請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42404完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 章良渭 | |
| dc.contributor.author | Sheng-Ming Huang | en |
| dc.contributor.author | 黃聖銘 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:13:13Z | - |
| dc.date.available | 2010-07-30 | |
| dc.date.copyright | 2009-07-30 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-29 | |
| dc.identifier.citation | References
1. McMillan AG, Kendrick K, Michael JW, Aronson J, and Horton GW. Preliminary Evidence for Effectiveness of a Stance Control Orthosis. Journal of Prosthetics and Orthotics 2004; 16:6-13. 2. Kaufman KR, Irby SE, Mathewson JW, Wirta RW, Sutherland DH. Energy-Efficient Knee-Ankle Foot Orthosis: A Case Study Journal of Prosthetics and Orthotics 2004; 8:79-85. 3. Yakimovich T, Kofman J, Lemaire ED. Design and Evaluation of a Stance-Control Knee-Ankle-Foot Orthosis Knee Joint IEEE Transactions on Neural Systems and Rehabilitation Engineering 2006; 14:361-369 4. Hebert JS, Liggins AB Gait Evaluation of an Automatic Stance-Control Knee Orthosis in a Patient With Postpoliomyelitis Archives of Physical Medicine and Rehabilitation 2005;86:1676-80 5. Harrison R, Lemaire E, Jeffreys Y, Goudreau L Design and Pilot Testing of an Orthotic Stance-Phase Control Knee Joint Orthopädie-Technik Quarterly, English edition III/2001:1-4 6. Kagaya H, Shimada Y, Sato K, Obinata G An electrical knee lock system for functional electrical stimulation Archives of Physical Medicine and Rehabilitation 1996;77:870-3 7. Irby SE, Kaufman KR, Mathewson JW, and Sutherland DH Automatic control design for a dynamic knee-brace system IEEE Transactions on Rehabilitation Engineering 1999;7:135-139 8. Belforte G, Gastaldi L, Sorli M Pneumatic active gait orthosis Mechatronics 2001;11:301-323 9. Hansen AH, Childress DS, Knox EH Roll-over shapes of human locomotor systems: effects of walking speed Clinical Biomechanics 2004; 19:407-414 10. Adamczyk PG, Collins SH, Kuo AD The advantages of a rolling foot in human walking The Journal of Experimental Biology 2006;209:3953-3963 11. Gard SA, Childress DS What Determines the Vertical Displacement of the Body During Normal Walking? Journal of Prosthetics and Orthotics 2001;13:64 12. Unver NF, Tümer ST, Ozgören MK Simulation of human gait using computed torque control Technology and Health Care 2000;8: 53–66 13. Sujatha Srinivasan Low-dimensional modeling and analysis of human gait with application to the gait of transtibial prosthesis users [dissertation] Columbus,Ohio: The Ohio State University; 2007 14. McGeer T. Passive walking with knees. IEEE Conference on Robotics and Automation.1990;3:1640-1645 15. Herr H, Wilkenfeld A. User-adaptivecontrolof a magnetorheological prosthetic knee Industrial Robot: An International Journal 2003;30: 42–55 16. Kim JH, Oh JH Development of an Above Knee Prosthesis using MR Damper and Leg Simulator IEEE International Conference on Robotics and Automation 2001;4:21-26 17. Anderson FC, Goldberg SR, Pandy MG, Delp SL Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait:an induced position analysis Journal of Biomechanics 2004;37: 731–737 18. Greene PJ, Granat MH The effects of knee and ankle flexion on ground clearance in paraplegic gait Clinical Biomechanics 2000;15:536-40 19. Lucarelli PRG, Greve JMA Alteration of the load-response mechanism of the knee joint during hemiparetic gait following stroke analyzed by 3-dimensional kinematic Clinics. 2006;61:295-300 20. Ashour O, Rogers CA, Kordonsky W Magnetorheological Fluids: Materials, Characterization, and Devices Journal of Intelligent Material Systems and Structures 1996;7:123-130 21. Merati G, Sarchi P, Ferrarin M, Pedotti A, Veicsteinas A Paraplegic adaptation to assisted-walking: energy expenditure during wheelchair versus orthosis use Spinal Cord 2000;38:37 - 44 22. Beillot J, Carré F, Claire GL, Thoumie P Energy consumption of paraplegic locomotion using reciprocating gait orthosis European Journal of Applied Physiology 1996;73:376-381 23. Costigan PA,Deluzio KJ, Wyss UP Knee and hip kinetics during normal stair climbing Gait and Posture 2002;16: 31–37 24. Rasmussen AA, Smith KM, CO, LO, Damiano DL Biomechanical Evaluation of the Combination of Bilateral Stance-Control Knee-Ankle-Foot Orthoses and a Reciprocating Gait Orthosis in an Adult With a Spinal Cord Injury Prosthet Orthot. 2007;19:42–47 25. Goldfarb M and Durfee WK Design of a Controlled-BrakeOrthosis for FES-Aided Gait IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 1996 . 4:1 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42404 | - |
| dc.description.abstract | 本研究建立了一個二維步態模型, 其特色為此模型的兩個髖關節是獨立的兩個點,可以相對運動以模擬正常步態中之骨盆的旋轉和傾斜。使用追跡控制法並參考正常步態的關節角度進行模擬,並比對用此模型模擬的步態之關節角度,關節扭矩,及地面反作用力,和正常步態中的這些資料。
模擬的結果顯示: 本模擬表現了平順的步態動作以及接近正常的關節扭矩變化趨勢,但在足腫接觸(heel strike)後以及雙足承重期間(double support phase)產生了異常的關節扭矩。造成此模擬中異常關節扭矩的最大原因是來自於此模擬中過於簡單的控制方法而非模型結構本身。然而,即使本模型有些限制而且無法完美的模擬對應三維正常步態的動作,模擬的結果仍然能做為動力學上的參考。若未來能改良模擬的控制方法,模擬的結果會更接近正常數值。而在未來可以用增加拘束條件的方式讓此模型能模擬穿上矯具的步態, 使其可應用於下肢矯具之設計。 | zh_TW |
| dc.description.abstract | This study developed a 2D normal gait model that features two independent hip joints which can move relatively to each other to simulate the rotation and tilt of hip in normal gait. Tracking control fed with joint angles of normal gait data was used in simulation. The joint angles, torques, and ground reaction force of gait in simulation with this model was compared with those in normal gait data.
The results of simulation were: smooth gait movements and near normal trends of joint moments were achieved, but the abnormal joint moments require rectification after heel strike and during double support phase. The main reason for the abnormal joint moments in this simulation is the too simple control strategy rather than the structure of the model. While the model can not perfectly match real 3D human’s motions, the result of simulation can still provide a reference of kinetic. With a better control strategy, the result of simulation can be better and closer to normal gait data. In future, with different constraints setting, the model will be able to simulate orthotic gait, and than it has application on designing the orthosis for lower limbs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:13:13Z (GMT). No. of bitstreams: 1 ntu-98-R95548042-1.pdf: 693427 bytes, checksum: 62bd5cf548d8c1cc1fb853b414d3c9e4 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書……………………………………………………………1 Abstract……………………………………………………………….…………..2 中文摘要…………………………………………………………………………3 Figure………………………………………………………………………….……6 Table………………………………………………………………………….……9 Chapter 1. Introduction 1.1 Background…………………………………………………………….….10 1.2 Research motivation………………………………...………………………11 1.3 Literature Review 1.3.1 Function of joints on lower limb in gait………………………………..12 1.3.2 Stance control knee…………………………………………………….14 1.3.3 RGO with controllable knees…………………………………………15 1.3.4 Prosthetic knee……………………………………………………….18 1.3.5 Modeling………………………………………………………………20 1.4 Objective and Hypothesis ………………………………………………….25 Chapter 2. Materials and Methods 2.1 Model 2.1.1 Description of model………………………………………….………. 27 2.1.2 Mass and moment of inertia……………………………………………29 2.1.3 Motion Equations…………………………………………………….30 2.1.4 Transition 2.1.4.1 Transition of single support to double support……….……32 2.1.4.2 Transition of double support to single support ….…..……35 2.2 Computer simulation 2.2.1 Control of joint angle 2.2.1.1 Control of hip joints……………………………………………35 2.2.1.2 Control of knee and ankle joints in single support phase………36 2.2.1.3 Control of knee and ankle joints in double support phase……38 2.2.2 Gait data mapping to the model 2.2.2.1 Adjusting the positions of feet…………………………………39 2.2.2.2 Mapping joint angles……………..……………………………41 2.2.2.3 Adjustment of initial condition…..……………………………44 Chapter 3. Results 3.1 Joint angle mapping to the model………………………………………..46 3.2 Joint angle and moment……………………………………………….…47 3.3 Ground reaction force…………………………………….………….…49 3.4 Trajectory of the center of two hips………………………..….…………51 Chapter 4. Discussion 4.1 Features of the model………………………...…………………………..52 4.2 Discussion of result of simulation………………………………….…..52 4.3 Limitations of simulation…………………………………………...…..55 4.4 Future work………………………………………………………..……..56 Chapter 5. Summary.....……………………………………………………58 References……………………………………………………………...……….. 60 Appendix................................................................................................................64 | |
| dc.language.iso | en | |
| dc.subject | 步態模型 | zh_TW |
| dc.subject | 二維步態模型 | zh_TW |
| dc.subject | 步態模擬 | zh_TW |
| dc.subject | 骨盆旋轉 | zh_TW |
| dc.subject | 骨盆傾斜 | zh_TW |
| dc.subject | 正向動力學 | zh_TW |
| dc.subject | forward kinetic | en |
| dc.subject | gait model | en |
| dc.subject | 2D gait model | en |
| dc.subject | human gait simulation | en |
| dc.subject | pelvis rotation | en |
| dc.subject | pelvis tilt | en |
| dc.title | 矢狀面步態模型與模擬 | zh_TW |
| dc.title | A sagittal-plane biomechanical model of human gait and computer simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂東武,林沛群 | |
| dc.subject.keyword | 步態模型,二維步態模型,步態模擬,骨盆旋轉,骨盆傾斜,正向動力學, | zh_TW |
| dc.subject.keyword | gait model,2D gait model,human gait simulation,pelvis rotation,pelvis tilt,forward kinetic, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 677.17 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
