Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42308
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorKai-Neng Chuangen
dc.contributor.author莊凱能zh_TW
dc.date.accessioned2021-06-15T00:59:05Z-
dc.date.available2016-08-19
dc.date.copyright2011-08-19
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citation[1] Tseng, C. W., Yang, J. C., Chen, C. N., Huang, H. C., et al., Identification of 14-3-3beta in human gastric cancer cells and its potency as a diagnostic and prognostic biomarker. Proteomics 2011.
[2] Ferlay, J., Shin, H. R., Bray, F., Forman, D., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010, 127, 2893-2917.
[3] Jemal, A., Bray, F., Center, M. M., Ferlay, J., et al., Global cancer statistics. CA Cancer J Clin 2011, 61, 69-90.
[4] Hohenberger, P., Gretschel, S., Gastric cancer. Lancet 2003, 362, 305-315.
[5] Cho, W. C., Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer 2007, 6, 25.
[6] Thompson, I. M., Pauler, D. K., Goodman, P. J., Tangen, C. M., et al., Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med 2004, 350, 2239-2246.
[7] Chen, R., Pan, S., Brentnall, T. A., Aebersold, R., Proteomic profiling of pancreatic cancer for biomarker discovery. Mol Cell Proteomics 2005, 4, 523-533.
[8] Hammarstrom, S., The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 1999, 9, 67-81.
[9] Yaffe, M. B., How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 2002, 513, 53-57.
[10] Bridges, D., Moorhead, G. B., 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005, 2005, re10.
[11] Margolis, S. S., Walsh, S., Weiser, D. C., Yoshida, M., et al., PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. EMBO J 2003, 22, 5734-5745.
[12] Dent, P., Jelinek, T., Morrison, D. K., Weber, M. J., Sturgill, T. W., Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science 1995, 268, 1902-1906.
[13] Braselmann, S., McCormick, F., Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J 1995, 14, 4839-4848.
[14] Mhawech, P., 14-3-3 proteins--an update. Cell Res 2005, 15, 228-236.
[15] Porter, G. W., Khuri, F. R., Fu, H., Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Semin Cancer Biol 2006, 16, 193-202.
[16] Han, D. C., Rodriguez, L. G., Guan, J. L., Identification of a novel interaction between integrin beta1 and 14-3-3beta. Oncogene 2001, 20, 346-357.
[17] Takihara, Y., Matsuda, Y., Hara, J., Role of the beta isoform of 14-3-3 proteins in cellular proliferation and oncogenic transformation. Carcinogenesis 2000, 21, 2073-2077.
[18] Qi, W., Liu, X., Qiao, D., Martinez, J. D., Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. Int J Cancer 2005, 113, 359-363.
[19] Liu, M. Y., Cai, S., Espejo, A., Bedford, M. T., Walker, C. L., 14-3-3 interacts with the tumor suppressor tuberin at Akt phosphorylation site(s). Cancer Res 2002, 62, 6475-6480.
[20] Leu, J. I., Pimkina, J., Frank, A., Murphy, M. E., George, D. L., A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009, 36, 15-27.
[21] Johnson, G. L., Lapadat, R., Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911-1912.
[22] Karin, M., Nuclear factor-kappaB in cancer development and progression. Nature 2006, 441, 431-436.
[23] Romashkova, J. A., Makarov, S. S., NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999, 401, 86-90.
[24] Liu, Z. G., Hsu, H., Goeddel, D. V., Karin, M., Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996, 87, 565-576.
[25] Hippo, Y., Taniguchi, H., Tsutsumi, S., Machida, N., et al., Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res 2002, 62, 233-240.
[26] Jaattela, M., Escaping cell death: survival proteins in cancer. Exp Cell Res 1999, 248, 30-43.
[27] Yi, X., Luk, J. M., Lee, N. P., Peng, J., et al., Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Mol Cell Proteomics 2008, 7, 315-325.
[28] Wadhwa, R., Takano, S., Kaur, K., Deocaris, C. C., et al., Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 2006, 118, 2973-2980.
[29] Chung, Y. M., Yoo, Y. D., Park, J. K., Kim, Y. T., Kim, H. J., Increased expression of peroxiredoxin II confers resistance to cisplatin. Anticancer Res 2001, 21, 1129-1133.
[30] Nylandsted, J., Gyrd-Hansen, M., Danielewicz, A., Fehrenbacher, N., et al., Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 2004, 200, 425-435.
[31] Garrido, C., Brunet, M., Didelot, C., Zermati, Y., et al., Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 2006, 5, 2592-2601.
[32] Mosser, D. D., Caron, A. W., Bourget, L., Meriin, A. B., et al., The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 2000, 20, 7146-7159.
[33] Schmitt, E., Maingret, L., Puig, P. E., Rerole, A. L., et al., Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Res 2006, 66, 4191-4197.
[34] Sun, Y., Yi, H., Zhang, P. F., Li, M. Y., et al., Identification of differential proteins in nasopharyngeal carcinoma cells with p53 silence by proteome analysis. FEBS Lett 2007, 581, 131-139.
[35] Zylicz, M., King, F. W., Wawrzynow, A., Hsp70 interactions with the p53 tumour suppressor protein. EMBO J 2001, 20, 4634-4638.
[36] Fantl, W. J., Muslin, A. J., Kikuchi, A., Martin, J. A., et al., Activation of Raf-1 by 14-3-3 proteins. Nature 1994, 371, 612-614.
[37] Roberts, R. L., Mosch, H. U., Fink, G. R., 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell 1997, 89, 1055-1065.
[38] Tzivion, G., Luo, Z., Avruch, J., A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 1998, 394, 88-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42308-
dc.description.abstract胃癌是一種普遍且高死亡率的癌症,導致其病患死亡率居高不下的原因主要就是因為缺乏有效的早期診斷工具,而目前可做為胃癌早期診斷的生物標記尚有待開發。因此,我們期待透過腫瘤蛋白質體學技術找出胃癌早期診斷的生物標記分子。在我們初步的研究中,透過二維膠體電泳和質譜分析方法,在比較不同人類胃癌細胞株AGS、N87、TSGH及SC-M1後鑑定出26個顯著不同表現的蛋白質。其中,在蛋白質圖譜中所鑑定到的14-3-3β蛋白在較惡性的胃癌細胞株TSGH及SC-M1中的表現比不具有轉移性的AGS及N87細胞株要高。同時,我們分析了14-3-3β蛋白在腫瘤組織表現量比在正常組織中表現多。進一步我們分析14-3-3β在血液中的表現,也得到相似的結果。綜合以上結果,說明了14-3-3β蛋白可能是具有潛力的早期診斷之生物標記分子。 延續之前的結果,本研究進一步探討14-3-3β在胃癌可能調控的機制。首先,我們在胃癌細胞株中大量表現14-3-3β蛋白,再利用蛋白質體方法分析受其影響的蛋白質。藉由分析這些蛋白質在癌症上所涉及的機制以及他們之間的蛋白質網路關係,我們建立了14-3-3β蛋白在胃癌上可能的調控路徑。我們發現14-3-3β與一系列熱休克蛋白質(Heat shock protein)的啟動有密切關聯,透過這個網路所引發的訊息傳遞也與細胞的癌化有直接的影響。未來,針對這個調控路徑的驗證與更深入的研究將可為日後胃癌的治療提供更明確的目標。zh_TW
dc.description.abstractGastric cancer is the second leading cause of cancer death worldwide. Lacking of early detection marker for this disease is the major reason of such high death rate. In our previous study, we found that 14-3-3β protein levels were evaluated in tumor tissues compared with normal tissues, and serum 14-3-3β levels were also significantly higher than control samples. Higher serum 14-3-3β levels correlated with reduced patient sur-vival rate. On the other hand, over-expression of 14-3-3β enhanced growth, invasiveness and migratory abilities of tumor cells. These results suggest that 14-3-3β is a potential biomarker for detection and prognosis in gastric cancer and regulates aggressive phenotypes of tumor cells. To further elucidate the regulatory mechanism of 14-3-3β on tumor progression, we integrated proteomics and network analyses to construct 14-3-3β-regulated protein-protein interaction networks and their enriched biological functions. Key functional relationships of the networks were revealed, including cell death, apoptosis and phosphorylation. Interestingly, we identified a series of heat shock proteins and other apoptosis related proteins, which had been reported to be involved in malignant progression. These proteins were significantly up-regulated in 14-3-3β-over-expressing tumor cells, and the related protein-protein interaction network is highly connected with cell proliferation and apoptosis, indicating that 14-3-3β could affect growth of tumor cells through regulating these proteins expression. In conclusion, 14-3-3β has a high oncogenic potential in gastric cancer and affects tumor progression through its regulating network.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:59:05Z (GMT). No. of bitstreams: 1
ntu-100-R98b43013-1.pdf: 18360279 bytes, checksum: 102c2709a502bdcbf7df93e29f5f121e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 #
致謝 I
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 VIII
表目錄 IX
附錄目錄 X
第 1 章 簡介 1
1.1 胃癌 1
1.2 生物標記 1
1.2.1 現有生物標記 1
1.2.2 現有胃癌生物標記 2
1.3 14-3-3β蛋白質 2
1.3.1 以14-3-3β蛋白質做為新的胃癌生物標記 2
1.3.2 14-3-3蛋白質簡介 3
1.3.3 14-3-3β蛋白質在癌症上的已知功能 3
1.4 研究動機 3
第 2 章 實驗材料與方法 4
2.1 構築pcDNA3.1(+)-14-3-3β表現質體 4
2.1.1 目標基因引子設計 4
2.1.2 細胞總RNA萃取 4
2.1.3 反轉錄聚合酶鏈鎖反應(Reverse Transcription PCR) 4
2.1.4 聚合酶鏈鎖反應放大目標基因(PCR amplification) 5
2.1.5 聚合酶鏈鎖反應產物純化(PCR clean up) 6
2.1.6 1 % 瓊脂膠體製備及核酸電泳 6
2.1.7 質體抽取與保存 6
2.1.8 雙重限制酶切反應(Double Digestion) 7
2.1.9 接合反應(Ligation) 7
2.1.10 質體轉型作用(Plasmid Transformation) 8
2.1.11 菌落聚合酶鏈鎖反應(Colony PCR) 8
2.2 細胞培養 9
2.2.1 AGS 細胞株 9
2.2.2 細胞培養液RPMI-1640配置 9
2.2.3 細胞解凍 9
2.2.4 細胞繼代培養 9
2.2.5 細胞冷凍保存 10
2.2.6 細胞計數 10
2.3 細胞轉染(Cell Transfection) 10
2.4 PES加藥實驗 10
2.5 收取細胞總蛋白質 11
2.6 分離細胞質與細胞核蛋白質 11
2.7 蛋白質濃度測定 11
2.8 二維膠體電泳(Two-Dimensional Electrophoresis) 12
2.8.1 一維等電點電泳(Isoelectronic Focusing, IEF) 12
2.8.2 SDS二維聚丙烯醯胺膠片鑄造 12
2.8.3 二維電泳(SDS-PAGE) 13
2.8.4 膠片固定、染色 13
2.8.5 蛋白質圖譜比對 14
2.9 西方墨點法(Western Blot) 14
第 3 章 結果 16
3.1 細胞株篩選 16
3.2 於AGS細胞株中大量表現14-3-3β蛋白質 16
3.3 二維膠體電泳分離所有受14-3-3β蛋白質影響表現的蛋白質 16
3.4 質譜鑑定出27個表現量有明顯差異的蛋白質點 17
3.5 利用BINGO將所鑑定到的蛋白質進行功能特性分群 17
3.6 使用Ingenuity Pathway Analysis (IPA) 建構14-3-3β蛋白質可能的蛋白質調控網路 17
3.7 以西方墨點法驗證14-3-3β蛋白質與HSP70表現量有明顯正相關性 18
3.8 14-3-3β的表現量與p21、p53等細胞週期調控基因表現量無顯著相關 18
3.9 利用藥物2-phenylethynesulfonamide (PES) 抑制HSP70活性對MAPK 及Akt pathway的影響 19
3.10 14-3-3β大量表現使細胞核中轉錄因子NF-κB增加 19
第 4 章 結論與討論 20
圖 23
表 39
附錄 43
參考文獻 47
dc.language.isozh-TW
dc.title利用蛋白質體學及網路分析探討14-3-3β蛋白在胃癌細胞中的功能角色zh_TW
dc.titleElucidating the Role of 14-3-3β in Gastric Cancer Cells Using Proteomics and Network Analysisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃宣誠(Hsuan-Cheng Huang),陳水田(Shui-Tein Chen),李岳倫(Yueh-Luen Lee)
dc.subject.keyword胃癌,14-3-3beta,蛋白質體學,zh_TW
dc.subject.keywordgastric cancer,proteomics,14-3-3bea,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2011-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
17.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved