Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42406
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華(Fang-Hua Chu)
dc.contributor.authorYa-Chu Hsuen
dc.contributor.author許雅筑zh_TW
dc.date.accessioned2021-06-15T01:13:15Z-
dc.date.available2009-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation王松永 (1980) 木材劣化性質之研究 (第四報) 省產木材之耐候性與耐腐性。台大與台電公司研究報告 30: 1–101。
吳季玲 (2005) 臺灣杉心材抗真菌成分之分析、鑑定及其抑菌機制。國立臺灣大學森林環境暨資源學系博士論文。
張上鎮、陳品方、張上淳 (2000) 臺灣杉精油及抽出成分之抗細菌活性。中華林學季刊 33(1): 119–125。
郭寶章 (1995) 臺灣貴重針葉五木。中華林學叢書956號,中華林學會印行。
簡世昌、郭悅雄 (2009) 台灣杉的化學成分研究回顧。化學 67(1): 33–44。
Aach H., Bode H., Robinson D.G., and Graebe J.E. (1997) ent-Kaurene synthase is located in proplastids of meristematic shoot tissues. Planta 202: 211–219.
Aharoni A., Jongsma M.A. and Bouwmeester H.J. (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends in plant science 10(12): 594–602.
Bari R. and Jones J.D.G. (2009) Role of plant hormones in plant defence responses. Plant Molecular Biology 69: 473–488.
Becerra J., Flores C., Mena J., Aqueveque P., Alarco´n J., Bittner M., Herna´ndez V., Hoeneisen M., Ruiz E., and Silva M. (2002) Antifungal and antibacterial activity of diterpenes isolated from wood extractables of Chilean Podocarpaceae. Boletı´n de la Sociedad Chilena de Quı´mica 47(2): 151–157.
Bochar D.A., Friesen J.A., Stauffacher C.V., and Todwell V.W. (1999) Biosynthesis of mevalonic acid from acetyl-CoA. In: Cane DE, ed. Isoprenoids, including carotenoids and steroids, Vol. 2. Comprehensive natural products chemistry. London, UK: Elsevier, 15–44.
Bohlmann J., Gauen G.M., and Croteau R. (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences of the United States of America 95: 4216–4133.
Byun-McKay A., Godard K.A., Toudefallah M., Martin D.M., Alfaro R., King J., Bohlmann J., and Plant A.L. (2006) Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiology 140(3): 1009–1021.
Chang C.I., Chang J.Y., Kuo C.C., Pan W.Y., Kuo Y.H. (2005) Four new 6-nor-5(6→7)abeo-abietane type diterpenes and antitumoral cytotoxic diterpene constituents from the bark of Taiwania cryptomerioides. Planta Medica 71(1): 72–76.
Chang S., Puryear J., and Cairney J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11(2): 113–116.
Chang S.T., Chen P.F., Wang S.Y., and Wu H.H. (2001a) Antimite activity of essential oils and their constituents from Taiwania cryptomerioides. Journal of Medical Entomology 38: 455–457.
Chang S.T., Cheng S.S., and Wang S.Y. (2001b) Antitermitic activity of essential oils and components from Taiwania (Taiwania cryptomerioides). Journal of Chemical Ecology 27(4): 717–724.
Chang S.T., Wang D.S.Y., Wu C.L., Shiah S.G., Kuo Y.H., and Chang C.J. (2000a) Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55(3): 227–232.
Chang S.T., Wang S.Y., and Kuo Y.H. (2003) Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). Journal of Wood Science 49: 1–4.
Chang S.T., Wang S.Y., Wu C.L., Chen P.F., and Kuo Y.H. (2000b) Comparison of the antifungal activity of cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 54: 241–245.
Chappell J. (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiology 107: 1–6.
Chen Y.Y., Chen Y.R., and Chu F.H. (2008) Molecular characterization of TcNMD3 in Taiwania cryptomerioides Hayata. Taiwan Journal of Forest Science 23: 397–408.
Cho E.M., Okada A., Kenmoku H., Otomo K., Toyomasu T., Mitsuhashi W., Sassa T., Yajima A., Yabuta G., Mori K., Oikawa H., Toshima H., Shibuya N., Nojiri H., Omori T., Nishiyama M., and Yamane H. (2004) Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. The Plant Journal 37: 1–8.
Christianson D.W. (2006) Structural Biology and Chemistry of the Terpenoid Cyclases. Chemical Reviews 106: 3412–3442.
Clarkson C., Campbell W.E., and Smith P. (2003) In vitro antiplasmodial activity of abietane and totarane diterpenes isolated from Harpagophytum procumbens (devil’s claw). Planta Medica 69: 720–724.
Croteau R., Kutchan T.M., and Lewis N.G. (2000) Natural products (Secondary metabolites). pp.1250–1318. In Buchanan B., Gruissem W., Jones R., eds, Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologist, Rockville.
Davis E.M. and Croteau R. (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In: Leeper FJ, Vederas JC, eds. Biosynthesis: aromatic polyketides, isoprenoids, alkaloids, Vol. 209.
de Jesus M.B., Zambuzzi W.F., de Sousa R.R.R., Areche C., de Souza A.C.S., Aoyama H., Schmeda-Hirschmann G., Rodrı´guez J.A., de Souza Brito A.R.M., Peppelenbosch M.P., den Hertog J., de Paula E., and Ferreira C.V. (2008) Ferruginol suppresses survival signaling pathways in androgen-independent human prostate cancer cells. Biochimie 90: 843–854.
Dhakulkar S., Ganapathi T.R., Bhargava S., and Bapat V.A. (2005) Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Science 169: 812–818.
Dudareva N., Pichersky E., and Gershenzon J. (2004) Biochemistry of plant volatiles. Plant Physiology 135: 1893–1902.
Durrant W.E. and Dong X. (2004) Systematic acquired resistance. Annual Review of Phytopathology 42: 185–209.
Garcion C., Lohmann A., Lamodière E., Catinot J., Buchala A., Doermann P., and Métraux JP. (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiology 147: 1279–1287.
Huber D.P., Ralph S., and Bohlmann J. (2004) Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers. Journal of Chemical Ecology (12): 2399–2418.
Kanno Y., Otomo K., Kenmoku H. Mitsuhashi W., Yamane H., Oikawa H., Toshima H., Matsuoka M., Sassa T., and Toyomas T. (2006) Characterization of a rice gene family encoding type-A diterpene cyclases. Bioscience, Biotechnology, and Biochemistry 70(7): 1702-1710.
Keeling C.I. and Bohlmann J. (2006a) Diterpene resin acids in conifers. Phytochemistry 67: 2415–2423.
Keeling C.I. and Bohlmann J. (2006b) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist 170: 657–675.
Keeling C.I., Weisshaar S., Lin R.P.C., and Bohlmann J. (2008) Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proceedings of the National Academy of Sciences of the United States of America 105: 1085–1090.
Koyama T. and Ogura K. (1999) Isopentenyl diphosphate isomerase and prenyltransferases. In: Cane DE, ed. Isoprenoids, including carotenoids and steroids, Vol. 2. Comprehensive natural products chemistry. London, UK: Elsevier, 69–96.
Kuo Y.H. and Chien S.C. (2001) Quinone-type podocarpanes from the bark of Taiwania cryptomerioides. Chemical and Pharmaceutical Bulletin 49(8): 1033–1035.
Kusumoto N., Ashitani T., Hayasaka Y., Murayama T., Ogiyama K., and Takahashi K. (2009) Antitermitic activities of abietane-type diterpenes from Taxodium distichum cones. Journal of Chemical Ecology in press.
Lichtenthaler H.K. (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 50: 47–65.
Lin W.H., Chang S.T., Chang S.C., and Chang H.T. (2008) Isolation of antibacterial diterpenoids from Cryptomeria japonica bark. Natural Product Research 22(12) 1085–1093.
Lin W.H., Fang J.M., and Cheng Y.S. (1995) Uncommon diterpenes with the skeleton of six-five-six fused-rings from Taiwania cryptomerioides. Phytochemistry 40(3): 871–873.
Lin W.H., Fang J.M., and Cheng Y.S. (1996) Diterpenes and related cycloadducts from Taiwania cryptomerioides. Phytochemistry 42(6): 1657–1663.
Lin Y.T., Lin Y.S., and Lo T.B. (1963) Extractive components from the heartwood of Taiwania cryptomerioides Hayata. II. The presence of Hinokiol, Savinin and α-cadino. Journal of the Chinese Chemical Society 10: 163–165.
Martin D.M., Fäldt J., and Bohlmann J. (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiology 135: 1908–1927.
Morrone D., Chambers J., Lowry L., Kim G., Anterola A., Bender K., and Peters R.J. (2009) Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS letters 583: 475–480.
Morrone D., Jin Y., Xu M., Choi S.Y., Coates R.M., and Peters R.J. (2006) An unexpected diterpene cyclase from rice: functional identification of a stemodene synthase. Archives of Biochemistry and Biophysics 448: 133–140.
Muller W.H. and Muler C.H. (1964) Volatile growth inhibitors produced by Salvia species. Bulletin of the Torrey Rotanical Club 91(4): 327–330.
Nemoto T., Cho E.M., Okada A., Okada K., Otomo K., Kanno Y., Toyomasu T., Mitsuhashi W., Sassa T., Minami E., Shibuya N., Nishiyama M., Nojiri H., and Yamane H. (2004) Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice. FEBS letters 571: 182–186.
Nicole M.C., Zeneli G., Lavallée R., Rioux D., Bauce E., Morency M.J., Fenning T.M., and Séguin A. (2006) White pine weevil (Pissodes strobi) biological performance is unaffected by the jasmonic acid or wound-induced defense response in Norway spruce (Picea abies). Tree Physiology 26(11): 1377–1389.
Ono M., Yamamoto M., Masuoka C., Ito Y., Yamashita M., and Nohara T. (1999) Diterpenes from the fruits of Vitex rotundifolia. Journal of Natural Products 62: 1532–1537.
Otomo K., Kanno Y., Motegi A., Kenmoku H., Yamane H., Mrrsuhashi W., Orkawa H., Toshima H., Itoh H., Matsuoka M., Sassa T., and Toyomasu T. (2004) Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Bioscience, Biotechnology, and Biochemistry 68(9): 2001–2006.
Peters R.J., Flory J.E., Jetter R., Ravn M.M., Lee H.J., Coates R.M., and Croteau R.B. (2000) Abietadiene synthase from grand fir (Abies grandis): characterization and mechanism of action of the “Pseudomature” recombinant enzyme. Biochemistry 39: 15592–15602.
Peters R.J., Ravn M.M., Coates R.M., and Croteau R.B. (2001) Bifunctional abietadiene synthase: free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. Journal of the American Chemical Society 123 (37): 8974–8978.
Prisic S., Xu J., Coates R.M., and Peters R.J. (2007) Probing the role of the DXDD motif in class II Diterpene cyclases. Chembiochem: a European journal of chemical biology 8: 869–874.
Roberts S.C. (2007) Production and engineering of terpenoids in plant cell culture. Nature Chemical Viology 3: 387–395.
Rodriguez J.A., Theoduloz C., Yanez T., and Becerra J., and Schmeda-Hirschmann G. (2006) Gastroprotective and ulcer healing effect of ferruginol in mice and rats: assessment of its mechanism of action using in vitro models. Life Science 78: 2503–2509.
Schilmiller A.L. and Howe G.A. (2005) Systemic signaling in the wound response. Current Opinion in Plant Biology 8: 369–377.
Smith J.L., De Morases C.M., and Mescher M.C. (2009) Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Management Science 65: 497–509.
Su Y.C., Ho C.L., and Wang E.I.C. (2006) Analysis of leaf essential oils from the indigenous five conifers of Taiwan. Flavour and fragrance journal 21: 447–452.
Swiezewska E. (2004) Ubiquinone and plastoquinone metabolism in plants. Methods in Enzymology 378: 123–131.
Tamura K., Dudley J., Nei M., and Kumar S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599.
Tedman-Jones J.D., Lei R., Jay F., Fabro G., Li X., Reiter W.D., Brearley C., and Jones J. D.G. (2008) Characterization of Arabidopsis mur3 mutations that result in constitutive activation of defence in petioles, but not leaves. The Plant Journal 56: 691–703.
Tholl D. (2006) Terpene synthases and the regulation, diversity and biologica roles of terpene metabolism. Current Opinion in Plant Biology 9(3): 297–304.
Tingey D.T., Manning M., Grothaus L.C., and Burns W.F. (1980) Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiology 65: 797–801.
Toyomasu T. (2008) Recent advances regarding diterpene cyclase genes in higher plants and fungi. Bioscience, Biotechnology, and Biochemistry 72(5): 1168–1175.
Trapp S.C. and Croteau R.B. (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158: 811–832.
Ulubelen A., Birman H., Oksuz S., Topcu G., Kolak U., Barla A., and Voelter W. (2002) Cardioactive diterpenes from the roots of Salvia eriophora. Planta Medica 68: 818–821.
Walinska K. (2004) Comparison of the influence of the polyprenol structure on model membranes. Deslination 163: 239–245
Wang S.Y. (1990) Reduction mechanical properties of seventeen Taiwan native wood species subjected to a seven-year exposure in an outdoor environment. Mokuzai Gakkaishi 36: 69–77.
Wang S.Y., Wang Y.S., Tseng Y.H., Lin C.T., and Liu C.P. (2006) Analysis of fragrance compositions of precious coniferous woods grown in Taiwan. Holzforschung 60: 528–532.
Wang S.Y., Wu J.H., Shyur L.F., Kuo Y.H., and Chang S.T. (2002) Antioxidant activity of abietane-type diterpenes from heartwood of Taiwania cryptomerioides Hayata. Holzforschung 56: 487–492.
Xu M., Wilderman P.R., and Peters R.J. (2007b) Following evolution’s lead to a single residue switch for diterpene synthase product outcome. Proceedings of the National Academy of Sciences of the United States of America 104: 7397–7401.
Xu M., Wilderman P.R., Morrone D., Xu J., Roy A., Margis-Pinheiro M., Upadhyaya N.M., Coates R.M., and Peters R.J. (2007a) Functional characterization of the rice kaurene synthase-like gene family. Phytochemistry 68: 312–326.
Yamaguchi S., Sun T., Kawaide H., and Kamiya Y. (1998) The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiology 116(4): 1271–1278.
Yatagai M., Ohira M., Ohira T., and Nagai S. (1995) Seasonal variations of terpene emission from trees and influence of temperature, light and contact stimulation on terpene emission. Chemosphere 30(6): 1137–1149.
Zhou k. and Peters R.J. (2009) Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants. Phytochemistry 70: 366–369.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42406-
dc.description.abstract臺灣杉為臺灣原生的重要經濟樹種,為了解常具生物活性的雙萜類化合物於臺灣杉內之生合成機制,本研究依據基因庫中木本植物之雙萜合成酶序列設計引子對,藉由聚合酶鏈鎖反應(polymerase chain reaction, PCR)及cDNA末端快速擴增法(rapid amplification of cDNA end, RACE)獲得2553 bp的臺灣杉雙萜合成酶之轉譯區序列,以及124 bp 5’端非轉譯區、191 bp 3’端非轉譯區,並將此基因命名為 TcDiTPS;另進行基因體徒行法(genome walking)得到TcDiTPS之啟動子序列789 bp。
另一方面,本研究以reverse transcription PCR與real-time PCR觀察TcDiTPS在臺灣杉各部位組織的RNA表現狀況,結果顯示TcDiTPS在老葉與樹皮的表現量最高;同樣的方法,亦用於觀察植物處理的部分,本研究取用2-5年生的臺灣杉,剪取其老、幼枝葉,以及22天齡的濾紙苗分別進行jasmonic acid與salicylic acid的藥劑處理,結果顯示臺灣杉幼枝葉與濾紙苗中的TcDiTPS對於salicylic acid的反應大於 jasmonic acid。而TcDiTPS在老、幼枝葉5小時內的創傷處理,皆可見到對創傷有反應,其中幼枝葉對於創傷的反應速度較老枝葉快。
本研究以hisitidine tag (His-tag) 和glutathione-s-transferase (GST)融合蛋白質系統在大腸桿菌表TcDiTPS蛋白質,但從His-tag系統僅能得到不溶於水的TcDiTPS,於GST系統可得水溶性的TcDiTPS,然而與geranylgeranyl pyrophosphate反應後並無產物,推測原因為TcDiTPS在序列上缺乏完整的DXDD motif。故乃進行阿拉伯芥及臺灣杉毛狀根的轉殖,於阿拉伯芥、臺灣杉毛狀根轉殖株與野生型的代謝物差異中,推測TcDiTPS 的產物為pimara-8(14),15-diene。
zh_TW
dc.description.abstractTaiwania cryptomerioides (Taiwania) is an economic and endemic conifer in Taiwan. To elucidate the biosynthesis of diterpeneoids which often have bioactivity in Taiwania cryptomerioides (Taiwania), a pair of primers was designed according to the diterpene synthases of woody plant, which were collected from database. Polymerase chain reaction (PCR), rapid amplification of cDNA end (RACE) and genome walking were used for getting full sequence of Taiwania diterpene synthase. The gene was named TcDiTPS. It has 2553 bp of coding region, 124 bp of 5’ untranslated region, 191 bp of 3’ untranslated region, and 789 bp of promoter.
To investigate expression level of TcDiTPS between tissues and its probably functions, reverse transcription PCR and real-time PCR were used for detection. The results showed obviously that TcDiTPS had highly expression at old leaves and bark. In treatment experiment, TcDiTPS was response to salicylic acid (SA) in both 22 days old Taiwania seedling and 2-5 years old young branches. In treatment of wounding, the expression level of TcDiTPS was increased at both young and old branches, and the response of young branches was faster than old branches.
TcDiTPS was expressed in E. coli protein expression system for pure protein. It was insoluble in hisitidine tag expression system and soluble in glutathione S-transferase expression system. However, both of them could not get the diterpenoid compound after reacting with geranylgeranyl pyrophosphate. It was presumed that loss of complete DXDD motif in TcDiTPS sequence might be the key point. Another way to find the compound of TcDiTPS was using transgenic plant. According to the different metabolites between transgenic and wild-type plant, there were found diterpenoid of pimarane type and its oxidized type in the Arabidopsis thaliana and hairy root of Taiwania transgenic line, respectively. It was speculated that compound of TcDiTPS is pimara-8(14),15-diene.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:15Z (GMT). No. of bitstreams: 1
ntu-98-R96625006-1.pdf: 9847508 bytes, checksum: 1512cb7f63d23fef599cee4795a2f9bb (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書I
誌謝II
中文摘要III
英文摘要IV
目錄VI
圖目錄X
表目錄XIII
一、前言1
二、文獻回顧3
2.1萜類合成酶3
2.1.1萜類化合物之簡介3
2.1.2萜類合成酶的種類•3
2.1.3雙萜合成酶4
2.2萜類化合物生合成路徑4
2.2.1萜類化合物之基本生合成路徑4
2.2.2雙萜類化合物之生合成路徑5
2.3萜類合成酶的演化9
2.4臺灣杉的萜類化合物10
三、材料與方法12
3.1植物試材與生長條件12
3.2臺灣杉雙萜類合成酶全長之選殖12
3.3譜系分析13
3.4基因體徒行法14
3.5蛋白質質體建構15
3.5.1 TcDiTPS全長之質體建構15
3.5.2 TcDiTPS於histidine tag蛋白質表現系統之質體建構15
3.5.3 TcDiTPS於glutathione-s-transferase蛋白質表現系統之質體建構15
3.6重組蛋白質表現16
3.6.1 histidine tag (His-tag)系統之pET21a(+) 16
3.6.2 glutathione-s-transferase (GST)融合蛋白質系統之pGEX-4T-1與pGEX-6P-1• 16
3.7聚丙烯醯胺膠體電泳17
3.8免疫雜合反應(Western blot)• 17
3.9蛋白質純化•17
3.10蛋白質酵素反應18
3.11化合物分析18
3.12植物處理19
3.12.1濾紙苗19
3.12.2樹苗19
3.13反轉錄聚合酶連鎖反應(reverse transcription PCR, RT-PCR) 19
3.14 Real-time PCR (Q-PCR) 20
3.15阿拉伯芥與臺灣杉毛狀根之基因轉殖•20
3.15.1 TcDiTPS於pBI121之質體建構20
3.15.2阿拉伯芥之轉殖與篩選20
3.15.3臺灣杉毛狀根之轉殖與篩選21
3.15.4轉殖株的基因體插入21
3.15.5轉殖株的RNA表現22
3.15.6代謝物萃取22
四、結果23
4.1臺灣杉TcDiTPS之選殖23
4.2譜系分析27
4.3 TcDiTPS之重組蛋白質表現30
4.3.1 His-tag蛋白質表現系統30
4.3.2 GST融合蛋白表現系統32
4.4 TcDiTPS之組織特異性35
4.5 TcDiTPS於不同年齡組織及不同處理下之轉錄表現37
4.5.1藥劑處理(jasmonic acid與salicylic acid處理) 37
4.5.1.1濾紙苗37
4.5.1.2樹苗37
4.5.1.2.1幼枝葉39
4.5.1.2.2老枝葉41
4.5.2 創傷處理42
4.5.2.1幼枝葉42
4.5.2.2老枝葉42
4.6阿拉伯芥的轉殖43
4.6.1轉基因併入基因體之驗證43
4.6.2 轉錄表現44
4.6.3 代謝物分析45
4.7臺灣杉毛狀根轉殖46
4.7.1轉基因併入基因體之驗證46
4.7.2 轉錄表現46
4.7.3 代謝物分析47
五、討論48
5.1 TcDiTPS的序列特徵48
5.2 TcDiTPS的產物49
5.3 TcDiTPS的譜系分析51
5.4 TcDiTPS對JA、SA及創傷處理的反應52
5.5 TcDiTPS不同組織部位表現53
六、結論55
七、參考文獻56
八、附錄65
附錄一、引子序列65
附錄二、BL21(DE3)勝任細胞的製備與轉型66
附錄三、Pine tree method for RNA 67
dc.language.isozh-TW
dc.subject合成&#37238zh_TW
dc.subject水楊酸處理zh_TW
dc.subject阿拉伯芥轉殖zh_TW
dc.subject創傷處理zh_TW
dc.subject臺灣杉zh_TW
dc.subject雙&#33820zh_TW
dc.subjectditerpene synthaseen
dc.subjectwoundingen
dc.subjecttransgenicen
dc.subjectTaiwaniaen
dc.subjectsalicylic aciden
dc.title臺灣杉雙萜合成酶基因之選殖與功能定性zh_TW
dc.titleMolecular Cloning and Characterization of Diterpene Synthase from Taiwania cryptomerioides Hayataen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孟孟孝(Menghsiao Meng),陳振榮(Zenn-Zong Chen),張淑華(Shu-Hwa Chang),王升陽(Sheng-Yang Wang)
dc.subject.keyword水楊酸處理,阿拉伯芥轉殖,創傷處理,臺灣杉,雙&#33820,合成&#37238,zh_TW
dc.subject.keywordditerpene synthase,salicylic acid,Taiwania,transgenic,wounding,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
9.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved