請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42382
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹東榮 | |
dc.contributor.author | Chieh-Min Hu | en |
dc.contributor.author | 胡潔民 | zh_TW |
dc.date.accessioned | 2021-06-15T01:12:55Z | - |
dc.date.available | 2014-07-31 | |
dc.date.copyright | 2009-07-31 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-29 | |
dc.identifier.citation | Baldwin, G. C., Tashkin, D. P., Buckley, D. M., Park, A. N., Dubinett, S. M., and Roth,
M. D. (1997). Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am J Respir Crit Care Med 156, 1606-1613. Bouaboula, M., Rinaldi, M., Carayon, P., Carillon, C., Delpech, B., Shire, D., Le Fur, G., and Casellas, P. (1993). Cannabinoid-receptor expression in human leukocytes. Eur J Biochem 214, 173-180. Cabral, G. A., and Staab, A. (2005). Effects on the immune system. Handb Exp Pharmacol, 385-423. Cabral, G. A., Stinnett, A. L., Bailey, J., Ali, S. F., Paule, M. G., Scallet, A. C., and Slikker, W., Jr. (1991). Chronic marijuana smoke alters alveolar macrophage morphology and protein expression. Pharmacol Biochem Behav 40, 643-649. Capasso, R., Borrelli, F., Aviello, G., Romano, B., Scalisi, C., Capasso, F., and Izzo, A. A. (2008). Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice. Br J Pharmacol 154, 1001-1008. Carlisle, S. J., Marciano-Cabral, F., Staab, A., Ludwick, C., and Cabral, G. A. (2002). Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int Immunopharmacol 2, 69-82. Coffey, R. G., Yamamoto, Y., Snella, E., and Pross, S. (1996). Tetrahydrocannabinol inhibition of macrophage nitric oxide production. Biochem Pharmacol 52, 743-751. Correa, F., Mestre, L., Docagne, F., and Guaza, C. (2005). Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. Br J Pharmacol 145, 441-448. Crow, M. K., and Kirou, K. A. (2004). Interferon-alpha in systemic lupus erythematosus. Curr Opin Rheumatol 16, 541-547. Croxford, J. L., Pryce, G., Jackson, S. J., Ledent, C., Giovannoni, G., Pertwee, R. G., Yamamura, T., and Baker, D. (2008). Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. J Neuroimmunol 193, 120-129. Croxford, J. L., and Yamamura, T. (2005). Cannabinoids and the immune system: potential for the treatment of inflammatory diseases? J Neuroimmunol 166, 3-18. Degenhardt, L., and Hall, W. D. (2008). The adverse effects of cannabinoids: implications for use of medical marijuana. CMAJ 178, 1685-1686. Di Marzo, V., and Petrocellis, L. D. (2006). Plant, synthetic, and endogenous 64 cannabinoids in medicine. Annu Rev Med 57, 553-574. Do, Y., McKallip, R. J., Nagarkatti, M., and Nagarkatti, P. S. (2004). Activation through cannabinoid receptors 1 and 2 on dendritic cells triggers NF-kappaB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. J Immunol 173, 2373-2382. Doebis, C., Siegmund, K., Loddenkemper, C., Lowe, J. B., Issekutz, A. C., Hamann, A., Huehn, J., and Syrbe, U. (2008). Cellular players and role of selectin ligands in leukocyte recruitment in a T-cell-initiated delayed-type hypersensitivity reaction. Am J Pathol 173, 1067-1076. El-Gohary, M., and Eid, M. A. (2004). Effect of cannabinoid ingestion (in the form of bhang) on the immune system of high school and university students. Hum Exp Toxicol 23, 149-156. Guzman, M., Sanchez, C., and Galve-Roperh, I. (2002). Cannabinoids and cell fate. Pharmacol Ther 95, 175-184. Huber, G. L., Simmons, G. A., McCarthy, C. R., Cutting, M. B., Laguarda, R., and Pereira, W. (1975). Depressant effect of marihuana smoke on antibactericidal activity of pulmonary alveolar macrophages. Chest 68, 769-773. Iuvone, T., Esposito, G., De Filippis, D., Scuderi, C., and Steardo, L. (2009). Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neurosci Ther 15, 65-75. Jan, T. R., Su, S. T., Wu, H. Y., and Liao, M. H. (2007). Suppressive effects of cannabidiol on antigen-specific antibody production and functional activity of splenocytes in ovalbumin-sensitized BALB/c mice. Int Immunopharmacol 7, 773-780. Kaplan, B. L., Springs, A. E., and Kaminski, N. E. (2008). The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT). Biochem Pharmacol 76, 726-737. Kidd, P. (2003). Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8, 223-246. Klein, T. W., Newton, C. A., Nakachi, N., and Friedman, H. (2000). Delta 9-tetrahydrocannabinol treatment suppresses immunity and early IFN-gamma, IL-12, and IL-12 receptor beta 2 responses to Legionella pneumophila infection. J Immunol 164, 6461-6466. Krishnan, S., Cairns, R., and Howard, R. (2009). Cannabinoids for the treatment of dementia. Cochrane Database Syst Rev, CD007204. Lee, C. Y., Wey, S. P., Liao, M. H., Hsu, W. L., Wu, H. Y., and Jan, T. R. (2008). A comparative study on cannabidiol-induced apoptosis in murine thymocytes and EL-4 thymoma cells. Int Immunopharmacol 8, 732-740. 65 Ligresti, A., Moriello, A. S., Starowicz, K., Matias, I., Pisanti, S., De Petrocellis, L., Laezza, C., Portella, G., Bifulco, M., and Di Marzo, V. (2006). Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 318, 1375-1387. Lu, H., Kaplan, B. L., Ngaotepprutaram, T., and Kaminski, N. E. (2009). Suppression of T cell costimulator ICOS by Delta9-tetrahydrocannabinol. J Leukoc Biol 85, 322-329. Macleod, J., Oakes, R., Copello, A., Crome, I., Egger, M., Hickman, M., Oppenkowski, T., Stokes-Lampard, H., and Davey Smith, G. (2004). Psychological and social sequelae of cannabis and other illicit drug use by young people: a systematic review of longitudinal, general population studies. Lancet 363, 1579-1588. Malfait, A. M., Gallily, R., Sumariwalla, P. F., Malik, A. S., Andreakos, E., Mechoulam, R., and Feldmann, M. (2000). The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 97, 9561-9566. Maresz, K., Pryce, G., Ponomarev, E. D., Marsicano, G., Croxford, J. L., Shriver, L. P., Ledent, C., Cheng, X., Carrier, E. J., Mann, M. K., Giovannoni, G., Pertwee, R. G., Yamamura, T., Buckley, N. E., Hillard, C. J., Lutz, B., Baker, D., and Dittel, B. N. (2007). Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med 13, 492-497. Mathison, R., Ho, W., Pittman, Q. J., Davison, J. S., and Sharkey, K. A. (2004). Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats. Br J Pharmacol 142, 1247-1254. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C., and Bonner, T. I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561-564. Mbvundula, E. C., Rainsford, K. D., and Bunning, R. A. (2004). Cannabinoids in pain and inflammation. Inflammopharmacology 12, 99-114. McCoy, K. L., Gainey, D., and Cabral, G. A. (1995). delta 9-Tetrahydrocannabinol modulates antigen processing by macrophages. J Pharmacol Exp Ther 273, 1216-1223. McKallip, R. J., Lombard, C., Martin, B. R., Nagarkatti, M., and Nagarkatti, P. S. (2002). Delta(9)-tetrahydrocannabinol-induced apoptosis in the thymus and spleen as a mechanism of immunosuppression in vitro and in vivo. J Pharmacol Exp Ther 302, 451-465. Murata, Y., Shimamura, T., and Hamuro, J. (2002). The polarization of T(h)1/T(h)2 balance is dependent on the intracellular thiol redox status of macrophages due 66 to the distinctive cytokine production. Int Immunol 14, 201-212. Nagayama, T., Sinor, A. D., Simon, R. P., Chen, J., Graham, S. H., Jin, K., and Greenberg, D. A. (1999). Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19, 2987-2995. Pagotto, U., Marsicano, G., Cota, D., Lutz, B., and Pasquali, R. (2006). The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27, 73-100. Palazuelos, J., Davoust, N., Julien, B., Hatterer, E., Aguado, T., Mechoulam, R., Benito, C., Romero, J., Silva, A., Guzman, M., Nataf, S., and Galve-Roperh, I. (2008). The CB(2) cannabinoid receptor controls myeloid progenitor trafficking: involvement in the pathogenesis of an animal model of multiple sclerosis. J Biol Chem 283, 13320-13329. Perez, J. (2006). Combined cannabinoid therapy via an oromucosal spray. Drugs Today (Barc) 42, 495-503. Peterson, J. D., Herzenberg, L. A., Vasquez, K., and Waltenbaugh, C. (1998). Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci U S A 95, 3071-3076. Ramirez, B. G., Blazquez, C., Gomez del Pulgar, T., Guzman, M., and de Ceballos, M. L. (2005). Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25, 1904-1913. Robson, P. (2001). Therapeutic aspects of cannabis and cannabinoids. Br J Psychiatry 178, 107-115. Roumiantzeff, M., and Colombet, G. (1977). C. parvum skin testing antigen: study on guinea pig model. Dev Biol Stand 38, 65-72. Sacerdote, P., Martucci, C., Vaccani, A., Bariselli, F., Panerai, A. E., Colombo, A., Parolaro, D., and Massi, P. (2005). The nonpsychoactive component of marijuana cannabidiol modulates chemotaxis and IL-10 and IL-12 production of murine macrophages both in vivo and in vitro. J Neuroimmunol 159, 97-105. Srivastava, M. D., Srivastava, B. I., and Brouhard, B. (1998). Delta9 tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells. Immunopharmacology 40, 179-185. Sugiura, T., and Waku, K. (2000). 2-Arachidonoylglycerol and the cannabinoid receptors. Chem Phys Lipids 108, 89-106. Tripathi, P., Singh, B. P., and Arora, N. (2008). Mutated glutathione-S-transferase reduced airway inflammation by limiting oxidative stress and Th2 response. Free Radic Biol Med 45, 1413-1419. Wang, M., Richards, A. L., Friedman, H., and Djeu, J. Y. (1991). Selective inhibition of 67 natural killer but not natural cytotoxic activity in a cloned cell line by delta-9-tetrahydrocannabinol. J Leukoc Biol 50, 192-197. Weiss, L., Zeira, M., Reich, S., Har-Noy, M., Mechoulam, R., Slavin, S., and Gallily, R. (2006). Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity 39, 143-151. Wu, C., Yang, G., Bermudez-Humaran, L. G., Pang, Q., Zeng, Y., Wang, J., and Gao, X. (2006). Immunomodulatory effects of IL-12 secreted by Lactococcus lactis on Th1/Th2 balance in ovalbumin (OVA)-induced asthma model mice. Int Immunopharmacol 6, 610-615. Wu, H. Y., Chu, R. M., Wang, C. C., Lee, C. Y., Lin, S. H., and Jan, T. R. (2008). Cannabidiol-induced apoptosis in primary lymphocytes is associated with oxidative stress-dependent activation of caspase-8. Toxicol Appl Pharmacol 226, 260-270. Yuan, M., Kiertscher, S. M., Cheng, Q., Zoumalan, R., Tashkin, D. P., and Roth, M. D. (2002). Delta 9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol 133, 124-131. Zhuang, S. Y., Bridges, D., Grigorenko, E., McCloud, S., Boon, A., Hampson, R. E., and Deadwyler, S. A. (2005). Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology 48, 1086-1096. Zurier, R. B. (2003). Prospects for cannabinoids as anti-inflammatory agents. J Cell Biochem 88, 462-466. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42382 | - |
dc.description.abstract | Cannabidiol (CBD)已證實具有免疫抑制及免疫調節的效果,然而CBD 是否對Th1/Th2 免疫平衡具調節作用,目前未有定論。遲發性過敏反應(delayed-type hypersensitivity; DTH)為一抗原專一性T 細胞所媒介之免疫反應,其動物模式適合使用於研究CBD 對抗原專一性免疫反應及抗發炎反應的效果及機制。舉例而言,以一T 細胞抗原卵白蛋白(ovalbumin; OVA)免疫並使BALB/c 鼠致敏,觀察腳掌腫脹反應之遲發性過敏反應動物模式已廣泛用於研究專一性抗原所引起之免疫反應。本研究之目的為研究CBD 對Th1/Th2 免疫平衡及遲發性過敏反應之調節作用。本論文實驗結果指出,離體模式(in vitro)中,CBD 抑制小鼠脾臟細胞OVA 專一性IFN-γ的產量,對OVA 專一性之IL-4 則無影響。進一步於DTH 活體模式(in vivo)中,證實低劑量CBD(1 mg/kg)抑制小鼠脾臟細胞中OVA 專一性之IFN-γ的產量,對Th2 細胞激素無影響;高劑量CBD(10 mg/kg)則會促進Th2 為主之OVA 專一性IL-10 的產量。綜合以上,本研究同時於離體及活體模式中證實CBD 於Th1/Th2 之免疫調節效用為以抑制Th1 為主的細胞激素產量,進而將平衡導向Th2。進一步研究CBD 對各細胞激素上游之訊息RNA(mRNA)表現量的影響,於離體實驗中觀察到CBD 抑制IFN-γ 、促進IL-4 訊息RNA 的表現量;在活體實驗中則觀察到CBD 抑制IFN-γ 及IL-12 訊息RNA 的表現量。此外,於局部免疫反應中發現給予CBD 能抑制小鼠足墊腫脹(footpad swelling),以免疫組織化學染色之方法(immunohistochemistry stain;IHC)觀察到CBD 抑制足墊中CD3+ T 細胞及巨噬細胞的數量,同時抑制T 細胞分泌IFN-γ的功能。進一步研究CBD 調節Th1/Th2 免疫反應之機制,文獻指出抗原呈現細胞內之抗氧化劑glutathione(GSH)下降會抑制其分泌IL-12 的能力,進而抑制Th1 免疫反應使平衡朝向Th2。本實驗室先前發表之期刊論文則指出,CBD 造成免疫細胞凋亡可能與細胞內GSH 下降有關。基於此論述及本實驗結果中觀察到CBD 抑制IL-12 之訊息RNA 表現量,假設CBD 是藉由抑制抗原呈現細胞中GSH下降進而抑制Th1 免疫反應。初步實驗結果顯示抗原呈現細胞內抗氧化劑glutathione(GSH)並未受到CBD 的影響,可能與偵測GSH 下降的時間點有關,或是藉由其他機制尚待進一步釐清。 | zh_TW |
dc.description.abstract | Cannabidiol (CBD) has been shown to exhibit immunosuppressive and immunomodulatory effects. However, the effect of CBD on Th1/Th2 immunobalance remains to be fully elucidated.
As delayed-type hypersensitivity (DTH) reaction is an antigen-specific T cell-mediated immune response, DTH animal models are appropriate for studying the underlying mechanisms of CBD actions on both antigen-specific immune response and anti-inflammatory effects. For example, the foot pad swelling assessment of mice sensitized and challenged with a T-cell dependent protein antigen, ovalbumin (OVA) is a suitable animal model to investigate the underlying mechanisms of CBD-mediated effects on DTH. The present study aimed to investigate the effect of CBD on the Th1/Th2 immunobalance and DTH. The results of the present in vitro study indicated that direct CBD treatment attenuated OVA-induced IFN-γ produced by murine splenocytes, whereas OVA-induced IL-4 was not affected. Further, we showed that CBD administration induced a marked attenuation in the degree of food pad edema in a murine DTH model. Concordantly, the production of OVA-specific IFN-γ by splenocytes was significantly suppressed by CBD (1 mg/kg) administration; while CBD (10 mg/kg) increased OVA-induced IL-10 production. Collectively both in vitro and in vivo results suggest a marked suppression of CBD on Th1 immune responses, whereas the Th2 profile was relatively unaffected. Moreover, direct CBD treatment decreased IFN-γ mRNA expression, whereas IL-4 was relatively unaffected. CBD (1 mg/kg) administration showed a diminishment in IFN-γ and IL-12 mRNA expression. On the other hand, we showed that CBD diminished CD3+ T cell and F4/80+ macrophage infiltration in foot pads and inhibited the secreting of IFN-γ by T cells. Recent reports have shown that glutathione (GSH) depletion in dendritic cells shift Th1 immune response toward Th2 direction by inhibiting their ability to secret IL-12. Moreover, we previously reported that lymphocytes are sensitive to CBD-induced apoptosis possibly through the oxidative stress in parallel with GSH diminishment. Based on these reports and decreased IL-12 mRNA by CBD treatment in the present study, we further hypothesized that CBD inhibited Th1 immune response through diminishing GSH level in dendritic cells. However, CBD administration did not affect GSH level in APCs in the present study. The mechanisms of CBD immunomodulatory effect shifting Th1 immune response toward Th2 remain to be further investigated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:12:55Z (GMT). No. of bitstreams: 1 ntu-98-R96629032-1.pdf: 7531762 bytes, checksum: 6572d040a4ae8d56c32c24e194906887 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 致謝 ······························································································································· i
中文摘要 ····················································································································· iii Abstract ............................................................................................................................ v Contents ......................................................................................................................... vii Figures ............................................................................................................................. x Table .............................................................................................................................. xii Chapter 1. Background and literature review .................................................................. 1 1.1 Marijuana and cannabinoid background................................................................ 1 1.2 Cannabinoid receptors ......................................................................................... 1 1.3 Cannabinoid agonists ............................................................................................. 3 1.4 Clinical application and therapeutic potential of cannabinoids ............................. 4 1.5 Immunosuppression and immunomodulation by cannabinoids ............................ 5 1.5.1 Immunosuppression by cannabinoids ............................................................. 5 1.5.2 Immunocytes modulation by cannabinoids .................................................... 6 1.5.3 In vivo immunomodulatory effects of cannabinoids ...................................... 8 1.6 Th1/Th2 differentiation ......................................................................................... 9 1.7 Delayed-type hypersensitivity (DTH) reactions .................................................. 11 Chapter 2. Introduction .................................................................................................. 14 Chapter 3. Materials and methods ................................................................................. 17 3.1 Chemicals and reagents ....................................................................................... 17 3.2 Animals ................................................................................................................ 18 3.3 In vitro studies ..................................................................................................... 18 3.3.1 Ovalbumin (OVA) sensitization protocol .................................................. 18 viii 3.3.2 Treatment of splenocytes with CBD in vitro .............................................. 18 3.4 In vivo studies ...................................................................................................... 20 3.4.1 Protocol of CBD administration, and OVA sensitization and challenge ... 20 3.4.2 Culture of splenocytes ................................................................................ 20 3.5 Measurement of cell viability by MTT assay ...................................................... 20 3.6 Measurement of cytokines by ELISA ................................................................. 22 3.7 RNA isolation ...................................................................................................... 22 3.8 Reverse transcriptase-polymerase chain reaction (RT-PCR) .............................. 23 3.9 Necropsy and foot pad tissue preparation ........................................................... 24 3.10 Immunohistochemistry staining ........................................................................ 24 3.11 Quantification of the inflammatory cells of IHC............................................... 25 3.12 Isolation of dendritic cells ................................................................................. 25 3.13 Measurement of GSH levels by CMF-DA staining .......................................... 26 3.14 Analysis of dendritic cells phagocytic ability.................................................... 26 3.15 Statistical analysis ............................................................................................. 26 Chapter 4. Results 4.1 The in vitro effect of CBD on the T cells ............................................................ 27 4.1.1 The in vitro effect of CBD on splenocyte viability ...................................... 27 4.1.2 The in vitro effect of CBD on antigen-stimulated cytokine production ....... 29 4.1.3 The in vitro effect of CBD on antigen-stimulated IFN-γ and IL-4 mRNA expression ...................................................................................................... 31 4.2 The in vivo effect of CBD on T cells ................................................................... 33 4.2.1 The in vivo effect of CBD on the viability and antigen-stimulated cytokine production by splenocytes ........................................................................... 33 ix 4.2.2 The in vivo effect of CBD on antigen-stimulated IFN-γ and IL-12 mRNA expression by splenocytes ........................................................................... 35 4.3 The effect of CBD on DTH reactions .................................................................. 37 4.3.1 The effect of CBD foot pad swelling............................................................ 37 4.3.2 The in vivo effect of CBD on inflammatory cell infiltration in the foot pads of OVA-sensitized and challenged mice ......................................................... 39 4.3.3 The in vivo effect of CBD on the types of immune cells infiltrated into the mouse foot pads ............................................................................................ 42 4.3.4 The in vivo effect of CBD on the expression of IFN-γ in the mouse foot pads ...................................................................................................................................... 47 4.3.5 The in vivo effect of CBD on the expression of IL-10 in the mouse foot pads ...................................................................................................................................... 50 4.4 The effect of CBD on phagocytic ability of dendritic cells ................................. 53 4.5 The effect of CBD on intracellular glutathione of DCs....................................... 55 Chapter 5. Discussion .................................................................................................... 57 Reference ....................................................................................................................... 63 | |
dc.language.iso | en | |
dc.title | 大麻二酚對小鼠Th1/Th2免疫平衡及遲發性過敏反應之免疫調節作用 | zh_TW |
dc.title | Effects of cannabidiol on Th1/Th2 immunobalance and delayed-type hypersensitivity in ovalbumin-sensitized BALB/c mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 龐飛,蔡清恩,楊繼,何素鵬 | |
dc.subject.keyword | 大麻二酚,免疫調節,抗原專一性,T 細胞,細胞激素,抗氧化劑, | zh_TW |
dc.subject.keyword | cannabidiol,immunomodulatory,antigen-specific,T cell,cytokine,glutathione, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-29 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 7.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。