Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42378
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平
dc.contributor.authorChia-Ming Liuen
dc.contributor.author劉家銘zh_TW
dc.date.accessioned2021-06-15T01:12:52Z-
dc.date.available2009-08-12
dc.date.copyright2009-08-12
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citationS.Mick, J. Wilson, and P. Franzon, “4 Gbps high density AC coupled interconnection,” in Proc. IEEE Custom Integrated Circuits Conf., May 2002, pp. 133-140.
R. J. Drost, R. D. Hopkins, R. Ho, and I. E. Sutherland. “Proximity communication,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1529-1535, Sep. 2004.
Lei Luo, John M. Wilson, Stephen E. Mick, Jian Xu, Liang Zhang, and Paul D. Franzon, “3Gb/s AC Coupled Chip-to-Chip Communication Using a Low Swing Pulse Receiver”, IEEE JSSCC, VOL. 41, NO. 1, 2006.
J. Kim, I. Verbauwhede, and M.-C. F. Chang, “A 5.6-mW 1-Gb/s/pair pulsed signaling transceiver for a fully AC coupled bus,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1331–1340, Jun. 2005.
John Wilson, Stephen Mick, Jian Xu, Lei Luo, Salvatore Bonafede, Alan Huffman, Richard LaBennett, Paul D. Franzon, “Fully Integrated AC Coupled Interconnect Using Buried Bumps”, IEEE Transactions On Advanced Packaging, VOL.30, NO.2, 2007.
S. A. Kuhn, M. B. Kleiner, R. Thewes, and W. Weber, “Vertical signal transmission in three-dimensional integrated circuits by capacitive coupling,”in Proc. IEEE Int. Symp. Circuits Syst., vol. 1, Apr. 1995, pp.37–40.
M. Hossain, A. C. Causone,” A 14-Gb/s 32mW AC coupled receiver in 90nm CMOS,” Symposium on VLSI circuits digest of technical papers, pp.32-33, Jun. 2007.
Galal, S., and Razavi, B., “10-Gbps limiting amplifier and laser/modulator driver in 0.18-mm CMOS technology”, IEEE J. Solid-State Circuits, 2003, 38, (12), pp. 2168–2146.
Holdenried, C.D., Lynch, M.W., and Haslett, J.W., “Modified CMOS Cherry-Hooper amplifiers with source follower feedback in 0.35 mm technology”. Proc. European Solid-State Circuits Conf., September 2003, pp. 553–556.
C. Hermans, Michiel S. J. Steyaert, “A High-Speed 850-nm Optical Receiver Front-End in 0.18-μm CMOS”, IEEE J. Solid-State Circuits, vol. 41, NO. 7, July 2006.
Huei-Yan Huang, Jun-Chau Chien, Liang-Hung Lu. “A 10-Gb/s Inductorless CMOS Limiting Amplifier With Third-Order Interleaving Active Feedback”, IEEE J. Solid-State Circuits, vol. 42, NO. 5, May 2007.
Sapumal B. Wijeratne, N. Siddaiah, Sanu K. Mathew, Mark A. Anders, Ram K. Krishnamurthy, J. Anderson, M. Ernest, M. Nardin, “A 9-GHz 65nm Intel Pentium 4 Processor Integer Execution Unit”, IEEE J. Solid-State Circuits, vol. 42, no. 1, January 2007.
Sean Kao, Radu Zlatanovici, Borivoje Nikolic, “A 240ps 64b Carry-Lookahead Adder in 90nm CMOS”, IEEE ISSCC, pp. 1735 – 1744, Feb. 8, 2006.
Sanu K. Mathew, Mark A. Anders, Brad Bloechel, Trang Nguyen, Ram K. Krishnamurthy, Shekhar Borkar, “A 4-GHz 300-mW 64-bit Integer Execution ALU With Dual Supply Voltage in 90-nm CMOS”, IEEE J. Solid-State Circuits, vol. 40, no. 1, January 2005.
G. Hinton, M. Upton, David J. Sager, D. Boggs, Douglas M. Carmean, Patrice Roussel,Terry I. Chappell, Thomas D. Fletcher, Mark S. Milshtein, M. Sprague, S. Samaan, R. Murray, “A 0.18-μm CMOS IA-32 Processor With A 4-GHz Integer Execution Unit”, IEEE J. Solid-State Circuits, vol. 36, no. 11, Nov. 2001.
Sanu Mathew, Mark Anders, Ram K. Krishnamurthy, Shekhar Borkar, “A 4-GHz 130-nm Address Generation Unit With 32-bit Sparse-Tree Adder Core”, IEEE J. Solid-State Circuits, vol. 38, no. 5, May 2003.
S. Knowles, “A family of adders,” in Proc. 14th IEEE Symp. Computer Arithmetic, Apr. 1999, pp. 277–281.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42378-
dc.description.abstract本篇論文針對90nm製程,提出適合先進製程的改良式前綴式加法器,使資料運算更為同步。並使用動態骨牌邏輯實現以提升速度以及利用基板偏壓技術降低其消耗功率。此加法器在2009年3月已使用UMC 90nm製造而成,操作頻率為5.4GHz,運算延遲為185ps,消耗功率為45mW。
  本篇論文亦提出了一精準的量測架構,能準確的量測加法器的運算延遲,其中包含了一個鎖相迴路(PLL)與一個延遲選擇器,鎖相迴路(PLL)為整個系統之時脈產生器,輸出訊號為5.4GHz之週期訊號,延遲選擇器被使用在輸入及輸出之間,可選擇多個不同延遲時間,藉由不同相位取得正確的輸出訊號,精確的量測其運算延遲。
另外,本篇論文亦描述了一個高速且低功率損耗電容耦合傳送接收器。這種電容耦合式傳送接收器可將NRZ的資料轉換成低振幅的脈衝波,經由傳輸線傳送後,於接收端再將此脈衝波還原成NRZ的資料。在傳送端使用互補式傳輸線為基礎的鎖相迴路來提供時脈,並使用差動的傳送器來降低雜訊。而接收端電路使用被動但低功率損耗的等化器來彌補高頻的損失,以及使用電流模式的Sense Amplifier將脈衝波回復成NRZ的資料,最後利用改良的Cherry-Hooper放大器將波形放大。
最後實際以TSMC CMOS 0.18um製程下線,使用2^15-1的PRBS來給資料,將資料透過75fF電容經由10公分的FR4傳輸線來傳輸,最大可到達6Gb/s的傳輸速度,而誤碼率小於10-12。
zh_TW
dc.description.abstractWith the continuous expansion in digital information, microprocessor plays a more important role in this world than before. In microprocessor, ALU is a key component does all the information processing. In this work, an arithmetic logic system architecture which includes a high performance adder unit and the I/O interface has been proposed.
In this work, a 64-bit address generation unit designed for 5.4-GHz and with 185ps latency operation in 1.2-V UMC 90-nm technology is proposed. This adder utilizes three complex domino logics stages with lower stage logic effort and well arranged interconnect routing type and thus improving 70% cross couple capacitance. Moreover, it uses Multi-Vt method to reduce power consumption. And the testing circuit is designed to providing an efficient way to estimate the performance of the adder under different conditions is proposed here too. The adder dissipates 42mW and the core area is 200μm *900μm.
A low-power high-speed I/O interfaced circuit name by AC Coupled Interconnect targeting for data transmission between two operation units is proposed. The circuit uses low-swing pulse signals and the voltage mode driver to reduce power consumption. Using this receiver, 6Gb/s chip-to-chip communication is demonstrated through wire-bonded ACCI channel with 74fF coupling capacitors, across 10-cm FR4 couple microstrip lines. The chip was fabricated in TSMC 0.18-μm technology. The driver and receiver dissipate 13.5mW and it can achieve error-free operation with 6Gb/s 215-1 PRBS data over 10-cm FR4 channels.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:12:52Z (GMT). No. of bitstreams: 1
ntu-98-R96943152-1.pdf: 4701525 bytes, checksum: 2639c33d3a9fdd254b53b12f6b58d37f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 1
Introduction 1
1.1 Motivation 1
1.2 Organization 3
Chapter 2 5
Background knowledge 5
2.1 Introduction to Adder 5
2.1.1 Conventional Adders 5
2.1.2 Prefix Adders 9
2.1.3 Summary 24
2.2 Background Knowledge of AC Coupled Interconnect 24
2.2.1 Circuit Structure and Transient Waveforms of ACCI 25
2.2.2 Frequency Response and Power Issue 27
2.2.3 Valid Range of Coupling Capacitance 30
Chapter 3 35
Our Proposed Adder 35
3.1 Introduction 35
3.2 Architecture of our Adder (Uniform Prefix Tree Adder) 35
3.3 Propagate and Generate Signal Generating Stage 41
3.4 Carry-Merge Logic 42
3.4.1 Domino Logic v.s. Static CMOS Logic 43
3.4.2 Foot Domino Logic v.s. Footless Domino Logic 45
3.5 Carry-Sum Signal Generating Stage 46
3.6 Clock Distribution 47
3.6.1 Domino Logic Timing Analysis 47
3.6.2 Clock Tree Implementation 51
3.7 Layout Routing Style 54
Chapter 4 57
Multi-Vt Technology 57
4.1 Introduction 57
4.2 Threshold Voltage and Body Effect 57
4.3 Delay and Power Issue 59
4.4 Substrate-Bias Implementation 60
4.5 Simulation Results 62
Chapter 5 64
Testing Circuits for Adder 64
5.1 Introduction 64
5.2 Testing Structure 65
5.2.1 TSPC Flip-Flop 67
5.2.2 Phase-Locked Loop 68
5.2.3 Skew Controller 71
Chapter 6 73
ACCI Implementation 73
6.1 Voltage-Mode Driver 73
6.2 Low-Swing Pulse Receiver 75
6.3 Limiting Amplifier 78
6.4 Summary 85
Chapter 7 87
Experimental Results 87
7.1 Adder 87
7.2 AC Coupled Interconnect 91
Chapter 8 94
Conclusion 94
Bibliography 96
dc.language.isoen
dc.subject電容耦合zh_TW
dc.subject加法器zh_TW
dc.subject多位元前綴式zh_TW
dc.subject動態骨牌邏輯zh_TW
dc.subject低擺幅脈衝接收器zh_TW
dc.subjectcapacitive couplingen
dc.subjectaddersen
dc.subjectdomino logicsen
dc.subjecthigh-speed integrated circuitsen
dc.subjectlogic efforten
dc.subjectAC coupled interconnecten
dc.title超高速低功率64位元骨牌邏輯加法器及電容耦合傳輸架構之系統zh_TW
dc.titleLow Power and High Speed 64-bit Domino Logic Adder and AC Coupled Transceiver Systemen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李泰成,林宗賢
dc.subject.keyword加法器,多位元前綴式,動態骨牌邏輯,電容耦合,低擺幅脈衝接收器,zh_TW
dc.subject.keywordadders,domino logics,high-speed integrated circuits,logic effort,AC coupled interconnect,capacitive coupling,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2009-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved