請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42261
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 孫志陸 | |
dc.contributor.author | Huei-Ping Fang | en |
dc.contributor.author | 方惠平 | zh_TW |
dc.date.accessioned | 2021-06-15T00:56:06Z | - |
dc.date.available | 2009-09-02 | |
dc.date.copyright | 2008-09-02 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-04 | |
dc.identifier.citation | AIMS. Australian Institute of Marine Science.
(http://www.aims.gov.au/pages/research/marlin/black/pages/bm-00.html) Adam, M. S., J. Sibert, and D. Itano (2003). Dynamics of bigeye tuna (Thunnus obesus) and yellowfin (Thunnus albacares) tuna in Hawii’s pelagic fisheries: analysis of tagging data with a bulk transfer model incorporating size-specific attrition. Fish. Bull. 101: 215-218. Aiken, D. E., S. L. Waddy, and G. Y. Conan (1990). Use of length- frequency analysis for estimating the age structure of the catch of Nephrops norvegicus (Crustacea: Nephropidae). ICES. J. Mar. Sci. 199: 301-309. Akamine, T. (1988). Ecaluation of error caused by histogram on estimation of parameters for a mixture of normal distributions. Bull. Jap. Sea Reg. Fish. Res. Lab. 38: 17-185. Baelde, P. (1994). Growth, mortality, and yield-per-recruit of deep-water royal red prawns (Haliporoides sibogae) off eastern Australia, using the length-based MULTIFAN method. Mar. Biol. 118: 617-625. Beverton, R. J. H. and S. J. Holt (1959). A review of lifespans and mortality rates of fish in nature and their relation to growth and other physiological characteristics. In : the lifespan of animals. Vol. 5 (G. E. W. Wolstenholme and M. O’Connor, eds. Colloquia on ageing), p. 142-180. CIBA Foundation, Churchill , London. Bigelow, K. A., J. T. Jones and G. T. Dinardo (1995). Growth of the Pacific pomfret, Brama japonica: a comparison between otolith and length-frequency (MULTIFAN) analysis. Can. J. Fish. Aquat. Sci. 52: 2747-2756. Bjorndal, K. A. and A. B. Bolten (1995). Comparison of length-frequency analyses for estimation of growth parameters for a population of green turtles. Herpetologica 51(2): 160-167. Bjorndal, K. A., A. B. Bolten, A. L. Coan, and J. K. Pierre (1995). Estimation of green turtle (Chelonia mydas) growth rates from length-frequency analysis. Copeia 1995: 71-77. Caddy, J. F. (1986). Size frequency analysis in stock assessment – some perspectives, approaches and problems. Proceedings of the 37th Annual Gulf and Caribbean Fisheries Institute, 212-238. Caddy, J. F. (1997). Checks and balances in the management of marine fish stocks: organizational requirements for a limit reference point approach. Fish. Res. 30: 1-15. Caddy, J. F. and R. Mahon (1995). Reference point for fisheries management. FAO Fisheries Technical Report No. 347. FAO, Rome, 83 pp. Campbell, R. A., J. G. Pepperell and T. L. O. Davis (2003). Use of charter boat data to infer the annual availability of black marlin, Makaira indica, to the recreational fishery off Cairns, Australia. Aust. J. Mar. Freshw. Res. 54(4): 447-457. Chang, S. K., H. C. Liu and C. C. Hsu (1993). Estimation of vital parameters for Indian albacore through length frequency data. J. Fish. Soc. Taiwan 20(1): 1-13. Chen, Y. and G. N. G. Gordon (1997). Assessing discarding at sea using a length-structured yield-per-recruit model. Fish. Res. 30: 43-55. Chen Y. and C. Wilson (2002). A simulation study to evaluate impacts of uncertainty on the assessment of American lobster fishery in the Gulf of Maine. Can. J. Fish. Aquat. Sci. 59: 1394–1403. Chiang, W. C., C. L. Sun and S. Z. Yeh (2004). Age and growth of sailfish (Istiophorus platypterus) in waters off eastern Taiwan. Fish. Bull. 102(2):251-263. de Sylva, D. P. and P. R. Breder (1997). Reproduction, gonad histology, and spawning cycles of North Atlantic billfishes (Istiophoridae). Bull. Mar. Sci. 60(3): 668-697. Deriso, R. B. (1987). Optimal F0.1 criteria and their relationship to maximum sustainable yield. Can. J. Fish. Aquat. Sci. 44(Suppl. 2): 339-348. Ehrhardt, N. M. and C. M. Legault (1997). The role of uncertainty in fish stock assessment and management: A case of the Spanish mackerel, Scomberomorus maculates, in the US Gulf of Mexico. Fish. Res. 29: 145-158. Erdman, D. S. (1968). Spawning cycle sex ratio and weights of blue marlin off Puerto Rico and Virgin islands. Trans. Am. Fish. Soc. 97(2): 131-137. Erzini, K. (1990). Sample size and grouping of data for length-frequency analysis. Fish. Res. 9: 355-366. Fierstine, H. L. and B. J. Welton (1983). A black marlin, Makaira indica , from the early Pleistocene of the Philippines and the zoogeography of Istiophorid billfishes. Bull. Mar. Sci. 33(3): 718-728. Fogarty, M. J., R. K. Mayo, L. O’Brien, F. M. Serchuk and A. A. Rosenberg (1996). Assessing uncertainty in exploited marine populations. Reliab. Eng. Syst. Safe. 54: 183-195. Fonteneau, A. and P. Pallares (2004). Tuna natural mortality as a function of their age: the bigeye tuna (Thunnus obesus) case. Rep. Standing Committee on Tuna and Billfish, SCTB17, BIO-8, 15 pp. Fournier, D. A. and P. A. Breen (1983). Estimation of abalone mortality rates with growth analysis. Trans. Am. Fish. Soc. 112: 403-411. Fournier, D. A. and J. R. Sibert (1991). Analysis of length frequency samples with relative abundance data for the Gulf of marine northern shrimp Pandalus borealis by the MULTIFAN method. Can. J. Fish. Aquat. Sci. 48: 591-598. Fournier, D. A., J. R. Sibert, J. Majkowski and J. Hampton (1990). MULTIFAN a likelihood-based method for estimating growth parameters and age composition from multiple length frequency data sets illustrated using data for Southern bluefin tuna (Thunnus Maccoii). Can. J. Fish. Aquat. Sci. 47: 301-317. Francis, R. I. C. C. and R. Shotton (1997). “Risk” in fisheries management: a review. Can. J. Fish. Aquat. Sci. 54: 1699–1715. Gabriel, W. L., M. P. Sissenwine and W. J. Overholtz (1989). Analysis of spawning stock biomass per recruit: an example for Georges Bank haddock. North Am. J. Fish. Manage. 9: 383-391. Gayanilo, F. C. Jr. and D. Pauly (1997). FAO-ICLARM stock assessment tools Reference manual. ICLARM, International Center for Living Aquatic Resources Management. Food and Aqriculture Organization of the United Nations. Rome. 126 pp. Goodyear, C. P. (1989). Spawning stock biomass per recruit: the biological basis for a fisheries management tool. Coll. Vol. Sci. Pap. ICCAT, 32(2): 307-318. Goodyear, C. P. (1993). Spawning stock biomass per recruit in fisheries management: foundation and current use. In: Smith, S.J., Hunt, J.J., Rivard, D. (Eds), Risk Evaluation and Biological Reference Points for Fisheries Management. Can. Spec. Publ. Fish. Aquat. Sci. 120: 67-81. Grant, A., P. J. Morgan and P. J. W. Olive (1987). Use made in marine ecology of methods for estimating demographic parameters from size/frequency data. Mar. Biol. 95: 201-208. Gulland, J. A. (1983). Fish stock assessment: a manual of basic method. John Wiley & Sons, New York, 233 pp. Gunn, J. S., T. A. Patterson and J. G. Pepperell (2003). Short-term movement and behaviour of black marlin, Makaira indica, in the Coral Sea as determined through a pop-up satellite archival tagging experiment. Mar. Freshw. Res. 54(4): 515-525. Haddon, M. (2001). Modelling and quantitative methods in fisheries. Chapman & Hall/CRC, New York, 406 pp. Haist, V. and J. M. Porter (1993). Evaluation of alternative methods to estimate age compositions from length frequency data with specific reference to Atlantic swordfish, Xiphias gladius. Coll. Vol. Sci. Pap. ICCAT, 40(1): 331-343. Hampton, J. (2000). Natural mortality rates in tropical tunas: size really does matter. Can. J. Fish. Aquat. Sci. 57: 1002-1010. Hilborn, R. and C. J. Walters (1992). Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall, New York, p. 410-433. Hoenig, J. M., J. Csirke, M. J. Sanders, A. Abella, M. G. Andreoli, D. Levi, S. Ragonese, M. Al-Shoushani and M. M. El-Musa (1987). Data Acquisition for length-based stock assessment: report of working group I, p. 343-352. In: D. Pauly and G.R. Morgan (ed.) Length-based method in fisheries research. ICLARM Conference Proceedings 13, 468p. International Center for Living Aquatic Resource Management, Manila, Philippines, and Kuwait Institute for Scientific Research, Safat, Kuwait. Jiao, Y., Y. Chen and J. Wroblewski (2005). An application of the composite risk assessment method in assessing fisheries stock status. Fish. Res. 72: 173-183. Jones, J. B. (1981). Growth of two species of fresh water crayfish (Paranephrops spp.) in New Zealand. J. Mar. Freshwater Res. 15: 15-20. Katsukawa, T., Y. Lee and Y. Matsumiya (1999). Spawning per recruit analysis for female snow crab Chionoecetes opilio in the sea off Kyoto Prefecture. Nippon Suisan Gakkaishi 65: 288-293. Kimura, D. K. (1980). Likelihood models for the von Bertalanffy growth curve. Fish. Bull. 77: 765-767. Labelle, M., J. Hampton, K. Bailey, T. Murray, D. A. Fournier and J. R. Sibert (1993). Determination of age and growth of South Pacific albacore (Thunnus alalunga) using three methodologies. Fish. Bull. 91: 649-663. Leis, J. M., B. Goldman and S. Ueyanagi (1987). Distribution and abundance of billfish larvae (Pisces : Istiophoridae) in the Great Barrier Reef lagoon and Coral Sea near Lizard Island, Australia. Fish. Bull. 85(4):757-765. Liorzou, B. and J. L. Bigot (1995). Bluefin tuna growth from Mediterranean French purse seiners data. Coll. Vol. Sci. Pap. ICCAT, 48(1): 268-282. Liu, K. M. and Y. L. Cheng (1999). Virtual population analysis of the big eye Priacanthus macracanthus in the waters off northeastern Taiwan. Fish. Res. 41: 243-254. Liu, K. M., C. T. Chen and R. H. Yang (1999). Estimates of age and growth on the big eye Priacanthus macracanthus in the northeastern Taiwan waters. Fish. Sci. 65: 211-217. MacDonald, P. D. M. and P. E. J. Green (1988). User’s guide to program MIX. an interactive program for fitting mixtures of distributions. Ichthus Data Systems, Hamilton, Ontario. MacDonald, P. D. M. and T. J. Pitcher (1979). Age groups from size-frequency data: a versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Board Can. 36: 987-1001. Merrett, N. R. (1970). Gonad development in billfishes (Istiophoridae) from the Indian Ocean. J. Zool. Lond. 160: 351-395. Merrett, N. R. (1971). Aspects of the biology by billfishes (Istiophoridae) from the equatorial western Indian Ocean. J. Zool. Lond. 163: 351-395. Munro, J. L. and D. Pauly (1983). A simple method for comparing growth of fishes and invertebrates. ICLARM Fishbyte, 1(1): 5-6. Nakamura, I. (1985). FAO species catalogue. Vol. 5. Billfishes of the World. An annotated and illustrated catalogue of marlin, sailfishes, spearfishes and swordfishes known to date. FAO Fish. Synop. 125(5), 65 pp. Nelson, J. S. (2006). Fishes of the world. John Wiley and Sons, Inc. New York. 4th edition. 601 pp. Otter Research Ltd. (1992). MULTIFAN 3 user’s guide and reference manual. Otter Research Ltd., Nanaimo, Canada. Pagavino, M. and D. Gaertner (1995). Fitting a growth curve to size frequencies of the skipjack tuna, Katsuwonus pelamis, caught in the southeastern Caribbean. Coll. Vol. Sci. Pap. ICCAT, 44(2): 303-309. Pauly, D. (1979). Theory and management of tropical multispecies stocks: A review with emphasis on the Southeast Asian demersal fisheries. ICLARM Stud. Rev. 1. 35 pp. Pauly, D. (1980). On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. J. Cons. CIEM, 39: 175-192. Pauly, D. (1983). Length-converted catch curves: a powerful tool for fisheries research in the tropics (Part 1). ICLARM Fishbyte, 1(2): 9-13. Pauly, D. and N. David (1981). ELEFAN-Ⅰ: a basic program for the objective extraction of growth parameters from length frequency data. Meeresforschung 28: 205-211. Pauly, D. and J. L. Munro (1984). Once more on the comparison of growth in fish and invertebrates. ICLARM Fishbyte, 2(1): 21. Pepperell, J. G. and T. L. O. Davis (1999). Post-release behaviour of black marlin, Makaira indica,caught off the Great Barrier Reef with sportfishing gear. Mar. Biol. 135(2): 369-380. Petersen, C. G. J. (1891). Eine methode zur bestimmung des alters und des wuchses der fische. Mitt. Dtsch. Seefischerei Vei. Ⅱ: 226-235. Quinn, T. J. I. and R. B. Deriso (1999). Quantitative fish dynamics. Oxford University Press, New York. 542 pp. Restrepo, V. R. and W. W. Fox (1988). Parameter uncertainty and simple yield-per-recruit analysis. Trans. Amer. Fish. Soc. 117:282–289. Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191, 382 pp. Rosenberg, A. A. and J. R. Beddington (1987). Monte-Carlo testing of two methods for estimating growth from length-frequency data with general conditions for their applicability. In D. Pauly and G. R. Morgan (editors). Length-based methods in fisheries research. ICLARM Conference Proceedings 13, 283-298. International Center for Living Aquatic Resources Management, Manila, Philippines, and Kuwait Institute for Scientific Research, Safat, Kuwait, 468 pp. Shepherd, J. G. (1987). A weakly parametric method for estimating growth parameters from length composition data. In D. Pauly and G. R. Morgan (editors). Length-based method in fisheries research. ICLARM Conference Proceedings 13, 113-119. International Center for Living Aquatic Resource Management, Manila, Philippines, and Kuwait Institute for Scientific Research, Safat, Kuwait. 468 pp. Siddeek, M. S. M. and D. W. Johnson (1997). Growth parameter estimates for Omani abalone (Haliotis mariae, Wood 1828) using length-frequency data. Fish. Res. 31: 169-188. Skillman, R. A. and M. Y. Y. Yong (1976). Von Bertalanffy growth curves for striped marlin, Tetrapturus audax, and blue marlin, Makaira nigricans, in the centeral North Pacific Ocean. Fish. Bull. 74: 553-566. Speare, P. (1994). Relationships among black marlin, Makaira indica , in eastern Australian coastal waters, inferred from parasites. Aust. J. Mar. Freshw. Res. 45(4): 535-549. Speare, P. (2003). Age and growth of black marlin, Makaira indica , in east coast Australian water. Mar. Freshw. Res. 54(4): 307-314. Sparre, P. and S. C. Venema (1998). Introduction to tropical fish stock assessment, Manual 1. FAO Fisheries Technical Paper 306/1 Rev. 2, FAO, Rome, 407 pp. Sun C. L., N. M. Ehrhardt, C. E. Porch and S. Z. Yeh (2002). Analysis of yield and spawning stock biomass per recruit for the South Atlantic albacore (Thunnus alalunga). Fish. Res. 56: 193-204. Sun C. L., S. P. Wang, C. E. Porch and S. Z. Yeh (2005). Sex-specific yield per recruit and spawning stock biomass per recruit for the swordfish, Xiphias gladius, in the waters around Taiwan. Fish. Res. 71: 61-69. Taylor, C. C. (1958). Cod growth and temperature. J. Cons. Int. Explor. Mer. 23: 366-370. Terceiro, M., D. A. Fournier and J. R. Sibert (1992). Comparative performance of MULTIFAN and Shepherd’s Length Composition Analysis (SRLCA) on simulated length-frequency distributions. Tran. Amer. Fish. Soc. 121: 667-677. Thompson, W. F. and F. H. Bell (1934). Biological statistics of the Pacific halibut fishery. 2. Effect of changes in intensity upon total yield and yield per unit of gear. Rep. Int. Fish. (Pacific Halibut) Comm. 8, 49 pp. Tuck, I. D., C. J. Chapman and R. J. A. Atkinson (1997). Population biology of the Norway lobster, Nephrops norvegicus (L.) in the Firth of Clyde, Scotland-I: growth and density. ICES J. Mar. Sci. 54: 125-135. Turner, S. C. and M. Terceiro (1994). Estimation of west Atlantic bluefin tuna, Thunnus thynnus, age composition with length composition analysis. Coll. Vol. Sci. Pap. ICCAT, 42(1): 173-180. Tzeng, T. D. and S. Y. Yeh. 1995. Growth parameters of red-spot shrimp Metapenaeopsis barbata, from the adjacent waters off Taichung harbor. J. Fish. Soc. Taiwan, 22: 53-68. Wares, P. G. and G. T. Sakagawa (1974). Some morphometrics of billfishes from the Eastern Pacific ocean. U. S. Dep. Commer., NOAA, Tech. Rep., NMFS; SSRF-675: 107-120. Wilson, C. A., J. M. Dean, E. D. Prince and D. W. Lee (1991). An examination of sexual dimorphism in Atlantic and Pacific blue marlin using body weight, sagittae weight, and age estimates. J. Exp. Mar. Biol. Eco. 151: 209-226. Wolff, M. (1989). A proposed method for standardization of the selection of class intervals for length frequency analysis. Fishbyte, 7: 5. Yamakawa T. and Y. Matsumiya (1997). Simultaneous analysis of multiple length frequency data sets when the growth rates fluctuate between years. Fish. Sci. 63(5): 708-714. 行政院農業委員會漁業署 (1986-2007)。中華民國台灣地區漁業年報。 江偉全 (2004)。台灣東部海域雨傘旗魚族群動態及資源評估。國立台灣大學海 洋研究所博士論文。171頁。 宋薰華 (1975)。東沙群島海面所捕獲之旗魚成熟度之研究。台灣省水產試驗所 試驗報告, 25: 97-111。 宋薰華 (1980)。台灣東部白皮旗魚生態調查研究,漁獲努力、體長、性比、食 性、群成熟度及表面水溫。台灣省水產試驗所試驗報告, 32: 305-315。 邵廣昭 (2005)。台灣魚類資料庫,網路電子版(version 2005/5)。http://fishdb.sinica.edu.tw。 陳炳仲 (2001)。西太平洋黑皮旗魚年齡與成長研究。國立台灣大學海洋研究所 碩士論文。76頁。 曾建中 (2002)。西太平洋黑皮旗魚生殖生物學研究。國立台灣大學海洋研究所 碩士論文。26-28頁。 劉建賢 (2006)。台灣東部海域白皮旗魚之年齡與成長研究。國立台灣大學海洋 研究所碩士論文。88頁。 劉宗昀 (2007)。台灣海域與南中國海之白皮旗魚生殖生物學研究。國立台灣大 學海洋研究所碩士論文。112頁。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42261 | - |
dc.description.abstract | 本研究利用MULTIFAN多體長頻度分析法分析台灣東部白皮旗魚的體長資料,估計其年齡、成長、死亡率、單位加入量及生物參考點,並於單位加入量分析中將未確定性因子列入考量,以提供該魚種資源評估之參考。自2004年7月至2007年5月間於台東成功新港魚市場共量測5,160尾白皮旗魚體長資料,其中雄魚731尾,雌魚4,225尾,性別不明的204尾。由於雄性白皮旗魚量測的樣本資料不足,且每月之體長資料分布不均,不符合MULTIFAN之基本假設,故雄性白皮旗魚不列入本篇研究之範疇。
雌性白皮旗魚經不同假設之分析,在最小年齡群加入月份為9月,體長樣本數為12 (依月份併合成一年),以及體長頻度區間為5公分之假設下獲得最佳套適,共分離出12個年齡群,各年齡的平均體長為:L1 = 114.98 cm、L2 = 138.66 cm、L3 = 160.30 cm、L4 = 180.08 cm、L5 = 198.16 cm、L6 = 214.68 cm、L7 = 229.77 cm、L8 = 243.57 cm、L9 = 256.19 cm、L10 = 267.71 cm、L11 = 278.25 cm、L12 = 287.87 cm,其中以第六年齡群為優勢年齡群。von Bertalanffy成長參數為: 成長係數K = 0.090 yr-1,極限體長L∞ = 390.1 cm,體長為零時的理論年齡t0 = - 2.88 yr。估計最大壽命(tmax)為30.41歲,全死亡率為0.55與0.57 yr-1,自然死亡率為0.17與0.20 yr-1,漁獲死亡率為0.35 - 0.40 yr-1,開發率為0.27 - 0.30。在單位加入生產量分析中,最適初捕年齡為6歲,目前漁獲死亡率(FCUR=0.37 yr-1)已超過目標參考點F0.1 (0.31 yr-1),而在單位加入產卵親魚量分析中,FCUR (0.37 yr-1)亦高於目標參考點FSSB40 (0.16 yr-1)與限制參考點FSSB25 (0.28 yr-1),因此不建議增加漁獲努力量。另外,利用蒙地卡羅模擬(Monte Carlo simulation),在7組模擬情境(scenario)下求得生物參考點,發現自然死亡率的未確定性是影響F0.1、FSSB40與FSSB25估計的主要因素,處於目前自然死亡率(M=0.19 yr-1)下,FCUR大於目標參考點F0.1與FSSB40之機率大於85%,FCUR大於限制參考點FSSB25之機率約為50%。為使此魚種的資源達永續利用,不宜再增加漁獲努力量,另應持續對該資源進行評估以及嚴密監測漁業的長期發展。 | zh_TW |
dc.description.abstract | Age, growth, and mortality of black marlin (Makaira indica) in the waters off eastern Taiwan were estimated based on the length data using MULTIFAN, and applied to the per-recruit analyses with uncertainty incorporated into the parameters. Length data of 5,160 black marlin were collected at Shinkang Fish Market of Taitung during July 2004 to May 2007, of which 731 were males, 4,225 were females, and 204 were sex-unknown. Male black marlin were not discussed in this study due to the sample size of length data, which is not enough to analyze. In the search of MULTIFAN, the best fitting results were obtained when Month 1 was September, the number of sample was 12, and the length interval was 5 cm can obtain.
Twelve age-classes were discriminated in Month 1 sample, and the corresponding von Bertalanffy growth parameters are: growth coefficient (K) was 0.090 yr-1, asymptotic length (L∞) was 390.1 cm and age at zero length (t0) was -2.88 yr. The lifespan was 30.41 yr. The estimates were 0.55 and 0.57 yr-1 for total mortality rates (Z), 0.17 and 0.20 yr-1 for natural mortality rates (M), and 0.35 to 0.40 yr-1 for fishing mortality rates (F), with the exploitation rates (E) being 0.27 - 0.30. Based on the yield-per- recruit analyses, the current fishing mortality (FCUR = 0.37 yr-1) exceeded the target reference point (F0.1 = 0.31 yr-1), and the optimal age at first capture (tc) was suggested to be 6 yr. Increasing the fishing effort could produce the maximum yield, but also result in the risk of overexploitation. For the spawning- biomass-per-recruit, FCUR (0.37 yr-1) also exceeded the target reference point (FSSB40 = 0.16 yr-1) and limit reference point (FSSB25 = 0.28 yr-1). The sensitivity analysis suggested that the natural mortality was the most important impact factor on estimating F0.1, FSSB40, and FSSB25. The probability of FCUR exceeded F0.1 and FSSB40, and FSSB25 are more than 85% and about 50% respectively for the currently understanding of natural mortality (mean ± SE). Therefore, the stock condition and developments in the fishery need to be monitored closely for sustainable exploitation of this stock. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:56:06Z (GMT). No. of bitstreams: 1 ntu-97-R95241206-1.pdf: 1830837 bytes, checksum: 1759ac50c62d55a7bdcfe5db8193c7d7 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要…………………………………………………………………… Ⅰ
英文摘要…………………………………………………………….… Ⅲ 第一章、前言………………………………………………………..… 1 ㄧ、白皮旗魚的生物學概述……………………………………..…. 1 二、台灣白皮旗魚的漁業概況……………………………………… 2 三、前人研究概況…………………………………………………. 3 四、體長頻度分析法………………………………………………. 4 五、單位加入量分析(per-recruit analyses) …………………………... 6 六、生物參考點之未確定性分析……………………………………. 6 七、研究動機與目的………………………………………………. 7 第二章、材料與方法…………………………………………………… 8 ㄧ、體長與體重樣本之蒐集………………………………………... 8 二、體長與體重之關係…………………………………………….. 8 三、成長參數之估計………………………………………….…… 9 四、死亡率之估計………………………………………………… 13 五、單位加入量分析(per-recruit analyses) ………………………...… 15 六、生物參考點之未確定性分析…………………………………… 18 第三章、結果………………………………………………………….. 20 ㄧ、體長與體重樣本之蒐集……………………………………...… 20 二、體長與體重之關係…………………………………………..… 20 三、成長參數之估計…………………………………………….… 21 四、死亡率之估計………………………………………………… 22 五、單位加入量分析(per-recruit analyses) ………………….…..…… 23 六、生物參考點之未確定性分析…………………………………… 24 第四章、討論…………………………………………………….….… 26 ㄧ、雌雄別體長差異之探討…………………………….………..… 26 二、MULTIFAN法估計成長參數之探討………………………….… 26 三、死亡率之估計……………………………………………….… 29 四、單位加入量分析(per-recruit analyses) …………………............… 30 五、生物參考點之未確定性分析………………………………….… 31 第五章、結論………………………………………………………...… 34 參考文獻…………………………………………………………….… 35 附圖…………………………………………………………………… 46 附表…………………………………………………………………… 73 | |
dc.language.iso | zh-TW | |
dc.title | 台灣東部海域白皮旗魚生活史參數與生物參考點之估計
及相關未確定性分析 | zh_TW |
dc.title | Estimation of life history parameters, biological reference points, and associated uncertainties for black marlin (Makaira indica)
in the waters off eastern Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾萬年,邵廣昭,莊守正,王世斌 | |
dc.subject.keyword | 白皮旗魚,年齡,成長,死亡率,單位加入量分析,未確定性, | zh_TW |
dc.subject.keyword | black marlin,Makaira indica,age and growth,mortality,per-recruit analyses,uncertainty, | en |
dc.relation.page | 45 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-04 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。