請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42265完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張富雄(Fu-Hsiung Chang) | |
| dc.contributor.author | I-Hsiang Liu | en |
| dc.contributor.author | 劉逸祥 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:56:21Z | - |
| dc.date.available | 2009-09-11 | |
| dc.date.copyright | 2008-09-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-04 | |
| dc.identifier.citation | Allen TD, Cronshaw JM, Bagley S, Kiseleva E, Goldberg MW (2000) The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci 113 ( Pt 10): 1651-1659
Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104: 1217-1223 Bajpai V, Dai L, Ohashi T (2004) Large-scale synthesis of perpendicularly aligned helical carbon nanotubes. J Am Chem Soc 126: 5070-5071 Bayer P, Kraft M, Ejchart A, Westendorp M, Frank R, Rosch P (1995) Structural studies of HIV-1 Tat protein. J Mol Biol 247: 529-535 Bedu-Addo FK, Tang P, Xu Y, Huang L (1996) Interaction of polyethyleneglycol-phospholipid conjugates with cholesterol-phosphatidylcholine mixtures: sterically stabilized liposome formulations. Pharm Res 13: 718-724 Bullok KE, Gammon ST, Violini S, Prantner AM, Villalobos VM, Sharma V, Piwnica-Worms D (2006) Permeation peptide conjugates for in vivo molecular imaging applications. Mol Imaging 5: 1-15 Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17: 484-499 Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards 'Lab on a Particle' architectures for nanobiotechnology. Chem Soc Rev 35: 1028-1042 Dingwall C, Sharnick SV, Laskey RA (1982) A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell 30: 449-458 Douziech-Eyrolles L, Marchais H, Herve K, Munnier E, Souce M, Linassier C, Dubois P, Chourpa I (2007) Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2: 541-550 Du H, Chandaroy P, Hui SW (1997) Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta 1326: 236-248 Elliott G, O'Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88: 223-233 Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4: 757-766 Ferrari A, Pellegrini V, Arcangeli C, Fittipaldi A, Giacca M, Beltram F (2003) Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 8: 284-294 Fittipaldi A, Ferrari A, Zoppe M, Arcangeli C, Pellegrini V, Beltram F, Giacca M (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278: 34141-34149 Fontes MR, Teh T, Kobe B (2000) Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 297: 1183-1194 Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189-1193 Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276: 5836-5840 Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15: 607-660 Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55: 1179-1188 Han G, Ghosh P, Rotello VM (2007) Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol 620: 48-56 Hanessian S, Grzyb JA, Cengelli F, Juillerat-Jeanneret L (2008) Synthesis of chemically functionalized superparamagnetic nanoparticles as delivery vectors for chemotherapeutic drugs. Bioorg Med Chem 16: 2921-2931 Hong G, Yuan R, Liang B, Shen J, Yang X, Shuai X (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevices Hoshino A, Manabe N, Fujioka K, Suzuki K, Yasuhara M, Yamamoto K (2007) Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: surface modification regulates biological function, including cytotoxicity. J Artif Organs 10: 149-157 Jeang KT, Xiao H, Rich EA (1999) Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 274: 28837-28840 Jennings T, Strouse G (2007) Past, present, and future of gold nanoparticles. Adv Exp Med Biol 620: 34-47 Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 88: 1864-1868 Kaji N, Tokeshi M, Baba Y (2007) Single-molecule measurements with a single quantum dot. Chem Rec 7: 295-304 Kalderon D, Richardson WD, Markham AF, Smith AE (1984a) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311: 33-38 Kalderon D, Roberts BL, Richardson WD, Smith AE (1984b) A short amino acid sequence able to specify nuclear location. Cell 39: 499-509 Lappi DA, Ying W, Barthelemy I, Martineau D, Prieto I, Benatti L, Soria M, Baird A (1994) Expression and activities of a recombinant basic fibroblast growth factor-saporin fusion protein. J Biol Chem 269: 12552-12558 Lee CH, Kim EY, Jeon K, Tae JC, Lee KS, Kim YO, Jeong MY, Yun CW, Jeong DK, Cho SK, Kim JH, Lee HY, Riu KZ, Cho SG, Park SP (2008) Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev 17: 133-141 Leventis R, Silvius JR (1990) Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta 1023: 124-132 Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18: 410-414 Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996) Large-Scale Synthesis of Aligned Carbon Nanotubes. Science 274: 1701-1703 Lukyanov AN, Gao Z, Mazzola L, Torchilin VP (2002) Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm Res 19: 1424-1429 Lusic M, Marcello A, Cereseto A, Giacca M (2003) Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J 22: 6550-6561 Maccarana M, Casu B, Lindahl U (1994) Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 269: 3903 Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4: 435-446 Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68: 129-137 Reinlib L, Field L (2000) Cell transplantation as future therapy for cardiovascular disease?: A workshop of the National Heart, Lung, and Blood Institute. Circulation 101: E182-187 Rudolph C, Schillinger U, Ortiz A, Tabatt K, Plank C, Muller RH, Rosenecker J (2004) Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm Res 21: 1662-1669 Rusnati M, Tulipano G, Spillmann D, Tanghetti E, Oreste P, Zoppetti G, Giacca M, Presta M (1999) Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides. J Biol Chem 274: 28198-28205 Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66: 511-548 Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285: 1569-1572 Sethuraman VA, Bae YH (2007) TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 118: 216-224 Shah K (2005) Current advances in molecular imaging of gene and cell therapy for cancer. Cancer Biol Ther 4: 518-523 Silhol M, Tyagi M, Giacca M, Lebleu B, Vives E (2002) Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem 269: 494-501 Slowing, II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80: 377-385 Allen TD, Cronshaw JM, Bagley S, Kiseleva E, Goldberg MW (2000) The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci 113 ( Pt 10): 1651-1659 Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104: 1217-1223 Bajpai V, Dai L, Ohashi T (2004) Large-scale synthesis of perpendicularly aligned helical carbon nanotubes. J Am Chem Soc 126: 5070-5071 Bayer P, Kraft M, Ejchart A, Westendorp M, Frank R, Rosch P (1995) Structural studies of HIV-1 Tat protein. J Mol Biol 247: 529-535 Bedu-Addo FK, Tang P, Xu Y, Huang L (1996) Interaction of polyethyleneglycol-phospholipid conjugates with cholesterol-phosphatidylcholine mixtures: sterically stabilized liposome formulations. Pharm Res 13: 718-724 Bullok KE, Gammon ST, Violini S, Prantner AM, Villalobos VM, Sharma V, Piwnica-Worms D (2006) Permeation peptide conjugates for in vivo molecular imaging applications. Mol Imaging 5: 1-15 Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17: 484-499 Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards 'Lab on a Particle' architectures for nanobiotechnology. Chem Soc Rev 35: 1028-1042 Dingwall C, Sharnick SV, Laskey RA (1982) A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell 30: 449-458 Douziech-Eyrolles L, Marchais H, Herve K, Munnier E, Souce M, Linassier C, Dubois P, Chourpa I (2007) Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2: 541-550 Du H, Chandaroy P, Hui SW (1997) Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta 1326: 236-248 Elliott G, O'Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88: 223-233 Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4: 757-766 Ferrari A, Pellegrini V, Arcangeli C, Fittipaldi A, Giacca M, Beltram F (2003) Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 8: 284-294 Fittipaldi A, Ferrari A, Zoppe M, Arcangeli C, Pellegrini V, Beltram F, Giacca M (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278: 34141-34149 Fontes MR, Teh T, Kobe B (2000) Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 297: 1183-1194 Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189-1193 Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276: 5836-5840 Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15: 607-660 Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55: 1179-1188 Han G, Ghosh P, Rotello VM (2007) Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol 620: 48-56 Hanessian S, Grzyb JA, Cengelli F, Juillerat-Jeanneret L (2008) Synthesis of chemically functionalized superparamagnetic nanoparticles as delivery vectors for chemotherapeutic drugs. Bioorg Med Chem 16: 2921-2931 Hong G, Yuan R, Liang B, Shen J, Yang X, Shuai X (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevices Hoshino A, Manabe N, Fujioka K, Suzuki K, Yasuhara M, Yamamoto K (2007) Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: surface modification regulates biological function, including cytotoxicity. J Artif Organs 10: 149-157 Jeang KT, Xiao H, Rich EA (1999) Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 274: 28837-28840 Jennings T, Strouse G (2007) Past, present, and future of gold nanoparticles. Adv Exp Med Biol 620: 34-47 Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 88: 1864-1868 Kaji N, Tokeshi M, Baba Y (2007) Single-molecule measurements with a single quantum dot. Chem Rec 7: 295-304 Kalderon D, Richardson WD, Markham AF, Smith AE (1984a) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311: 33-38 Kalderon D, Roberts BL, Richardson WD, Smith AE (1984b) A short amino acid sequence able to specify nuclear location. Cell 39: 499-509 Lappi DA, Ying W, Barthelemy I, Martineau D, Prieto I, Benatti L, Soria M, Baird A (1994) Expression and activities of a recombinant basic fibroblast growth factor-saporin fusion protein. J Biol Chem 269: 12552-12558 Lee CH, Kim EY, Jeon K, Tae JC, Lee KS, Kim YO, Jeong MY, Yun CW, Jeong DK, Cho SK, Kim JH, Lee HY, Riu KZ, Cho SG, Park SP (2008) Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev 17: 133-141 Leventis R, Silvius JR (1990) Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta 1023: 124-132 Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18: 410-414 Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996) Large-Scale Synthesis of Aligned Carbon Nanotubes. Science 274: 1701-1703 Lukyanov AN, Gao Z, Mazzola L, Torchilin VP (2002) Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm Res 19: 1424-1429 Lusic M, Marcello A, Cereseto A, Giacca M (2003) Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J 22: 6550-6561 Maccarana M, Casu B, Lindahl U (1994) Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 269: 3903 Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4: 435-446 Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68: 129-137 Reinlib L, Field L (2000) Cell transplantation as future therapy for cardiovascular disease?: A workshop of the National Heart, Lung, and Blood Institute. Circulation 101: E182-187 Rudolph C, Schillinger U, Ortiz A, Tabatt K, Plank C, Muller RH, Rosenecker J (2004) Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm Res 21: 1662-1669 Rusnati M, Tulipano G, Spillmann D, Tanghetti E, Oreste P, Zoppetti G, Giacca M, Presta M (1999) Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides. J Biol Chem 274: 28198-28205 Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66: 511-548 Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285: 1569-1572 Sethuraman VA, Bae YH (2007) TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 118: 216-224 Shah K (2005) Current advances in molecular imaging of gene and cell therapy for cancer. Cancer Biol Ther 4: 518-523 Silhol M, Tyagi M, Giacca M, Lebleu B, Vives E (2002) Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem 269: 494-501 Slowing, II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80: 377-385 Stéphane Mornet SV, Fabien Grasset and Etienne Duguet (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14: 2161 - 2175 Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J (2006) Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials 27: 5143-5150 Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124: 8204-8205 Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y (2002) Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 277: 2437-2443 Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24: 621-638 Vives E, Richard JP, Rispal C, Lebleu B (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4: 125-132 Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. European radiology 11: 2319-2331 Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92: 451-462 Weissleder R, Lee AS, Fischman AJ, Reimer P, Shen T, Wilkinson R, Callahan RJ, Brady TJ (1991) Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology 181: 245-249 Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 97: 13003-13008 Xenariou S, Griesenbach U, Ferrari S, Dean P, Scheule RK, Cheng SH, Geddes DM, Plank C, Alton EW (2006) Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther 13: 1545-1552 Yang SY, Sun JS, Liu CH, Tsuang YH, Chen LT, Hong CY, Yang HC, Horng HE (2008) Ex vivo magnetofection with magnetic nanoparticles: a novel platform for nonviral tissue engineering. Artif Organs 32: 195-204 Yuda T, Maruyama K, Iwatsuru M (1996) Prolongation of liposome circulation time by various derivatives of polyethyleneglycols. Biol Pharm Bull 19: 1347-1351 劉昶辰 (2005) 穿透性胜肽媒介蛋白質進入細胞之機制探討. 國立臺灣大學生物化學曁分子生物學硏究所碩士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42265 | - |
| dc.description.abstract | 奈米粒子因體積小且具有特殊物理特性而被廣泛應用於生醫研究。其中超順磁氧化鐵奈米粒子 (USPIO) 因具有強烈的順磁性,可作為核磁共振造影的顯影劑。配合磁場之使用,進一步的能夠應用在收集特定細胞和轉染研究上。除此之外, USPIO 還可以應用在癌症組織中作為非侵入性的偵測或幹細胞追蹤。但是,要能在活體中追蹤細胞,其細胞內的訊號必須夠強。因此如何讓能大量的氧化鐵奈米粒子有效率地進入細胞而又不會造成傷害,一直是科學家研究致力的目標。
在先前的研究中,已經有很多方法像是化學或是蛋白的修飾於氧化鐵奈米粒子的表面,使細胞容易吸收。然而這樣的方式通常是直接以共價鍵連接在粒子表面,步驟較複雜,所需時間也較長。為了能簡單的修飾氧化鐵奈米粒子表面,本研究以微胞體包覆氧化鐵奈米粒子。這樣的修飾方法簡單,而且只要在一個小時內即可完成。另一方面,為了有效率地將氧化鐵奈米粒子送入細胞內,吾人連接實驗室已經建立的一種穿透性胜 | zh_TW |
| dc.description.abstract | Nanoparticles have been widely used in biomedical research due to small size and special physical properties. One of them, ultrasmall superparamagnetic iron oxide (USPIO), has a super paramagnetic behavior, and can be used to a contrast agent in nuclear magnetic resonance imaging (MRI). By the magnetic fields, USPIO can further be used in the application of cell collection and transfection. Besides that, it can also be a noninvasive tracker in the cancer tissue or the stem cell. There has to been a stronger signal in a cell even though USPIO can be used in the cell tracking in vivo however. Recently, make large number of USPIO uptake by the cell efficiently and no toxicity has been committed to a goal in the scientific topic.
Previous study, there were already many chemical or protein modifications on the surface of USPIO to enhance the cell absorbance. Neverless, most of the methods bound to the surface by covalent conjugation which is complicated and time-consuming. In order to modify the surface of the USPIO simply, I coat the surface of USPIO by the micelle formulation. The modification is not only simple, but as fast as an hour to complete. On the other hand, I would link a cell penetrating peptide fusion protein – Tat-PAST, which my lab has established by way of uptake more efficiently in the cell. In addition, I would also link a fusion protein of nuclear localization signal (NLS) – NLS-ST, to study whether NLS could help micelle-USPIO complex contact the nuclear membrane, thereby increasing access to enter the cell nucleus. In the article, it would analyze: 1. Compare the particle size, and the efficiency of cell uptake of micelle and micelle-USPIO complex between different lipid composition, 2. Confirm the protein activity and function by cell experiments after protein purification of NLS-ST and Tat-PAST, 3. when NLS-ST or Tat-PAST fusion protein bind the micelle-USPIO complex, analyze the uptake and distribution in the cell. As a result, compared different lipid composition of the micelle, adding more lipid content of DSPE-PEG 2000, the size of micelle could be smaller while inhibiting the cell uptake. When study on the function of Tat-PAST and NLS-ST fusion protein, Tat-PAST fusion protein could easily help the cell uptake of micelle-USPIO complex as expected; NLS-ST fusion protein could also help micelle-USPIO complex contact to nuclear membrane and even into the nucleus though it cannot effectively uptake by the cell alone. Finally, Tat-PAST and NLS-ST fusion protein linked micelle-USPIO complex together and enhanced the cell uptake of micelle-USPIO complex certainly, even some part of less in the nucleus though they were mainly in the cytoplasm. According to these results, it can tell that micelle-USPIO complex linking with Tat-PAST and NLS-ST fusion protein could increase the ability of cell uptake, and nuclear entry. The strategy can further improve the integration of the cell tracking and as a vector in the drug or gene therapy. In the same time, the micelle coating technology also could utilize to different nanoparticles for all kinds of modification on the surface simply. This aspect will make more application in the biomedical research. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:56:21Z (GMT). No. of bitstreams: 1 ntu-97-R95442016-1.pdf: 2196657 bytes, checksum: 9e473807cc9ad4177332584f728ac75c (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii 縮寫表 v 緒論 1 1.1 奈米科技基本介紹 1 1.2 氧化鐵奈米粒子 1 1.2.1 氧化鐵奈米粒子在 MRI 顯影劑之應用 2 1.2.2 氧化鐵奈米粒子在細胞標記和藥物遞送之應用 2 1.2.3 以氧化鐵奈米粒子應用在基因轉殖和高溫治療 3 1.3 Tat 穿透性胜肽 4 1.3.1 Tat 胜肽基本介紹 4 1.3.2 Tat 胜肽進入細胞之可能機制 5 1.3.3 以Tat蛋白當作進入細胞的載體 7 1.4 核定位訊號 7 1.4.1 核定位訊號的種類 8 1.4.2 藉由核定位訊號進入細胞核的機制 9 1.5 研究動機與目的 9 材料與實驗方法 11 2.1 實驗材料 11 2.1.1 藥品 11 2.1.2 細胞株 12 2.1.3 質體 12 2.1.4 儀器 13 2.2 實驗方法 14 2.2.1 氧化鐵奈米粒子的製備 14 2.2.2 微胞體和微胞氧化鐵複合體製備 14 2.2.3 動態光散射儀和電子顯微鏡測定 15 2.2.4 細胞繼代培養 16 2.2.5 普魯士藍染色 (Prussian blue stain) 16 2.2.6 Tat-PAST 和 NLS-ST 蛋白的表達 17 2.2.7 Tat-PAST 和 NLS-ST 蛋白的純化 17 2.2.8 蛋白質定性與定量 19 2.2.9 利用 FITC 螢光分子標定 NLS-ST 蛋白 21 2.2.10 利用磁力收集胜肽修飾之微胞氧化鐵複合體 22 2.2.11 細胞加入 Tat-PAST 、 NLS-ST 蛋白和微胞氧化鐵複合體 23 2.2.12 利用雷射共軛焦顯微鏡研究細胞分佈 23 實驗結果 25 3.1 微胞體包覆氧化鐵奈米粒子的製備與分析 25 3.2 Tat-PAST和NLS-ST蛋白製備與活性測定 26 3.2.1 NLS-ST 蛋白製備和活性測定 26 3.2.2 Tat-PAST 蛋白製備與活性測定 26 3.3 微胞氧化鐵複合體接合胜肽的製備和對於細胞吸收與分佈的影響 27 討論 29 4.1 含有聚乙二醇的微胞體具有較小的體積和穩定的結構 30 4.2 含有聚乙二醇的微胞氧化鐵複合體會抑制細胞的吸收 30 4.3 Tat-PAST 蛋白可以直接被細胞吸收 31 4.4 NLS-ST 蛋白具有促進物質進入細胞核的能力 31 4.5 以磁力收集微胞氧化鐵複合體,其大小結構不變 32 4.6 微胞氧化鐵複合體連接 Tat-PAST 和 NLS-ST 蛋白能促進細胞的吸收和進入細胞核的能力 32 圖表和說明 34 5.1 論文圖表 34 5.2 圖表說明 39 參考文獻 41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 核定位訊號 | zh_TW |
| dc.subject | 氧化鐵奈米粒子 | zh_TW |
| dc.subject | 穿透性胜肽 | zh_TW |
| dc.subject | 微胞體 | zh_TW |
| dc.subject | cell penetrating peptide | en |
| dc.subject | nuclear localization signal | en |
| dc.subject | micelle | en |
| dc.subject | USPIO | en |
| dc.title | 結合Tat和NLS胜肽於磁性奈米粒子表面對細胞分佈之研究 | zh_TW |
| dc.title | Cellular Distribution of Magnetic Nanoparticles Linked with Tat- and NLS- Peptides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊榮輝(Rong-Huay Juang),康照洲(Jaw-Jou Kang) | |
| dc.subject.keyword | 氧化鐵奈米粒子,穿透性胜肽,微胞體,核定位訊號, | zh_TW |
| dc.subject.keyword | USPIO,cell penetrating peptide,micelle,nuclear localization signal, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
