Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42324
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成
dc.contributor.authorCheng-Fei Yuen
dc.contributor.author余承霏zh_TW
dc.date.accessioned2021-06-15T01:00:05Z-
dc.date.available2013-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citation[1] B. B. Goldberg and J. S. Lehman, 'SOME OBSERVATIONS ON THE PRACTICAL USES OF A-MODE ULTRASOUND,' American Journal of Roentgenology, vol. 107, p. 198, 1969.
[2] B. Ploeckinger-Ulm, M. R. Ulm, A. Lee, A. Kratochwil, and G. Bernaschek, 'Fetus-Placenta-Newborn: Antenatal depiction of fetal digits with three-dimensional ultrasonography,' American Journal of Obstetrics & Gynecology, vol. 175, p. 571, 1996.
[3] V. P. Jackson, 'The role of US in breast imaging,' Radiology, vol. 177, pp. 305-11, 1990.
[4] D. A. Christensen, Ultrasonic bioinstrumentation: New York: Wiley, 1988.
[5] A. T. Kerr and J. W. Hunt, 'A method for computer simulation of ultrasound Doppler color flow images--I. Theory and numerical method,' Ultrasound Med Biol, vol. 18, pp. 861-72, 1992.
[6] D. H. Turnbull, B. G. Starkoski, K. A. Harasiewicz, J. L. Semple, L. From, A. K. Gupta, D. N. Sauder, and F. S. Foster, 'A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging,' Ultrasound Med Biol, vol. 21, pp. 79-88, 1995.
[7] S. G. Ye, K. A. Harasiewicz, C. J. Pavlin, and F. S. Foster, 'Ultrasound characterization of normal ocular tissue in thefrequency range from 50 MHz to 100 MHz,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 42, pp. 8-14, 1995.
[8] G. Cloutier, G. Soulez, S. D. Qanadli, P. Teppaz, L. Allard, Z. Qin, F. Cloutier, and L. G. Durand, 'A multimodality vascular imaging phantom with fiducial markers visible in DSA, CTA, MRA, and ultrasound,' Medical Physics, vol. 31, p. 1424, 2004.
[9] C. R. Hill and G. R. ter Haar, 'Review article: high intensity focused ultrasound--potential for cancer treatment,' British Journal of Radiology, vol. 68, p. 1296, 1995.
[10] R. S. Gilmore, K. C. Tam, J. D. Young, D. R. Howard, and E. Almond, 'Acoustic Microscopy from 10 to 100 MHz for Industrial Applications [and Discussion],' Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), vol. 320, pp. 215-235, 1986.
[11] C. B. Burckhardt, 'Speckle in Ultrasound B-Mode Scans,' Sonics and Ultrasonics, IEEE Transactions on, vol. 25, pp. 1-6, 1978.
[12] T. A. Tuthill, R. H. Sperry, and K. J. Parker, 'Deviations from Rayleigh statistics in ultrasonic speckle,' Ultrason Imaging, vol. 10, pp. 81-9, 1988.
[13] L. Weng, J. M. Reid, P. M. Shankar, and K. Soetanto, 'Ultrasound speckle analysis based on the K distribution,' The Journal of the Acoustical Society of America, vol. 89, p. 2992, 1991.
[14] P. M. Shankar, J. M. Reid, H. Ortega, C. W. Piccoli, and B. B. Goldberg, 'Use of non-Rayleigh statistics for the identification of tumors inultrasonic B-scans of the breast,' Medical Imaging, IEEE Transactions on, vol. 12, pp. 687-692, 1993.
[15] V. M. Narayanan, P. M. Shankar, and J. M. Reid, 'Non-Rayleigh statistics of ultrasonic backscattered signals,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 41, pp. 845-852, 1994.
[16] P. M. Shankar, R. Molthen, V. M. Narayanan, J. M. Reid, V. Genis, F. Forsberg, C. W. Piccoli, A. E. Lindenmayer, and B. B. Goldberg, 'Studies on the use of non-Rayleigh statistics for ultrasonic tissue characterization,' Ultrasound Med Biol, vol. 22, pp. 873-82, 1996.
[17] R. C. Molthen, P. M. Shankar, J. M. Reid, F. Forsberg, E. J. Halpern, C. W. Piccoli, and B. B. Goldberg, 'Comparisons of the Rayleigh and K-distribution models using in vivo breast and liver tissue,' Ultrasound Med Biol, vol. 24, pp. 93-100, 1998.
[18] P. M. Shankar, 'A General Statistical Model for Ultrasonic Backscattering from Tissues,' ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, p. 727, 2000.
[19] P. M. Shankar, 'Estimation of the Nakagami parameter from log-compressed ultrasonic backscattered envelopes (L),' The Journal of the Acoustical Society of America, vol. 114, p. 70, 2003.
[20] P. M. Shankar, 'A compound scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 50, pp. 339-343, 2003.
[21] P. H. Tsui and C. C. Chang, 'Imaging Local Scatterer Concentrations by the Nakagami Statistical Model,' Ultrasound in Medicine & Biology, vol. 33, pp. 608-619, 2007.
[22] M. S. Hughes, 'A comparison of Shannon entropy versus signal energy for acoustic detection of artificially induced defects in Plexiglas,' The Journal of the Acoustical Society of America, vol. 91, p. 2272, 1992.
[23] M. S. Hughes, 'Analysis of digitized waveforms using Shannon entropy,' The Journal of the Acoustical Society of America, vol. 93, p. 892, 1993.
[24] Y. Zimmer, S. Akselrod, and R. Tepper, 'The distribution of the local entropy in ultrasound images,' Ultrasound Med Biol, vol. 22, pp. 431-9, 1996.
[25] R. Smolikova, M. P. Wachowiak, G. D. Tourassi, A. Elmaghraby, and J. M. Zurada, 'Characterization of ultrasonic backscatter based on generalized entropy,' Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proceedings of the Second Joint, vol. 2, 2002.
[26] R. Smolikova, M. P. Wachowiak, and J. M. Zurada, 'An information-theoretic approach to estimating ultrasound backscatter characteristics,' Computers in Biology and Medicine, vol. 34, pp. 355-370, 2004.
[27] M. S. Hughes, J. N. Marsh, C. S. Hall, D. Savery, G. M. Lanza, and S. A. Wickline, 'Characterization of digital waveforms using thermodynamic analogs: applications to detection of materials defects,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 52, pp. 1555-1564, 2005.
[28] L. Luo, J. Molnar, H. Ding, X. Lv, and G. Spengler, 'Ultrasound absorption and entropy production in biological tissue: a novel approach to anticancer therapy,' Diagnostic Pathology, vol. 1, p. 35, 2006.
[29] K. D. Wallace, J. N. Marsh, S. L. Baldwin, A. M. Connolly, R. Keeling, G. M. Lanza, S. A. Wickline, and M. S. Hughes, 'Sensitive Ultrasonic Delineation of Steroid Treatment in Living Dystrophic Mice with Energy-Based and Entropy-Based Radio Frequency Signal Processing,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp. 2291-2299, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42324-
dc.description.abstract傳統的超音波灰階影像,俗稱B-mode(Brightness-mode),已廣泛的運用在臨床醫學,主要功用在於定性呈現生物組織結構形態與輪廓。然而,超音波灰階影像的亮度會受到許多因素影響,如系統增益、動態範圍、與操作者經驗等。此外,為避免斑點效應(speckle effect)影響影像品質,通常在現有醫用超音波系統中,較微弱的超音波逆散射訊號會被濾除,但需注意的是,超音波逆散射訊號與組織內部散射子的特性,例如大小、形狀、密度、濃度等有關,因此散射訊號的濾除會使得灰階影像無法提供散射子定量訊息,這對於疾病早期偵測,或者組織良惡性判定有某程度上的困難。
基於超音波逆散射訊號的本質為隨機訊號,因此在過去許多研究者皆使用統計模型來描述超音波逆散射訊號的機率密度函數,以輔助灰階影像於臨床診斷之不足。這些統計模型主要包括Rayleigh、K、homodyned K、generalized K、以及Nakagami模型。其中又以Nakagami統計模型最能描述不同種類的超音波散射分佈。但在某些情況下,如訊號存在非線性效應、或者訊號經過非線性處理後,逆散射訊號便不再遵守Nakagami統計分佈,這限制了統計模型使用上的廣泛性與通用性。
為解決此問題,本研究提出以超音波逆散射訊號的訊息理論熵來定量組織特性。訊息理論熵的優勢在於它本身不受限於訊號僅能遵循某種特定的統計模式的條件下,也能反映出組織內部的散射子特性。為探索這個想法,我們以仿體實驗方式來進行驗證。首先進行超音波影像掃描系統之架設,此系統掛載不同頻率之超音波換能器進行影像掃描。之後我們製作不同散射子濃度之仿體,並使用系統對仿體進行資料擷取與灰階成像。同時對影像包絡訊號進行訊息理論熵的計算,採用三種訊息理論熵(i.e. Shannon, Renyi, Tsallis entropy),以探討訊息理論熵隨散射子濃度變化之趨勢與結果,並與Nakagami統計模型做比較,評比利用不同方法判讀散射子濃度的優勢與缺點,以及這些方法與超音波頻率之間影響為何,整理出無本質斑點效應與具本質斑點效應的仿體之特性化結果。
實驗結果顯示,利用Nakagami統計模型定量仿體組織的結果顯示,在低頻聚焦式探頭下能顯示的動態範圍最佳,但是隨著頻率提高時,相同濃度範圍下所能顯示的動態範圍會縮小,主要原因在於訊號的機率分佈會隨著頻率增加往pre-Rayleigh分佈靠近。而以訊息理論熵來定量組織特性的結果,以Tsallis entropy在不同組織特性 鑑別濃度的效果最佳,除了具有高動態範圍優勢,隨著頻率提高能增加對應散射子濃度的線性程度,且在具本質斑點效應的影響下,仍然可以應用在濃度較高的組織上。
zh_TW
dc.description.abstractThe conventional ultrasound gray scale image the so-called B-mode image (Brightness-mode), has been widely applied in the clinical medicine. Its primary purpose is to qualitatively present the structure, shape and contour of the biological tissue. However, the brightness of the B-mode image is would be affected by many factors, such as system gain, dynamic range, operator’s experience and etc. Besides, in order to avoid the speckle effect on the image quality, the weaker backscattering signal is typically removed in the existing medical ultrasound systems. Note that ultrasound backscattering signal is related to the properties of scatterers in tissues, such as, size, shape, density and concentration. Therefore, the filtering of scattering signal makes the B-mode image difficult to provide the quantitative information of scatterers, which in turn influences the early detection and classification on benign and malignant tissues.
Based upon the fact that the essence of ultrasound backscattering signal belongs to random signals, many researchers explored using statistical models to describe the probability density function of backscattering echoes to complement the deficiency of B-scan. The statistical models mainly include Rayleigh, K, homodyned K, generalized K, and Nakagami, in which Nakagami statistical model can encompass all scattering conditions in ultrasound. But, under certain circumstances, the backscattered statistics do not obey the Nakagami distribution anymore once there are some nonlinear effects or processing on the backscattering signals. This limits the practical applications of statistical models.
In order to solve the problem, this study proposed using information-theoretic entropy of ultrasonic backscattering signal to quantify the properties of tissue. The superiority of information-theoretic entropy lies in that it can reflect the scatterer properties without any limitation due to statistical models on the backscattering echoes. To explore the idea, we carried out experiments on phantoms. First of all, we set up ultrasound image scanning system, which holds the ultrasonic transducer with different frequencies for image scanning. Subsequently, we made phantoms with different scattering concentrations and deal with data acquisition and gray image formation. Meanwhile, we use the envelope signals to calculate three information-theoretic entropies (i.e. Shannon, Renyi, Tsallis.) to explore the entropies as a function of scatterer concentrations. The results between using Nakagami models and entropies will be compared and discuss the effects of ultrasonic frequencies and background speckles on the performance of entropy to characterize tissues.
The show the Nakagami parameter has a better dynamic range to detect the variation of scatterer concentration when low frequency focused transducer was used. With the increase in frequency, the dynamic range decreased in the same range of scatterer concentration as frequency increases. The main reason is that the probability distribution of signal will be close to pre-Rayleigh distribution with increasing the ultrasound frequency. Tsallis entropy has an outstanding performance to quantify the scatterer concentration. Besides a high dynamic range, its relationship with scatterer concentration would become more linear by increasing ultrasonic frequency. Meanwhile, under the influence of background speckle effect, it also can be applied to tissues with higher scatterer concentration.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:00:05Z (GMT). No. of bitstreams: 1
ntu-97-R95543064-1.pdf: 3272632 bytes, checksum: bd8ffc962a643eb6bd8907984d7ad76a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 i
Abstract iii
目錄 v
圖索引 vii
表索引 ix
致謝 x
第一章 緒論 1
1.1 前言 1
1.2 研究背景 3
1.3 文獻回顧 4
1.3.1 超音波逆散射訊號統計模型 4
1.3.2 超音波訊息理論熵 6
1.4 研究目的 8
第二章 理論基礎 10
2.1 超音波簡介 10
2.1.1 聲波傳遞的基本原理 10
2.1.2 聲速與衰減 12
2.1.3 反射與折射 13
2.1.4 超音波探頭構造與聲場 14
2.1.5 超音波影像之軸向解析度 16
2.1.6 超音波影像之側向解析度 18
2.2 超音波散射分析 20
2.2.1 超音波散射現象 20
2.2.2 分析單一散射子之散射現象 20
2.2.3 分析多散射子之散射現象 22
2.3 逆散射統計模型 25
2.3.1 Rayleigh統計分佈 25
2.3.2 Rician統計分佈 26
2.2.3 K統計分佈 27
2.3.4 Nakagami統計分佈 28
2.4 訊息理論熵原理 29
2.4.1 訊息理論熵之基本原理 29
2.4.2 訊息理論熵之計算 30
第三章 實驗材料與方法 31
3.1 超音波影像系統架構 31
3.1.1 馬達掃描方式 33
3.1.2 程式設計流程與操作介面 34
3.2 實驗仿體製作 36
3.2.1 無本質斑點效應之仿體 37
3.2.2 存在本質斑點效應之仿體 37
3.3 數據處理步驟 40
3.3.1 超音波逆散射訊號處理 40
3.3.2 Nakagami參數計算 40
3.3.3 訊息理論熵計算 41
第四章 實驗結果與討論 42
4.1 無本質斑點效應之仿體 42
4.1.1 B-mode影像與訊號機率密度函數 42
4.1.2 定量參數分析 53
4.1.3 討論 59
4.2 存在本質斑點效應之仿體 62
4.2.1 B-mode影像與訊號機率密度函數 62
4.2.2 定量參數分析 66
4.2.3 討論 70
第五章 結論與未來展望 71
5.1 結論 71
5.2 未來展望 72
參考文獻 73
dc.language.isozh-TW
dc.title使用超音波訊息理論熵定量生物組織特性zh_TW
dc.titleTissue Characterization by Information-theoretic Entropy of Ultrasound Signalen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee崔博翔,朱錦洲,張建中,蘇正瑜
dc.subject.keyword組織特性,本質斑點效應,逆散射訊號,Nakagami統計模型,訊息理論熵,zh_TW
dc.subject.keywordCharacterization of tissue,Intrinsic speckle effect,Backscattering condition,Nakagami statistical model,Information-theoretic entropy,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved