Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如
dc.contributor.authorCheng-Tao Linen
dc.contributor.author林政道zh_TW
dc.date.accessioned2021-06-15T00:58:53Z-
dc.date.available2010-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citationChapter 1
[1] L. T. Canham, “Silicon quantum wire array fabrication by eletrochemical and chemical dissolution of wafer,” Appl. Phys. Lett., vol. 57, pp. 1046 -1048, 1990.
[2] K. A. Littau, P. J. Szajowski, A. J. Muller, A. R. Kortan, and L. E. Brus, “A Luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction,” J. Phys. Chem., vol. 97, pp. 1224-1230, 1993.
[3] A. Perez-Rodriguez, O. Gonzalez-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada and A. Claverie, “White luminescence from Si+ and C+ ion-implanted SiO2 films,” J. Appl. Phys., vol. 94, pp. 254-262, 2003.
[4] D. Pacifici, E. C. Moreira, G. Franzo, V. Martorino and F. Priolo, “Defect production and annealing in ion-irradiated Si nanocrystals,” Phys. Rev. B, vol. 65, 144109, 2002.
[5] K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim and G. Y. Sung “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett., vol. 86, 071909, 2005.
[6] S. V. Deshpande,E. Gulari, S. W. Brown and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys., vol. 77, pp. 6534-6541, 1995.
[7] V. A. Volodin, M. D. Efremov, V. A. Gritsenko, “Raman spectroscopy investigation of silicon nanocrystals formation in silicon nitride films,” Solid State Phenomena, vol. 57, pp. 501 – 506, 1997.
[8] Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett., vol. 83, pp. 3474-3476, 2003.
[9] C. H. Cho, B. H. Kim, T. W. Kim, S. J. Park, N. M. Park, G. Y. Sung, “Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film,” Appl. Phys. Lett., vol. 86, 143107, 2005.
[10] A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernandez, G. Contreras-Puente and J. C. Alonso, “Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3,” Nanotechnology, vol. 18, 155704, 2007.
[11] N. M. Park, T. S. Kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett., vol. 78, pp. 2575-2577, 2001.
[12] C. Huh, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett., vol. 88, 131913, 2006.
[13] K. H. Kim, J. H. Shin, N. M. Park, C. Huh, T. Y. Kim, K. S. Cho, J. C. Hong and G. Y. Sung,
“Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett., vol. 89, 191120, 2006.
[15] N. M. Park, S. H. Jeon, H. D. Yang, H. Hwang, S. J. Park and S. H. Choi, “Size-dependent charge
storage in amorphous silicon quantum dots embedded in silicon nitride,” Appl. Phys. Lett., vol. 83, pp. 1014-1016, 2003.
Chapter 2
[1] L. T. Canham, “Silicon quantum wire array fabrication by eletrochemical and chemical dissolution of wafer,” Appl. Phys. Lett., vol. 57, pp. 1046 -1048, 1990.
[2] K. A. Littau, P. J. Szajowski, A. J. Muller, A. R. Kortan, and L. E. Brus, “A Luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction,” J. Phys. Chem., vol. 97, pp. 1224-1230, 1993.
[3] A. Perez-Rodriguez, O. Gonzalez-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada and A. Claverie, “White luminescence from Si+ and C+ ion-implanted SiO2 films,” J. Appl. Phys., vol. 94, pp. 254-262, 2003.
[4] D. Pacifici, E. C. Moreira, G. Franzo, V. Martorino and F. Priolo, “Defect production and annealing in ion-irradiated Si nanocrystals,” Phys. Rev. B, vol. 65, 144109, 2002.
[5] D. J. DiMaria, J. R. Kirtley, E. J. Pakulis, D. W. Dong, T. S. Kuan, F. L. Pesavento, T. N. Theis, J. A.
Cutro, S. D. Brorson, “Electroluminescence studies in silicon dioxide films containing tiny
siliconislands,” J. Appl. Phys., vol. 56, pp. 401-416, 1984.
[6] V. A. Gritsenko, “Structure and Electronic Properties of Amorphous Insulators in Silicon MIS Structures,” Science, Novosibirsk, 1993.
[7] V. A. Volodin, M. D. Efremov, V. A. Gritsenko, “Raman spectroscopy investigation of silicon nanocrystals formation in silicon nitride films,” Solid State Phenomena, vol. 57, pp. 501 – 506, 1997.
[8] Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett., vol. 83, pp. 3474-3476, 2003.
[9] H. S. Kwack, Y. Sun, Y. H. Cho, “Anomalous temperature dependence of optical emission in visible-light-emitting amorphous silicon quantum dots,” Appl. Phys. Lett., vol. 83, pp. 2901-2903, 2003.
[10] Z. T. Kang, B. K. Wagner, J. Parrish, D. Schiff , C. J. Summers, “Enhancement of white luminescence from SiNx films by surface roughening,” Nanotechnology, vol. 18, 415709, 2007.
[11] C. H. Cho, B. H. Kim, T. W. Kim, S. J. Park, N. M. Park, G. Y. Sung, “Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film,” Appl. Phys. Lett., vol. 86, 143107, 2005.
[12] S. V. Deshpande,E. Gulari, S. W. Brown and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys., vol. 77, pp. 6534-6541, 1995.
[13] Y. Xin, Y. Shi, H. Liu, Z. X. Huang, L. Pu, R. Zhang and Y.D. Zheng “Effect of NH3 flow rate on growth, structure and luminescence of amorphous silicon nitride films by electron cyclotron resonance plasma,” Thin solid films, vol. 516, pp. 1130-1136, 2008.
[14] D.B. Williams, C.B. Carter, “Transmission Electron Microscopy,” Plenum, New York, pp. 351-354, 1996.
[15] A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernandez, G. Contreras-Puente and J. C. Alonso, “Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3,” Nanotechnology, vol. 18, 155704, 2007.
Chapter 3
[1] L. Y. Chen, W. H. Chen and F. C. N. Hong “Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix,” Appl. Phys. Lett., vol. 86, 193506, 2005.
[2] R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma and Ling Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett., vol. 91, 111104, 2007.
[3] W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, X. H. Zhang, G. Q. Lo and D. L. Kwongfff,
“Thin Amorphous Si/Si3N4-Based Light-Emitting Device Prepared With Low Thermal Budget,” IEEE Electron Device Letters, vol. 29, No. 3, 2008.
[4] W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo and D. L. Kwong, “Red light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett., vol. 90, 221103, 2007.
[5] M. Jamei, F. Karbassian, S. Mohajerzadeh, Y. Abdi, M. D. Robertson and S. Yuill, “The Preparation of Nanocrystalline Silicon by Plasma-Enhanced Hydrogenation for the Fabrication of Light-Emitting Diodes,” IEEE Electron Device Letters, vol. 28, NO. 3, 2007
[6] L. D. Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson and Giulia Galli, “Light-Emitting Silicon Nanocrystals and Photonic Structures in Silicon Nitride,” IEEE Journal of selected topics in quantum electronics, vol. 12, NO. 6, 2006.
[7] B. H. Kim, C. H. Cho, S. J. Park, N. M. Park and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett., vol. 89, 063509, 2006.
[8] N. M. Park, T. S. Kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett., vol. 78, pp. 2575-2577, 2001.
[9] L. Y. Chen, W. H. Chen and Franklin C. N. Hong, “Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix,” Appl. Phys. Lett., vol. 86, 193506, 2005.
[10] R. Huang, K. J. Chen,P. G. Han, H. P. Dong, X. Wang, D. Y. Chen, W. Li, J. Xu, Z. Y. Ma and X. F. Huang, “Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices,” Appl. Phys. Lett., vol. 90, 093515, 2007.
[11] K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett., vol. 86, 071909, 2005.
Chapter 4
[1] C. Huh, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett., vol. 88, 131913, 2006.
[2] K. H. Kim, J. H. Shin, N. M. Park, C. Huh, T. Y. Kim, K. S. Cho, J. C. Hong and G. Y. Sung,
“Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett., vol. 89, 191120, 2006.
[3] G.-R. Lin and C. J. Lin, “Improving carrier transport and light emission in a silicon-nanocrystal
based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett., vol. 91, 093122, 2007.
[4] N. M. Park, S. H. Choi, S. J. Park, “Electron charging and discharging in amorphous silicon quantum dots embedded in silicon nitride,” Appl. Phys. Lett., vol. 81, pp. 1092-1094, 2002.
[5] N. M. Park, S. H. Jeon, H. D. Yang, H. Hwang, S. J. Park and S. H. Choi, “Size-dependent charge
storage in amorphous silicon quantum dots embedded in silicon nitride,” Appl. Phys. Lett., vol. 83, pp. 1014-1016, 2003.
[6] H. Lim, J. A. Baglio, N. Decola, H. L. Park J. I. Lee and K. N. Kang, “Interface properties and capacitance-voltage behavior of indium phosphide metal-insulator-semiconductor prepared by plasma-assisted oxidation,” J. Appl. Phys., vol. 69, pp. 7918-7920, 1991.
[7] M. Yang, T. P. Chen, J. I. Wong, C. Y. Ng, Y. Liu, L. Ding, S. Fung, A. D. Trigg, C. H. Tung and C. M. Li, “Charge trapping and retention behaviors of Ge nanocrystals distributed in the gate oxide near the gate synthesized by low-energy ion implantation,” Appl. Phys. Lett., vol. 101, 124313, 2007.
[8] Y. Shi, K. Saito, H. Ishikuro and T. Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals,” J. Appl. Phys., vol. 84, pp. 2358-2360, 1998.
[9] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett., vol. 68, pp. 1377-1379, 1996.
[10] C. H. Cho, B. H. Kim, T. W. Kim, S. J. Park, N. M. Park and Gun-Yong Sung, “Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film,” Appl. Phys. Lett., vol. 86, 143107, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42305-
dc.description.abstract在本論文中,我們研究含奈米矽晶的富矽氮化矽薄膜的光電特性及材料分析。我們使用電漿輔助化學氣相沉積通以矽甲烷與氮氣或氨氣成長富矽氮化矽薄膜,經退火後形成富含奈米矽晶的氮化矽層。我們得到氨氣是比氮氣更適合做為反應的氣體。我們藉由改變氨氣流量,成功地調變了不同矽氮比的富矽氮化矽薄膜。在拉塞福背向散射實驗中,我們證實增加氨氣的流量,則氮化矽薄膜的氮矽比逐漸提高,從富矽氮化矽直到接近純氮化矽。此現象也可由傅立葉紅外線光譜儀中,薄膜中的矽-氫鍵吸收峰值往長波數移動來證實。而藉由穿透式電子顯微鏡,可觀察隨著氨氣增加,奈米矽晶尺寸由大到小,而由量子局限效應光激螢光範圍可從675nm藍移至385nm。其中在氨氣流量為200sccm時光激螢光達到最強,此時的材料化學組態為SiN1.16。
此外,本論文也討論富矽氮化矽發光二極體的電激螢光特性。由電壓-電流曲線可量測極低的導通電壓3伏,其因為金屬與介電層的位障極低之緣故。然而光功率卻只有45奈米瓦。因此我們探討材料本身電荷的儲存效應。由電容-電壓量及保持時間測得,相較於富矽氧化矽元件,富矽氮化矽元件中電子電洞不易儲存於奈米矽晶中,此即造成電子電洞對在奈米矽晶裡的復合機率偏低之因素。
zh_TW
dc.description.abstractIn this thesis, we study optoelectrical characteristics and material analysis of silicon-rich silicon nitride film (SRSN) with silicon nanocrystals (Si-ncs). The SRSN films are deposited by plasma enhanced chemical vapor deposition (PECVD) using SiH4 and N2 or NH3. Si-ncs embedded in Si3N4 would form after high temperature annealing. We conclude that NH3 is the better reactant gas instead of N2. The SRSN films with different composition are deposited by detuning NH3 fluence. From results by means of RBS, we gain the ratio of N/Si raise with NH3 increasing, and SRSN changes from Si-rich SiNx to pure Si3N4. This phenomenon is proved by means of FTIR, the absorption peak corresponds Si-H stretching mode shift toward long wavenumber. From images of HRTEM, we observe that the size of Si-ncs decrease with NH3 increasing. The photoluminescence (PL) ranges from 675 nm to 385 nm by quantum confinement effect (QCE). The strongest PL reveals from SiN1.16.
In addition, we discuss the electroluminescence of SRSN LED. The low turn-on voltage is 3 V because of low barrier between metal and dielectric layer. However, the optical power just reaches 45 nW. As the result, we study the charge storage effect in SRSN LED. In capacitance-voltage and retention time measurement, we conclude electron and hole are hardly trapped in Si-ncs so that the efficiency of e-h recombination is low, compared to Si-rich silicon oxide (SRSO) LED.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:58:53Z (GMT). No. of bitstreams: 1
ntu-97-R95941078-1.pdf: 1329825 bytes, checksum: 628922eccbf4aa9b6fb8d5cd97961903 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Characteristic of Si nanocrystals in silicon-rich silicon nitride film 1
1.2 Motivation 2
1.3 Organization of the Thesis 3
Chapter 2 Wavelength tunable photoluminescence of Si-rich SiNx grown by PECVD with Argon diluted SiH4 4
2.1 Introduction 4
2.2 Experiments 5
2.3 Results and Discussions 6
2.3.1 PL of Si-rich SiNx with N2 6
2.3.2 RBS of PECVD-grown Si-rich SiNx with N2 8
2.3.3 RBS of Si-rich SiNx with NH3 9
2.3.4 TEM and FTIR analysis of Si-rich SiNx with NH3 10
2.3.5 PL of Si-rich SiNx with NH3 12
2.4 Summary 15
Chapter 3 Electrical properties of Si-rich SiNx MISLED 30
3.1 Introduction 30
3.2 Experiments 31
3.3 Results and Discussions 32
3.3.1 Voltage-current characteristic of Si-rich SiNx LED 32
3.3.2 Optical power-current characteristic of Si-rich SiNx LED 33
3.3.3 Transport mechanism of carriers in Si-rich SiNx LED 34
3.4 Summary 35
Chapter 4 The trapping effect of electron and hole in Si-nc embedded in Si3N4 39
4.1 Introduction 39
4.2 Experiments 40
4.3 Results and Discussions 41
4.3.1 Capacitance-Voltage characteristics of SiOx devices 41
4.3.2 Capacitance-Voltage characteristics of SiNx devices 42
4.3.3 Retention time of electrons and holes of SRSO and SRSN LEDs 43
4.4 Summary 45
Chapter 5 Conclusion 50
REFERENCE 53
作者簡介 58
Publication List 59
dc.language.isozh-TW
dc.subject導通電壓zh_TW
dc.subject可調變波長zh_TW
dc.subject電荷儲存效應zh_TW
dc.subject保持zh_TW
dc.subject奈米矽晶zh_TW
dc.subject富矽氮化矽zh_TW
dc.subjectretention timeen
dc.subjectSi-ncsen
dc.subjectsilicon rich silicon nitrideen
dc.subjecttunable wavelengthen
dc.subjectturn-on voltageen
dc.subjectcharge storage effecten
dc.title電漿輔助化學氣相沉積含奈米矽晶之富矽氮化矽金氧半發光二極體特性研究zh_TW
dc.titleCharacteristics of Metal-Nitride-Semiconductor Light Emitting Diode Made on PECVD Grown Si-rich SiNx Film with Si Nanocrystalsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何志浩,陳啟昌,陳敏璋
dc.subject.keyword奈米矽晶,富矽氮化矽,可調變波長,導通電壓,電荷儲存效應,保持,zh_TW
dc.subject.keywordSi-ncs,silicon rich silicon nitride,tunable wavelength,turn-on voltage,charge storage effect,retention time,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved