Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42393
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈(Lin-chi Chen)
dc.contributor.authorChung-Mu Yuen
dc.contributor.author余宗穆zh_TW
dc.date.accessioned2021-06-15T01:13:03Z-
dc.date.available2011-07-31
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citationBarton, S. C., J. Gallaway, and P. Atanassov. 2004. Enzymatic biofuel cells for implantable and microscale devices. Chemical Reviews 104(10): 4867-4886.
Brunel, L., J. Denele, K. Servat, K. B. Kokoh, C. Jolivalt, C. Innocent, M. Cretin, M. Rolland, and S. Tingry. 2007. Oxygen transport through laccase biocthodes for a membrane-less glucose/O2 biofuel cell. Electrocemistry Communications 9(2): 331-336.
Bullen, R. A., T. C. Arnot, J. B. Lakemanc, and F. C. Walsh. 2006. Biofuel cells and their development. Biosensors and Bioelectronics 21: 2015-2045.
Chen, T., S. C. Barton, G. Binyamin, Z. Gao, Y. Zhang, H. H. Kim, and A. Heller, 2001. A miniature biofuel cell. 123(35): 8630-8631.
Chiu, J. Y., C. M. Yu, M. J. Yen, and L. C. Chen. 2009. Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)Prussian blue bilayer and multi-walled carbon nanotubes. Biosensors and Bioelectronics 24(7): 2015-2020.
Clark, L. C. and C. Lyons. 1962. Electrode systems for continuous monitoring in cardiovascular surgery. The New York Academy of Sciences 102(1): 29-45.
Davis, F. S. and P. J. Higson. 2007. Biofuel cells- Recent advances and applications. Biosensors and Bioelectronics 22: 1224-1235.
Habrioux, A., G. Merle, K. Servat, K. B. Kokoh, C. Innocent, M. Cretin, S. Tingry. 2008. Concentric glucose/O2 biofuel cell. Journal of Electroanalytical Chemistry 622: 97-102.
Heller, A. 2004. Miniature biofuel cells. Physical Chemistry Chemical Physic 6: 209-216.
Heller, A. 2006. Potentially implantable miniature batteries. Analytical and Bioanalytical Chemistry 385: 469-473.
Katz, E. and I. Willner. 2003. A biofuel cell with electrocemically switchable and tunable power output. Journal of the American Chemical Society 125: 6803-6813.
Katz, E., A. N. Shipway and I. Willner. 2003. Biocemical fuel cells.1st ed., 1-27. New York: John Wiley & Sons.
Katz, E., I. Willner, and A. B. Kotlyar. 1999. A non-compartmentalizad glucose/O2 biofuel cell by bioengineered electrode surfaces. Journal of Electroanalytical Chemistry 479: 64-68.
Katz, E., I. Willner, and A. B. Kotlyar. 1999. A non-compartmentalized glucose/O2 biofuel cell by bioengineered electrode surfaces. Journal of Electroanalytical Chemistry 479: 64-68.
Kerzenmacher, S., J. Ducr eeb, R. Zengerle., and F. V. Stettena. 2008. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. Journal of Power Sources 182: 1-17.
Kim, J. and J. W. Grate. 2003. Single-enzyme nanoparticles armored by a nanometer-Scale organic/inorganic network. Nano Letters 3(9): 1219-1222.
Kim, J., H. Jia, and P. Wang. 2006. Challenges in bioctalysis for enzyme-based biofuel cells. Biotechnology Advances 24: 296-308.
Latham, R., R. Linford, and W. Schlindwein. 2004. Biomedical applications of batteries. Solid State Ionics 172: 7-11.
Mano, N., F. Mao, and A. Heller. 2003. Characteristics of a miniature compartment-less glucose/O2 biofuel cell and its operation in a living plant. Journal of the American Chemical Society 125(21): 6588-6594.
Mano, N., F. Mao, W. Shin, T. Chen, and A. Heller. 2003. A miniature biofuel cell operating at 0.78 V. Chemical Communications 4: 518-519.
Minteer, S. D., B. Y. Liaw, and M. J. Cooney. 2007. Enzyme-based biofuel cells. Current Opinion in Biotechnology 18: 228-234.
Moreno, G., F. Pariente, and E. Lorenzo. 2000. Electrocatalytic oxidation of ascorbate at glassy carbon electrodes modified with electrodeposited films derived from dihydroxybenzaldehyde isomers. Analytica Chimica Acta 42: 29–37.
Palmore, G. T. and Y. H. Kim. 1999. Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. Journal of Electroanalytical Chemistry 464: 110–117.
Pariente, F., F. Tobalina, M. Darder, E. Lorenzo, and H. D. Abrua. 1996. Electrodeposition of redox-active flms of dihydroxybenzaldehydes and related analogs and their electrocatalytic ectivity toward NADH oxidation. Analytical Chemistry 68(18): 3135-3142.
Persson, B. and L. Gorton. 1985. Biofuel anode based on D-glucose dehydrogenase, nicotinamide adenine dinucleotide and a modified electrode. Enzyme and Microbial Technology 7: 549-552.
Persson, B., L. Gorton, and G. Johansson. 1986. Biofuel anode for cell reactions involving nicotinamide adenine dinucleotide as a charge carrier. Bioelectrocem. Bioenerg 16: 479-486.
Riklin, A., E. Katz, I. Willner, A. Stocer, and A. F. Buckmann. 1995. Reconstitution of flavoenzyme-derived apoproteins with ferrocne-modified FAD cofactor yields electroactive enzymes. Nature 376: 672.
Servat, K., S. Tingry, L. Brunel, S. Querelle, M. Cretin, C. Innocnt, C. Jolivalt, and M. Rolland. 2007. Modification of porous carbon tubes with enzymes: application for biofuel cells. Journal of Applied Electrocemistry 37(1): 121-127.
Shih, Y. T. and Hsuan-Jung Huang. 1999. A creatinine deiminase modi®ed polyaniline electrode for creatinine analysis. Analytica Chimica Acta 392: 143-150.
Shukla , A. K., P. Suresh, S. Berchmans, and A. Rajendran. 2004. Biological fuel cells and their applications. Current Science 87(455): 455-568.
Swoboda B. E. P. and Vincent Massey. 1965. Purification and properties of the glucose oxidase from Aspergillus niger. The Journal of Biological Chemistry 240(5): 2209-2215.
Tsai, Y. C., S. C. Li, and S. W. Liao. 2006. Electrodeposition of polypyrrole multiwalled carbon nanotube glucose oxidase nanobiocomposite film for the detection of glucose. Biosensors and Bioelectronics 22: 495–500.
Tamaki, T., Taichi Ito, and Takeo Yamaguchi. 2007. Immobilization of hydroquinone through a spacer to polymer grafted on carbon black for a high-surface-area biofuel cell electrode. Journal of Physical Chemistry B 111: 10312-10319.
Topcagic, S. and S. D. Minteer. 2006. Development of a membraneless ethanol/oxygen biofuel cell. Electrocimica Acta 51: 2168-2172.
Tripathi V. S., V. B. Kandimalla, and H. Ju. 2006. Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite. Biosensors and Bioelectronics 21: 1529–1535.
Wang J. 2005. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1): 7-14.
Willner, B., E. Katz and I. Willner. 2006. Electrical contacting of redox proteins by nanotechnological means. Current Opinion in Biotechnology 17: 589-596.
Willner, I., E. Katz., F. Patolsky, and A. F. Buckmann, 1998. Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. Perkin Transactions 8: 1817.
Willner, I., G. Arad, and E. Katz. 1998. A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrodes. Bioelectrocem. Bioeng. 44(2): 209.
Willner, I., V. H. Shabtai, R. Blonder, E. Katz, G. Tao, A. F. Buckmann, and A. Heller. 1996. Electrical wiring of glucose oxidase by reconstitution of FAD-Modified monolayers assembled onto au-electrodes. Journal of the American Chemical Society 118(42): 10321.
Xiao, Y., F Patolsky, E. Katz, J. F. Hainfeld, and I. Willner. Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science 299(5614): 1877-1881.
Yan Y., W. Zheng, L. Su, and L. Mao. 2006. carbon-nanotube-based glucose/O2 biofuel cells. Advanced Materials 18: 2639-2643.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42393-
dc.description.abstract本研究以生物材料為基材開發高穩定性與生物相容性之酵素陽極並加入奈米碳管有效提高其對葡萄糖催化之靈敏度,製程簡便快速且節省成本。研究中生物燃料電池陰陽極組成分別選用葡萄糖氧化酵素與漆氧化酵素,陽極媒介分子為BZQ(1, 4-benzoquinone)或DHB(2, 5-dihydroxybenzaldehyde),在不同部分的實驗中有所選擇,陰極為ABTS。為瞭解酵素型生物燃料電池基本運作,本研究先以較簡便的滴乾吸附法進行酵素與媒介分子固定,吸附式酵素電極陽極與陰極分別能對葡萄糖與氧氣進行催化產生催化電流,且分別在有隔膜與無隔膜的生物燃料電池系統中以葡萄糖溶液為燃料發電。然而此電極於水溶液時酵素與媒介分子快速脫附使穩定性極差。SPCE/CNT/BSA-GOx-DHB奈米構裝酵素陽極上成功的以牛血清蛋白為基團共價鍵結帶有醛基的DHB,並以交聯反應固定葡萄糖氧化酵素,完成了高穩定性的酵素電極。利用奈米碳管修飾電極表面提高其電化學特性使其催化葡萄糖氧化的響應電流增加近100倍,在循環伏安掃描法0.5 V處的催化電流由0.5 μA/cm2上升至45 μA/cm2。而在最佳化電極製程後,酵素電極對葡萄糖的催化電流更上升至263 μA/cm2。由循環伏安掃描得到電極上有3.82×10-9 mole/cm2 DHB固定量。以流動注射式分析對葡萄糖進行感測可得到連續穩定的響應,是酵素電極穩定的證據,由不同濃度葡萄糖的催化電流回歸得KM值130.1 ± 23.60 mM,證明固定後的酵素活性依然被保存沒有被改變。而浸泡緩衝溶液保存到第七天仍可正常工作,保有85 %的催化活性。以SPCE/CNT/BSA-GOx-DHB酵素電極配合漆氧化酵素溶液陰極,組成的葡萄糖生物燃料電池在線性掃描伏安法0.25 V時有最大功率24.33 μW/cm2,開環電位0.68 V。以定電位放電測量得到的功率最大值為16.13 μW/cm2。在製備電極的交聯聚合反應中,分別加入奈米碳管與奈米金完成SPCE/CNT/CNT-BSA-GOx-DHB以及SPCE/CNT/AuNP-BSA-GOx-DHB酵素電極,因為增加了酵素電極反應層中的導電性,酵素電極在流動注射式分析的靈敏度約可增加40 %的效果。而在組成生物燃料電池時增加了大約10 %最大功率。zh_TW
dc.description.abstractIn this study, we developed a highly stable and biocompatible bioanode based on biomaterials with a simple, fast and cost-effective process, and enhanced we its catalytic activity for glucose by carbon nanotubes (CNT). In our research, glucose oxidase (GOx) and laccase were chosen as biocatalysts for the oxidation of glucose and the reduction of oxygen, respectively, in biofuel cells. The chosen mediators for the bioanodes were 1,4-benzoquinone or 2,5-dihydroxybenzaldehyde (DHB) depending on the immobilizing methods, and ABTS was the mediator for cathode. To develop a reliable enzymatic biofuel cell, we prepared enzymatic electrodes by adsorption method first, which is an easier and faster way. A biofuel cell assembled by such a bioelectrode can generate energy with a maximum power density of ca. 16 μW/cm2 for a two- compartment system, and ca. 9 μW/cm2 for a membraneless system. However, there is a serious leaching problem of enzymes and mediators, and it caused the unstability of bioelectrodes. A highly stable nano-assembled bioanode, SPCE/CNT/BSA-GOx-DHB, was developed by covalent immobilization of GOx and DHB with a cross-linked bovine serum albumin matrix. The bioanode showed reversible redox activity of DHB, and the amount of immobilized DHB on the electrode was evaluated ca. 3.82×10-9 mole/cm2. The catalytic response of glucose increased more than 100 times when we modified the bioanode with CNT, and it’s further improved by optimizing the crosslinking process. In flow inject mode, the bioanode showed steady and reproducible responses to glucose oxidation under continuous detection. The KM of bioanode was determined to be 130.1 ± 23.60 mM, which indicates that the activity of glucose oxidase is kept after crosslinking. And the bioanode also showed high storage stability, where more than 85% of activity after storage in PBS solution for 7 days. To construct the glucose/O2 biofuel cell, we assembled the SPCE/CNT/BSA-GOx-DHB anode with a laccase solution cathode. The cell’s open circuit voltage was 0.68 V and its maximum power density was 16.13 μW/cm2 at 0.2 V in pH 7 PBS at 25 ℃ with 100 mM glucose. CNT and gold nanoparticles (Au-NP) were added in the crosslinking mixture, respectively, to improve the conductivity, and it increased 10 % of the maximum power density.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:03Z (GMT). No. of bitstreams: 1
ntu-98-R96631016-1.pdf: 2174881 bytes, checksum: c353d8df7c9a4eebda7ade513aaeaddc (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 前言與研究目的 1
1-1 前言 1
1-2 研究目的 3
1-3 研究架構 4
第二章 文獻探討 5
2-1 生物燃料電池簡介 5
2-2 生物燃料電池之原理 6
2-3 生物燃料電池之酵素電極技術發展 10
第三章 研究方法 13
3-1 實驗儀器與設備 14
3-2 實驗藥品 15
3-3 電化學分析方法 17
3-3-1 三極式電化學分析系統 17
3-3-2 二極式電化學分析系統 18
3-3-2-1 開環電位測量 19
3-3-2-2 線性掃描伏安法 19
3-4 以吸附法製備之酵素電極 20
3-4-1 網印碳電極製備 20
3-4-2 以PEDOT-PSS吸附之酵素電極製備 21
3-4-3 吸附式酵素電極單極測試 21
3-4-4 吸附式酵素燃料電池測試 21
3-5 奈米構裝酵素電極之開發 22
3-5-1 奈米碳管-網印碳電極之製備 22
3-5-2 奈米構裝酵素陽極之製備 23
3-5-3 奈米構裝酵素陽極之分析 24
3-5-3-1 酵素陽極之循環伏安分析 24
3-5-3-2 酵素陽極之線性掃描伏安分析 24
3-5-3-3 流動注射式系統之電流時間法分析 24
3-5-3-4 酵素陽極之材料特性分析 25
3-5-4 奈米構裝酵素陽極效能提升評估 25
3-5-5 奈米構裝酵素陽極於生物燃料電池之應用 25
3-5-5-1 奈米構裝酵素陽極組成之生物燃料電池 25
3-5-5-2 生物燃料電池操作條件對其效能之影響 25
第四章 結果與討論 26
4-1 以吸附法製備之生物燃料電池效能分析 26
4-1-1 吸附式酵素電極工作原理 26
4-1-2 酵素電極循環伏安法分析 27
4-1-3 酵素電極對葡萄糖與氧氣之催化反應 28
4-1-4 酵素電極組成之生物燃料電池效能測試 28
4-2 奈米構裝酵素陽極特性分析 35
4-2-1 奈米構裝酵素陽極之工作原理 35
4-2-2 電極製備清洗條件決定 37
4-2-3 奈米構裝酵素陽極之電化學特性 42
4-2-4 奈米碳管對奈米構裝酵素陽極效能增進 50
4-2-5 葡萄糖氧化酵素固定方法分析 53
4-2-6 媒介分子DHB固定方法之分析 58
4-2-7 以BZQ為媒介分子之奈米構裝酵素電極 59
4-3 奈米構裝酵素陽極之效能改善 64
4-3-1 交聯環境對酵素電極之影響 64
4-3-2 酵素包覆量對電極效能之影響 67
4-3-3 DHB用量對電極效能之影響 67
4-3-4 牛血清蛋白用量對電極效能之影響 68
4-4 流動注射式分析法對奈米構裝酵素陽極之分析 72
4-5 奈米構裝酵素陽極於生物燃料電池應用 80
4-5-1 奈米酵素陽極葡萄糖燃料電池組成與功率分析 80
4-5-2 定電位放電法之功率測量 86
4-5-3 陽極環境酸鹼值對生物燃料電池之影響 89
4-6 以奈米材料進行奈米構裝酵素陽極之改善 91
第五章 結論與建議 95
5-1 結論 95
5-2 建議 98
參考文獻 99
dc.language.isozh-TW
dc.title奈米構裝酵素陽極與直接葡萄糖燃料電池應用zh_TW
dc.titleNano-Assembled Enzymatic Bioanodes and Its Application to
Direct Glucose Fuel Cells
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川(Kuo-Chuan Ho),陳世銘(Suming Chen),陳力騏(Richie Chen)
dc.subject.keyword生物燃料電池,酵素電極,葡萄糖氧化酵素,奈米碳管,奈米材料,2, 5-dihydroxybenzaldehyde,牛血清蛋白,zh_TW
dc.subject.keywordbiofuel cell,enzyme electrode,glucose oxidase,carbon nanotube,nano-materials,2, 5-dihydroxybenzaldehyde,bovine serum albumin,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved