請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42270完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞 | |
| dc.contributor.author | Sen-ming Hsu | en |
| dc.contributor.author | 許森明 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:56:39Z | - |
| dc.date.available | 2012-08-08 | |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-04 | |
| dc.identifier.citation | [1] Alagappan, G., X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, “Symmetry properties of two-dimensional anisotropic photonic crystals,” J. Opt. Soc. Am. A, vol. 23, pp. 2002--2013, 2006.
[2] Argyris, J. H., “Energy theorems and structural analysis,” Aircraft Eng., vol. 26, pp. 347--356, 1954. [3] Baba, T., N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett., vol. 35, pp. 654--655, 1999. [4] Barkou, S. E., J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett., vol. 24, pp. 46--48, 1999. [5] Benisty, H., “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys., vol. 79, pp. 7483--7492, 1996. [6] Birks, T. A., P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett., vol. 31, pp. 1941--1943, 1995. [7] Bise, R. T., R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Con. Tech. Dig., pp. 466--468, 2002. [8] Brechet, F., J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol., vol. 6, pp. 181--191, 2000. [9] Brown, E. R., C. D. Parker, and E. Yablonovitch, “Radiation properties of a planar antenna on a photonic-crystal substrate,” J. Opt. Soc. Am. B, vol. 10, pp. 404--407, 1993. [10] Busch, K., and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett., vol. 83, pp. 967--970, 1999. [11] Cavendish, J. C., D. A. Field, and W. H. Frey, “An approach to automatic three-dimensional finite element mesh generation,” Int. J. Numer. Meth. Eng., vol. 21, pp. 329--347, 1985. [12] Chiang, P. J., C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E, vol. 75, 026703, 2007. [13] Chiang, P. J., C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron., vol. 44, pp. 56--66, 2008. [14] Courant, R., “Variational methods for the solution of problems of equilibrium and vibrations,” Bull. Amer. Math. Soc., vol. 49, pp. 1--23, 1943. [15] Cregan, R. F., B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, vol. 285, pp. 1537--1539, 1999. [16] Eggleton, B. J., P. S. Westbrook, R. S. Windeler, S. Sp$ddot{a}$lter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett., vol. 24, pp. 1460--1462, 1999. [17] Haus, H. A., Waves and Fields in Optoelectronics (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984). [18] Hsu, S. M., Full-Vectorial Finite Element Beam Propagation Method Based on Curvilinear Hybrid Edge/Nodal Elements for Optical Waveguide Problems, M.S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [19] Hsu, S. M., and H. C. Chang, “Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy,” Opt. Express, vol. 15, pp. 15797--15811, 2007. [20] Hsu, S. M., M. M. Chen, and H. C. Chang, “Investigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method based eigenvalue algorithm,” Opt. Express, vol. 15, pp. 5416--5430, 2007. [21] Jin, J., The Finite Element Method in Electromagnetics (John Wiley & Sons, Inc., New York, 2002). [22] Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995). [23] John, S., “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486--2489, 1987. [24] Knight, J. C., T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547--1549, 1996. [25] Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476--1478, 1998. [26] Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, vol. 58, pp. 10096--10099, 1998. [27] Koshiba, M., and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 1313--1315, 2001. [28] Koshiba, M., and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol., vol. 18, pp. 737--743, 2000. [29] Li, Z. Y., B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett., vol. 81, pp. 2574--2577, 1998. [30] Lin, S. Y., E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ~1.6-$mu$m wavelengths built with a two-dimensional photonic crystal,” Opt. Lett., vol. 27, pp. 1400--1402, 2002. [31] Liu, C. Y., and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys. Rev. B, vol. 72, 045133, 2005. [32] Luo, C., S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett., vol. 81, pp. 2352--2354, 2002a. [33] Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B, vol. 65, 201104, 2002b. [34] Maradudin, A. A., and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Modern Opt., vol. 41, pp. 275--284, 1994. [35] Martinez, A., H. Miguez, A. Griol, and J. Marti, “Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens,” Phys. Rev. B, vol. 69, 165119, 2004. [36] Meade, R. D., K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B, vol. 44, pp. 13772--13774, 1991. [37] Mekis, A., J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett., vol. 77, pp. 3787--3790, 1996. [38] Notomi, M., “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, vol. 62, pp. 10696--10705, 2000. [39] Oder, T. N., K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett., vol. 84, pp. 466--468, 2004. [40] Okano, M., A. Chutinan, and S. Noda, “Analysis and design of single-defect cavities in a three-dimensional photonic crystal,” Phys. Rev. B, vol. 66, 165211, 2002. [41] Ouzounov, D., D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun., vol. 192, pp. 219--223, 2001. [42] Ozaki, R., T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett., vol. 82, pp. 3593--3595, 2003. [43] Painter, O., R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, pp. 1819--1821, 1999. [44] Person, J. Le, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull., vol. 41, pp. 1303--1309, 2006. [45] Peterson, A. F., “Vector finite element formulation for scattering from two-dimensional heterogeneous bodies,” IEEE Trans. Antennas Propagat., vol. 43, pp. 357--365, 1994. [46] Qiu, M., “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett., vol. 30, pp. 327--330, 2001. [47] Qiu, M., and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys., vol. 87, pp. 8268--8275, 2000. [48] Rebay, S., “Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm,” J. Comput. Phys., vol. 106, pp. 125--138, 1993. [49] Ren, G., P. Shum, J. Hu, X. Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 20, pp. 602--604, 2008. [50] Rodriguez-Esquerre, V. F., M. Koshiba, and H. E. Hernandez-Figueroa, “Finite-element time-domain analysis of 2D photonic crystal resonant cavities,” IEEE Photon. Technol. Lett., vol. 16, pp. 816--818, 2004. [51] Saitoh, K., and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol., vol. 19, pp. 405--413, 2001. [52] Saitoh, K., and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express, vol. 11, pp. 3100--3109, 2003. [53] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, “Mixed finite element beam propagation method,” J. Lightwave Technol., vol. 16, pp. 1336--1341, 1998. [54] Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett., vol. 76, pp. 2480--2483, 1996. [55] Sigalas, M. M., R. Biswas, and K. M. Ho, “Theoretical study of dipole antennas on photonic band-gap materials,” Microwave Opt. Technol. Lett., vol. 13, pp. 205--209, 1996. [56] Silvester, P., “Finite element solution of homogeneous waveguide problems,” Alta Frequenza, vol. 38, pp. 313--317, 1969. [57] Smith, D. R., S. Schultz, K. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett., vol. 65, pp. 645--647, 1994. [58] Taflove, A., and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995). [59] Teixeira, F. L., and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 223--225, 1998. [60] Tokushima, M., and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett., vol. 37, pp. 1454--1454, 2001. [61] Turner, M. J., R. W. Clough, H. C. Martin, and L. J. Topp, “Stiffness and deflection analysis of complex structures,” J. Aero. Sci., vol. 23, pp. 805--824, 1956. [62] Veselago, V. G., “The electrodynamics of substances with simultaneously negative values of $epsilon$ and $mu$,” Sov. Phys. Usp., vol. 10, pp. 509--514, 1968 (originally published in Russian in Usp. Fiz. Nauk, vol. 92, pp. 517--526, 1967). [63] Villeneuve, P. R., S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B, vol. 54, pp. 7837--7842, 1996. [64] Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059--2062, 1987. [65] Yablonovitch, E., and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett., vol. 63, pp. 1950--1953, 1989. [66] Yablonovitch, E., T. J. Gmitter, R. D. Meade, A. M. Rappe, K.D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett., vol. 67, pp. 3380--3383, 1991. [67] Yang, H. Y. D., N. G. Alexopoulos, and E. Yablonovitch, “Photonic band-gap materials for high-gain printed circuit antennas,” IEEE Trans. Antennas Propagat., vol. 45, pp. 185--187, 1997. [68] Yeh, P., and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc., New York, 1999). [69] Yu, C. P., and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron., vol. 36, pp. 145--163, 2004a. [70] Yu, C. P., and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express, vol. 12, pp. 1397--1408, 2004b. [71] Zabel. I. H. H., and D. Stroud, “Photonic band structures of optically anisotropic periodic arrays,” Phys. Rev. B, vol. 48, pp. 5004--5012, 1993. [72] Zhang, L., N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, “An efficient finite-element method for the analysis of photonic band-gap materials,” in 1999 IEEE MTT-S Dig., vol. 4, pp. 1703--1706, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42270 | - |
| dc.description.abstract | 為了研究各向異性材料對於建構完整的能帶結構所造成之影響,我們針對在光子晶體中的電磁波模態可以退耦成橫向電場與橫向磁場模態之情況,先發展出一個以有限元素法為基礎所建立的廣義純量式特徵值演算法來分析二維各向異性光子晶體的能帶結構。我們分析了具有正方晶格與三角晶格的二維各向異性光子晶體,並且審查這兩種晶格結構的第一布里淵區中不同子區域間之關係。在分析各向異性光子晶體時,第一布里淵區中足夠多之必要子區域皆須納入考慮,因此用來為各向等性光子晶體建構完整能帶結構之概念須加以適當修正。
然後,在電磁波的傳播方向平行於週期性平面之條件下,一個以有限元素法為基礎的全向量式特徵值演算法更進一步被提出來針對具有三維各向異性材料的二維光子晶體進行能帶結構分析。我們嘗試同時考慮所有電場或磁場分量並推導出一個矩陣特徵值方程式來處理最廣泛之二維光子晶體問題。經由分析各向等性的光子晶體,我們闡述了此全向量式特徵值演算法與廣義純量式特徵值演算法之間的關係,而藉由探討一個各向異性光子晶體之特性,我們說明了此全向量式特徵值演算法的重要性。對於二維各向異性光子晶體更深刻的認識與了解皆可以利用此全向量式特徵值演算法來獲得。 最後,在電磁波的傳播方向不再平行於週期性平面之條件下,我們亦展示了一個以有限元素法為基礎的全向量式特徵值演算法,此演算法可以為具有三維各向異性材料的二維光子晶體建構出能帶邊界圖。使用此全向量式特徵值演算法,各種具有不同材料組成與幾何形狀定義的光子晶體之能帶邊界圖皆可以方便且正確地建構出來。因此,我們可以利用此全向量式特徵值演算法來獲得關於光子能隙光纖之分析與設計相當有用的指導方針。 | zh_TW |
| dc.description.abstract | A generalized scalar finite element method (FEM) based eigenvalue algorithm for analyzing the band structures of two-dimensional (2D) anisotropic photonic crystals (PCs) when the wave modes in the PCs can be decoupled into the transverse-electric (TE) and transverse-magnetic (TM) ones is developed first to investigate the intrinsic effect of anisotropic materials on constructing complete band structures. The 2D anisotropic PCs with square and triangular lattices are analyzed, and the relationships among the distinct sub-zones of the first Brillouin zones (BZs) for these two lattices are examined. The concept of constructing complete band structures for isotropic PCs should be modified for anisotropic PCs by taking into accounts enough necessary sub-zones in the first BZ.
Then a full-vectorial FEM based eigenvalue algorithm under the in-plane wave propagation is further proposed for the band structure analysis of 2D PCs with arbitrary 3D anisotropy. We attempt an idea of considering all the electric or magnetic field components simultaneously and formulate a matrix eigenvalue equation to deal with the most general 2D PC problems. The relationship between this full-vectorial algorithm and the generalized scalar one is clarified from the analysis of isotropic PCs, and the significance of this full-vectorial algorithm is demonstrated through the examination of an example anisotropic PC. It is seen that a deeper insight about 2D anisotropic PCs can be obtained utilizing this full-vectorial algorithm. Finally a full-vectorial FEM based eigenvalue algorithm under the out-of-plane wave propagation for the band edge diagram construction of 2D PCs with arbitrary 3D anisotropy is also presented. Based on this full-vectorial algorithm, the band edge diagrams of various PCs with different material combination and geometry definition can be conveniently and correctly constructed. Consequently, quite valuable guidelines for the analysis and design of photonic band gap (PBG) fibers can be acquired with the help of this full-vectorial algorithm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:56:39Z (GMT). No. of bitstreams: 1 ntu-97-D93941013-1.pdf: 17089625 bytes, checksum: 2221076ccd79da2bb86e05dbd14d3ee9 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 1 Introduction............................................1
1.1 Photonic Crystals and Related Applications............1 1.2 Numerical Schemes for the Analysis of Photonic Crystals and Related Devices..............................5 1.3 Overview and Organization of the Dissertation.........6 1.4 Contributions of the Present Work.....................8 2 Finite Element Method..................................16 2.1 Brief Review of the Finite Element Method............16 2.2 Classical Methods for the Formulation of the Finite Element Method...........................................17 2.2.1 The Ritz method....................................17 2.2.2 Galerkin's method..................................19 2.3 Basic Steps of the Finite Element Method.............20 2.3.1 Selection of Elements and Shape Functions..........21 2.3.2 Discretization of the Computational Domain.........23 2.3.3 Formulation of the Matrix Equation.................24 2.3.4 Solution of the Matrix Equation....................25 3 Finite Element Method Based Eigenvalue Algorithm for the Analysis of Two-Dimensional Photonic Crystals............29 3.1 Generalized Scalar FEM Based Eigenvalue Algorithm under the In-Plane Wave Propagation......................30 3.1.1 Background.........................................30 3.1.2 The Governing Equation.............................30 3.1.3 Finite Element Discretization......................33 3.1.4 Periodic Boundary Conditions for the 2D PCs........35 3.2 Full-Vectorial FEM based Eigenvalue Algorithm under the In-Plane Wave Propagation............................41 3.2.1 Background.........................................41 3.2.2 The Governing Equation.............................42 3.2.3 The FEM Based Matrix Eigenvalue Equation...........43 3.3 Full-Vectorial FEM Based Eigenvalue Algorithm under the Out-of-Plane Wave Propagation........................47 3.3.1 Background.........................................47 3.3.2 The Governing Equation.............................47 3.3.3 The FEM Based Matrix Eigenvalue Equation...........48 4 Intrinsic Effect of Anisotropy on the Band Structure Analysis of Photonic Crystals............................57 4.1 Band Structure Analysis for Isotropic Photonic Crystals.................................................58 4.1.1 Square Lattice.....................................58 4.1.2 Triangular Lattice.................................59 4.2 Band Structure Analysis for Anisotropic Photonic Crystals.................................................60 4.2.1 Square lattice.....................................61 4.2.2 Triangular lattice.................................63 5 Band Structure Analysis of Two-Dimensional Photonic Crystals with Arbitrary Three-Dimensional Anisotropy: In-Plane Wave Propagation...................................85 5.1 Characteristics of the Full-Vectorial FEM Based Eigenvalue Algorithm.....................................86 5.2 Application of the Full-Vectorial FEM Based Eigenvalue Algorithm................................................89 6 Band Structure Analysis of Two-Dimensional Photonic Crystals with Arbitrary Three-Dimensional Anisotropy: Out-of-Plane Wave Propagation...............................113 6.1 Construction of Band Edge Diagrams..................114 6.2 Band Edge Diagrams for Anisotropic PCs..............115 7 Conclusion............................................136 A Full-Vectorial Finite Element Beam Propagation Method.139 B List of Acronyms......................................148 | |
| dc.language.iso | en | |
| dc.subject | 波束傳播法 | zh_TW |
| dc.subject | 光子能隙光纖 | zh_TW |
| dc.subject | 液晶 | zh_TW |
| dc.subject | 電磁波理論 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 各向異性材料 | zh_TW |
| dc.subject | Beam propagation method | en |
| dc.subject | Electromagnetic theory | en |
| dc.subject | Photonic crystals | en |
| dc.subject | Anisotropic materials | en |
| dc.subject | Liquid crystals | en |
| dc.subject | Photonic band gap fibers | en |
| dc.subject | Finite element method | en |
| dc.title | 二維各向異性光子晶體之特性研究與有限元素法建模分析 | zh_TW |
| dc.title | Characteristic Investigation and Finite Element Method Modeling for Two-Dimensional Anisotropic Photonic Crystals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊雄,許文翰,吳瑞北,江衍偉,賴?杰,趙如蘋,潘犀靈 | |
| dc.subject.keyword | 電磁波理論,光子晶體,各向異性材料,液晶,光子能隙光纖,有限元素法,波束傳播法, | zh_TW |
| dc.subject.keyword | Electromagnetic theory,Photonic crystals,Anisotropic materials,Liquid crystals,Photonic band gap fibers,Finite element method,Beam propagation method, | en |
| dc.relation.page | 156 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 16.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
