex and the host cell chromatin? Plant Physiol. 138: 1318–1321. Luard, E., J., and Griffin, D., M. 1981. Effect of water potential on fungal growth and turgor. Trans. Br. Mycol. Soc. 76:33-40. Mach, R., L., Schindler, M., and Kubicek, C., P. 1994. Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr. Genet. 25:567-570. Magan, N. 1998. Effect of water potential and temperature on spore germination and germ-tube growth in vitro and on straw leaf sheaths. Trans. Br. Mycol. Soc. 90:97-107. Melchers, L. S., Regensburg-Tuïnk, A. J.G., Bourret, R. B., Sedee N. J. A. et al. 1989. Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J. 8:1919-1925. Metcalf, D. D., and Wilson, C. R. 2001. The process of antagonism of Sclerotium cepivorum in white rot affected onion roots by Trichoderma koningii. Plant Pathol. 50:249-257. Meyer, V., Mueller, D., Strowig, T., and Stahl, U. 2003. Comparison of different transformation methods for Aspergillus giganteus. Curr. Genet. 43:371–377. Michielse, C. B., Hooykaas, P. J. J., van den Hondel, C. A. M. J. J., and Ram, A. F. J. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48:1-17. Michielse, C. B., Ram, A. F. J., Hooykaas, P. J. J., and van den Hondel, C. A. M. J. J. 2004. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet. Biol. 41:571-578. Money, N. P., and Howard, R. J. 1996. Confirmation of a link between fungal pigamenation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet. Bio. 20: 217-227. Mikosch, T. S., Lavrijssen, B., Sonnenberg, A. S., and Griensven, L. J. van. 2001. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr. Genet. 39:35–39. Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M., and Kang, S. 2001. Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology. 91:173–180. Mysore, K. S., Nam, J., and Gelvin, S. B. 2000. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl. Acad. Sci. USA. 97: 948–953. Old, K. M., and Robertson, W. M. 1970. Effects of lytic enzymes and natural soil on the fine structure of conidia of Cochliobolus sativus. Trans. Br. Mycol. Soc. 54:343-350. Orr, K. A., and Knudsen, G. R. 2004. Use of green fluorenscent protein and image analysis quantify proliferation of Trichoderma harzianum in nonsterile soil. 94: 1383-1389. Park, S-M., and Kim, D-K. 2004. Transformation of a filamentous fungus Cryphonectria parasitica using Agrobacterium tumefaciens. Biotechnol. Bioprocess Eng. 9:217–222. Penttilä, M., Nevalainenb, H., Rättőa, M., Salminenb, E., and Knowles, J. 1987. A versatile tansformation system for the filamentous fungus Trichoderma reesei. Gene. 61: 155-164. Piers, K. L., Heath, J. D., Liang, X., Stephens, K. M., and Nester, E. W. 1996. Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA. 93:1613–1618. Prota, G. , M. D'Ischia , and A. Napolitano . 1998. The chemistry of melanins and related metabolites. In The Pigmentary System (Edited by J. J. Nordlund), pp. 307–334. Oxford University Press, Oxford. Rehnstrom, A. L. and Free, S. J. 1997. The isolation and characterization of melanin-deficient mutants of Monilinia fructicola. Physiol. Mol. Plant Pathol. 49: 321-330. Rho, H. S., Kang. S., and Lee, Y. H. 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol. Cells. 12:407–411. Robert, V. F., and John, M. T. 1996. Fungal melanins and their interaction with metals. Enzyme Microb. Technol. 19: 311-317. Rolland, S., Jobic, C., Fevre, M., and Bruel, C. 2003. Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr. Genet. 44:164–171. Rosas, A. L., and Casadevall, A. 1997. Melanization effects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Micro. Biol. Lett. 153:265-272. Rosa, E. C., Juan, A. V., Maria, R. H., Enrique, M., and Santiago, G. 2006. A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation. J. Microbiol. 44:383-395. Rosso, M. G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., and Weisshaar, B. 2003. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol. 53:247-259. Salman, H., Abu-Arish, A., Oliel, S., Loyter, A., Klafter, J., Granek, R., and Elbaum, M. 2005. Nuclear localization signal peptides induce molecular delivery along microtubules. Biophys. J. 89: 2134–2145. Samuels, G., J. 1996. Trichoderma : a review of biology and systematic of the genus. Mycol. Res. 100:923-935. Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-Tuïnk, T. J. G., Crosby, W. L., and Hooykaas, P. J. J. 2001. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol. 11: 258–262. Scott, K. N., Louise, G., John, W. T., Yoder, O. C., and Turgeon, B. G. 2003. Phylogenomic analysis of typeⅠ polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. USA. 100: 15670-15675. Sealy, R. C., Hyde, J. S., Felix, C. C., Menon, I. A., Prota, G., Swartz, H. M., Persad, S., and Haberman, H. F. 1982. Novel free radicals in synthetic and natural pheomelanins: distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 79: 2885-2889. Sharon, E., Bar-Eyal, M., Chet, I., Herra-Estrella, A., Kleifeld, O., and Spiegel, Y. 2001. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687-693. Shimoda, N., Toyoda-Yamamoto, A., Nagamine J., Usami, S., Katayama, M. et al. 1990. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc. Natl. Acad. Sci. USA. 87:6684-6688. Sivan, A., Stasz, T., E., Hemmat, M., Hayes, C., K., and Harman, G., E. 1992. Transformation of Trichoderma spp. with plasmids conferring hygromycin B resistance. Mycologia. 84:687-694. Susanne, Z. 2004. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr. Genet. 45:54-60. Stasz, T., E., Harman, G., E., and Weeden, N., F. 1988. Protoplast preparation and fusion in two biocontrol strains of Trichoderma harzianum. Mycologia. 80:141-150. Sullivan, T. D., Rooney, P. J., and Klein, B. S. 2002 Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Euk. Cell. 1:895–905. Swart, S., Logman, T. J., Smit, G., Lugtenberg, B. J., and Kijne, J. W. 1994. Purification and partial characterization of a glycoprotein from pea (Pisum sativum) with receptor activity for rhicadhesin, an attachment protein of Rhizobiaceae. Plant Mol. Biol. 24: 171–183. Takahara, H., Tsuji, G., Kubo, Y., Yamamoto, M., Toyoda, K., Inagaki, Y., Ichinose, Y., and Shiraishi, T. 2004 Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J. Gen. Plant. Pathol. 70:93–96. Tamamoto, S., Aoyama, T., Takanami, M., and Oka, A. 1990. Binding of the regulatory protein VirG to the phased signal sequences upstream from virulence genes on the hairy-root-inducing plasmid. J. Mol. Biol. 215:537-547. Tolmstoff, W. 1976. Report of the disease and pathogen physiology committee-1975. In Proc. Beltwide Cotton Prod. Res. Conf., p. 9. Tsuji, G., Fujii, S., Fujihara, N., Hirose, C., Tsuge, S., Shiraishi, T., and Kubo, Y. 2003. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J. Gen. Plant Pathol. 69:230–239. Tronsmo, A., and Dennis, C. 1978. Effect of temperature on antagonistic properties of Trichoderma species. Trans. Br. Mycol. Soc. 71:469-474. Tzfira, T., Vaidya, M., and Citovsky, V. 2001. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J. 20: 3596–3607. Tzfira, T., Vaidya, M., and Citovsky, V. 2004a. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431: 87–92. Tzfira, T., Li, J., Lacroix, B., and Citovsky, V. 2004b. Agrobacterium T-DNA integration: molecules and models. Trends Genet. 20: 375–383. Verena, S., Christian, G., Irina, S. D., Bernhard, S., Lukas, H.,and Christian, P. K., 2008. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wile-type genome. BMC Geno. 9: 327-341. Vey, A., Hoagland, R. E.,and Butt, T. M. 2001. Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: Progress, problems and potential, pp 311-346. CAB International, Bristol Vijn, I., and Govers, F. 2003. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol. Plant Pathol. 4:459–467. Vitaly, C., Stanislav, V., Lacroix, B., Adi, Z., Mery, D. Y., Shachi, V., Andriy, T., and Tzvi, T. 2007. Biological systems of the host cell involved in Agrobacterium infection. Cellular microbiol. 9:9-20. Wagner, V. T., and Matthysse, A. G. 1992. Involvement of vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells. J. Bacteriol. 174: 5999–6003. Weindling, R. 1934. Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24:1153-1179. Weindling, R. 1941. Experimental consideration of the mold toxin of Gliocladium and Trichoderma. Phytopathology 31:991-1003. Wies, A., Grzegorski, D., Xu, B., Goulard, C., Rebuffat, S., Ebbole, D.J,, Bodo, B.,and Kenerley, C. 2002. Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862-20868. Woo, S. L., Donzelli, B., Scala, F., Mach, R., Harman, G. E., Kubicek, C. P., Del Sorbo, G., and Lorito, M. 1999. Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol. Plant-Microbe Interact. 12:419-429. Yao, H. Z., Xiao, L. W., and Tian, H. W. 2007. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagemesis. Appl. Microbiol. Biotechnol. 73: 1348-1354. Yedidia, I., Benhamou, N., and Chet, I. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 65:1061-1070. Yedidia, I., Benhamou, N., Kapulnik, Y., and Chet, I. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38:863-873. Yedidia, I., Srivastva, A. K., Kapulnik, Y., and Chet, I. 2001. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235-242. Yeoung-Seuk, B., and Guy R., K. 2000. Cotransformation of Trichoderma harzianum with β-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Appl. Environ. Microbiol. 66:810-815. Zeilinger, S. 2004. Gene disruption in Trichoderma atroviride via Agrobacterium- mediated transformation. Curr. Genet. 45:54-60. Zeilinger, S., Galhaup. C., Payer, K., Woo, S., L., Mach, R., L., Lorito, M,. and Kubicek, C., P. 1999. Chitinase gen expression during mycoparasitic interaction of Trichoderma harzianum wit its host. Fungal Genet. Biology. 26:131-140. Zhong, Y. H., Wang, X. L., Wang, T. H., and Jiang, Q. 2007. Agrobacterium-mediated transformation(AMT)of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Appl. Microbiol Biotechnol. 73:1348-1354. Zhu, Y., Nam, J., Carpita, N. C., Matthysse, A. G., and Gelvin, S. B. 2003a. Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiol. 133: 1000–1010. Zhu, Y., Nam, J., Humara, J.M., Mysore, K., Lee, L.Y., Cao, H., et al. 2003b. Identification of Arabidopsis rat mutants. Plant Physiol. 132: 494–505. Ziemienowicz, A., Görlich, D., Lanka, E., Hohn, B., and Rossi, L. 1999. Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc. Natl. Acad. Sci. USA. 96: 3729–3733. Ziemienowicz, A., Merkle, T., Schoumacher, F., Hohn, B., and Rossi, L. 2001. Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell. 13: 369–384. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42418 | - |
dc.description.abstract | 摘要
木黴菌(Trichoderma spp.),為ㄧ毀滅性超寄生菌(destructive mycoparasite),自1930年代即已被研發成生物防治劑,而應用於作物或苗圃、苗木地上部或土媒真菌性病害之防治,但常因逆境而使其於田間之防治效果不如預期。黑色素(melanin)廣泛存在各種生物體內,具有保護減低生物受到UV傷害、並能提高微生物對高溫、乾燥之耐性。為了提昇木黴菌之抗逆境之能力與生物防治效能,將磚格孢菌(Alternaria alternata)之黑色素生合成基因polyketide synthase(PKS)、 scytalone dehydratase(SCD)及1,3,8- trihydroxynaphthalene reductase(THN),構築於Ti plasmid轉型載體pCAMBIA 1300中。載體pCAM-GPD-GFP-PKS以GFP為selection marker,內建有PKS之full length gDNA,載體pCAM-GPD-HYG-Tri-Scy以hygromycinr為selection marker,內建SCD與THN之full length cDNA。應用農桿菌之轉型系統(Agrobacterium tumefaciens mediated transformation, ATMT),將此基因轉入木黴菌T. harzianum與T. reesei,使轉型株能表現該基因並產生黑色素,更進而測試其對逆境之耐受性,以及生物防治之能力。T. harzianum以原生質體作為轉殖材料,共獲得7株轉型株, Southern blot顯示其中3株具有兩個黑色素生合成PKS基因,以及各一個SCD與THN基因。T. reesei分別以原生質體與分生孢子做為轉殖材料,共獲得5株各具一個PKS、SCD及THN基因之轉殖株,以及5株僅帶有SCD與THN兩基因之轉型株。生理活性檢測顯示出T. harzianum轉型株對UV-B耐受性是野生株之兩倍,於35℃下,轉型株比野生株生長快速,於水活性為0.945,轉型株活力亦較佳,而對於病原菌Colletotrichum gloeosporioides、Phellinus noxius、Phytophthora parasitica等,轉型株皆具有更高之侵染能力。當連續照射UV-B 10分鐘後,培養24小時內,轉型株T. reesei分生孢子發芽率比野生株高將近10倍。在水活性0.929,轉型株發芽率為35.68%,而野生株僅13%,兩者相差2.7倍。但轉型株、野生株對P. noxius、P. parasitica之侵染能力相近。 | zh_TW |
dc.description.abstract | Abstract
Trichoderma, a destructive mycoparasite, has been studied and being used to biocontrol plant fungal disease for more than 70 years. Nevertheless, the control efficacy in fields sometime was lower than anticipation, mainly due to the biotic or abiotic stress encountered. Previously melanin was proved unequivocally with the capacity to enhance immense organisms to counteract the stressed conditions or increase virulence toward animal or plant hosts. Attempt to circumvent the obsticals encountered in biocontrol, the melanin biosynthesis genes encoding polyketide synthase(PKS), scytalone dehydratase(SCD), and 1, 3, 8-trihydroxynaphthalene reductase (THN) cloned from Alternaria alternata were engineered into the Trichoderma harzianum and T. reesei by Agrobacterium tumefaciens mediated transformation(ATMT). To carry out transformantion, two shuttle vectors were constructed, using pCAMBIA 1300 binary vector as backbone, one vector(pCAM-GPD-GFP-PKS)inserted with PKS and green fluorescence protein(GFP), while the other(pCAM-GPD-HYG-Tri-Scy)harbors SCD, THN and hygromycin-B phosphotransferase(hygromycinr);both vectors using common Aspergillus GPD promoter and Trpc terminator to drive the transcription. Totally, seven T. harzianum transformants derived from protoplast were obtain, and five T. reesei transformants from protoplasts or conidia were secured. Transformants T. harzianum 3-3 and T. reesei 3-1 possess one copy of PKS, SCD and THN gene, respectively, whereas transformants T. harzianum 11-1 harbors 2 coppies of PKS and one copy of SCD and THN. The T. harzianum transformant exhibited two-fold tolerance toward UV-B irradiation than wild type, and also showed higher growth rate at 35℃, and at lower water activity(aw)at 0.945. Additionally, the transformant also possessed higher virulence toward fungal pathogens Colletotrichum gloeosporioides, Phellinus noxius, and Phytophthora parasitica compared with wild type. While the T. reesei transformant after irradiation with UV-B at the dosage of 3744 mJ/cm2 for 10 min, exhibited 10 times more germination rate than wild type, so as to the germination rate at lower water activity(aw 0.929), with 35.68% versus 13% between the two strains. However, there are no significant difference in regarding the virulence between the transformant and wild type strains. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:13:27Z (GMT). No. of bitstreams: 1 ntu-98-R95633015-1.pdf: 8377333 bytes, checksum: b923dcf8a3d36696a162bcff2dc4cb5a (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目次
中文摘要………………………………………………………………………………1 英文摘要………………………………………………………………………………2 前言……………………………………………………………………………………4 壹、前人研究………………………………………………………………………….6 一、木黴菌(Trichoderma spp.)……………………………………………………6 二、生物防治機制………………………………………………………………….....7 (一)超寄生………………………………………………………………………..7 (二)細胞壁分解酵素……………………………………………………………..7 (三)抗生物質……………………………………………………………………9 (四)營養競爭……………………………………………………………………9 (五)刺激植物產生抗性與防禦機制……………………………………………10 三、影響木黴菌防治能力之環境因子………………………………………………11 四、黑 色 素(melanin)………………………………………………………………12 (一)黑色素保護並防止紫外線過量之傷害……………………………………13 (二)黑色素影響病原菌之致病力………………………………………………13 (三)抵抗乾燥、高溫環境………………………………………………………14 (四)黑色素對細胞壁之影響……………………………………………………14 五、農桿菌轉型(Agrobacterium-mediated transformation)…………………….14 (一)Agrobacterium tumefaciens致病機制……………………………………..14 (二)農桿菌轉型機制……………………………………………………………15 2-1. 植物細胞表面接受器與農桿菌之附著……………………………...16 2-2. T-complex之胞內運送………………………………………………..17 2-3. T-complex進入細胞核………………………………………………..17 2-4. T-complex與染色體接合、蛋白水解及T-DNA插入………………10 (三)真菌轉型……………………………………………………………………20 貳、材料與方法……………………………………………………………………..23 ㄧ、轉型木黴菌之選擇…………………………………………………………..23 Ⅰ、菌種來源與對峙培養測試…………………………………………………23 二、DNA level……………………………………………………………………….23 Ⅰ、菌體培養……………………………………………………………………..23 Ⅱ、基因體DNA萃取…………………………………………………………....23 Ⅲ、DNA電泳……………………………………………………………………24 Ⅳ、黑色素生合成相關基因的primer設計與PCR條件設定………………....25 Ⅴ、pGEM®-T Vector(Promega)for T-A cloning……………………………..27 Ⅵ、抽取質體DNA之方法……………………………………………………….28 Ⅶ、純化PCR產物與電泳膠中之DNA…………………………………………..30 Ⅷ、南方氏雜合.....................................................................................................30 三、RNA level……………………………………………………………………....33 Ⅰ、菌體培養…………………………………………………………………….33 Ⅱ、RNA萃取…………………………………………………………………….34 Ⅲ、電泳分析…………………………………………………………………….34 Ⅳ、DNase處理…………………………………………………………………..34 Ⅴ、One-step RT-PCR……………………………………………………………34 四、Agrobacterium mediated transformation……………………………………….35 (一)電穿孔competent cell 之製備與電穿孔操作流程………………………..36 Ⅰ、電穿孔competent cell製備…………………………………………………...36 Ⅱ、電穿孔流程…………………………………………………………………..36 (二)構築binary vector pCAM-GPD-GFP-PKS…………………………………..36 (三)構築binary vector pCAM-GPD-HYG-Tri-Scy………………………………38 (四)電穿孔傳送建構binary vector至A. tumefaciens EHA105…………………...41 (五)超寄生菌之培養…………………………………………………………......41 (六)黑色素生合成基因之轉殖…………………………………………………..42 Ⅰ、原生質體製備………………………………………………………………..42 Ⅱ、Agrobacterium-mediated transdormation…………………………………….43 Ⅲ、轉型株之檢測………………………………………………………………..43 五、轉型株生理特性檢測…………………………………………………………..44 (一)不同培養溫度對轉殖株菌落生長之影響………………………………..44 (二)不同培養溫度對轉殖株孢子發芽之影響………………………………..44 (三)水活性之耐受性……………………………………………………………..44 Ⅰ、發芽率……………………………………………………………………….44 Ⅱ、菌落生長……………………………………………………………………..45 (四)UV之耐受性……………………………………………………………….45 (五)轉型株之超寄生能力……………………………………………………..45 參、結果……………………………………………………………………………..47 一、對峙培養………………………………………………………………………..47 二、DNA level……………………………………………………………………….47 三、Agrobacterium mediated transformation………………………………………..48 (一)Construction binary vector pCAM-GPD-GFP-PKS………………………….48 (二)Construction binary vector pCAM-GPD-HYG-Tri-Scy……………………..48 (三)基因轉型……………………………………………………………………..49 3-1. Trichoderma harzianum轉型與轉型株之檢測……………………………...49 3-2.Trichoderma reesei轉型與轉型株之檢測………………………………........51 (四)轉型株之生理活性測試……………………………………………………..53 Ⅰ、Trichoderma harzianum………………………………………………………53 4-1-1.溫度對分生孢子發芽之影響……………………………………………..53 4-1-2.溫度對菌落生長之影響………………………………………………......53 4-1-3.水分活性對分生孢子發芽與菌落生長之影響....………………………..53 4-1-4.UV之耐受性………………………………………………………………54 4-1-5.超寄生能力……………………………………………………………......54 Ⅱ、Trichoderma reesei…………………………………………………………...55 4-2-1.溫度對菌落生長之影響…………………………………………………..55 4-2-2.溫度與發芽率之關係……………………………………………………..55 4-2-3.水活性與孢子發芽之關係……………………………………………..56 4-2-4.紫外線耐受性測試………………………………………………………..56 4-2-5.超寄生能力………………………………………………………………..56 肆、討 論……………………………………………………………………………58 伍、圖表……………………………………………………………………………..63 陸、參考文獻……………………………………………………………………….101 附錄一 實驗試劑配方……………………………………………………………..112 附錄二論文附圖……………………………………………………………………116 | |
dc.language.iso | zh-TW | |
dc.title | 基轉超寄生菌Trichoderma spp.黑色素生合成基因以提昇其逆境抗性與致病力 | zh_TW |
dc.title | Engineering melanin on mycoparasitic fungus Trichoderma spp. to enhance antistress tolerance and virulence for biocontrol | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳昭瑩,劉瑞芬,李佳音,許文輝,袁國芳 | |
dc.subject.keyword | 黑色素生合成基因,超寄生菌,農桿菌轉型, | zh_TW |
dc.subject.keyword | Melanin biosynthesis gene,Trichoderma,ATMT, | en |
dc.relation.page | 120 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-29 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 8.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。