Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42240
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允中(Yeun-Chung Lee)
dc.contributor.authorYu-Hsin Tsaoen
dc.contributor.author曹宇欣zh_TW
dc.date.accessioned2021-06-15T00:54:48Z-
dc.date.available2008-08-31
dc.date.copyright2008-08-14
dc.date.issued2008
dc.date.submitted2008-08-05
dc.identifier.citation1. 毛鈞杰主編。2006。微波技術與天線。北京:科學出版社。
2. 李永勳編譯。1996。電磁學。第二版。台北:偉明圖書有限公司。
3. 李宜森。1979。微波原理與應用。台北:國家書店有限公司。
4. 沈明來。2004。試驗設計學。第三版。台北:九州圖書出版社。
5. 張永欣主編。1992。微波食品加工原理與應用。台北:財團法人中華民國冷凍時發展協會。
6. 葛德彪,聞玉波。2005。電磁波時域有限差分方法。第二版。西安:西安電子科技大學出版社。
7. 橋本修。2006。實踐FDTD時間領域差分法。東京:森北出版社。
8. Abdelghani, M. A. 2001. Experimental investigation of occupied volume effect on the
microwave heating and drying kinetics of cement powder in a mono-mode cavity. Applied Thermal Engineering. 21: 955-965.
9. Chamchong, M. and A. K. Datta. 1999. Thawing of food in a microwave oven: II. Effect of load geometry and dielectric properties. Journal of Microwave Power and Electromagnetic Energy. 34(1): 22-32.
10. Chan, C. T. and H. C. Reader. 2000. Understanding microwave heating cavities. 1st ed. Boston: Artech House.
11. Cole, K. S. and R. H. Cole. 1942. Dispersion and absorption in dielectrics: II. Direct current characteristics. Journal of Chemical Physics. 10: 98-105.
12. Collin, R. E. 1992. Foundations For Microwave Engineering. 2nd ed., New York: IEEE Inc.
13. COMSOL. 2006. COMSOL multiphysics User’s Guide. Ver. 3.3. L.A: COMSOL, Inc.
14. Das, A. and S. K. Das. 2008. Microwave Engineering., New York: McGraw-Hill.
15. Debye, P. 1929. Polar Molecules. New. York: Chemical Catalog Co.
16. Ellison, W. J. 2007. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature Range 0–100 °C. Journal of Physical and Chemical Reference Data. 36(1): 1-18.
17. Fehsenfeld, F. C., K. M. Evenson and H. P. Broida. 1965. Microwave discharge cavities operating at 2450 MHz. The review of scientific instruments. 36(3): 294-298.
18. Geedipalli, S. R., V. Rakesh and A. K. Datta.2007. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering. 82: 359-368.
19. George, J. and R. Bergman. 2006. A new approach to include mode stirring effects in the steady state FDTD simulation of microwave heating cavities. Microwave and Optical Technology Letters. 48(6): 1179-1182.
20. Grossin, D., S. Marinel and J. G. Noudem. 2006. Materials processed by indirect microwave heating in a single-mode cavity. Ceramics International. 32: 911-915.
21. Kaatze, U. 1989. Complex permittivity of water as a function of frequency and temperature. Journal of Chemical Engineer Data. 34: 371-374.
22. Kasap, S. O. 2006. Principle of Electronic Materials and Device. 3th ed., Singapore: McGraw-Hill.
23. Ku, H. S., E. Siores, A. Taube and J. A. Ball. 2002. Productivity improvement through the use of industrial microwave technologies. Computers and Industrial Engineering. 42 (2-4): 281-290.
24. Metaxas, A. C. and R. J. Meredith. 1983. Industrial Microwave Heating. London: Peter Peregrinus.
25. Ohlsson, T. and P. O. Risman. 1978. Temperature distribution of microwave-heating with spheres and cylinders. Journal of Microwave Power and Electromagnetic Energy. 13(4): 303-309.
26. Osepchuk, J. M. 1984. A history of microwave heating applications. IEEE Transactions on Microwave Theory and Techniques. 32(9): 1200-1223.
27. Rao, N. N. 2004. Elements of Engineering Electromagnetics. 6th ed., New Jersey: Person Prentice Hall.
28. Siores, E. and D. D. Rego. 1995. Microwave applications in materials joining. Journal of Materials Processing Technology. 48: 619-625.
29. Thostenson, E. T. and T. W. Chou. 1999. Microwave processing: fundamentals and applications. Composites: Part A 30 (1999): 1055-1071.
30. Vilayannur, R. S., V. M. Puri and R. C. Anantheswaran. 1998. Size and shape effect on nonuniformity of temperature and moisture distributions in microwave heated food materials: Part I: Simulation. Journal of Food Process Engineering. 21(3): 209-233.
31. Water Structure and Science. 2007. Water dielectric and microwave radiation. Available at: www.lsbu.ac.uk. Accessed: 9 April 2008.
32. Welty, J. R., C. E. Wicks and R. E. Wilson. 2000. Fundamentals of Momentum, Heat, and Mass Transfer. 4th ed., New York: Wiley.
33. Yunus, A. C. 2004. Heat Transfer. 2nd ed., New York: McGraw-Hill.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42240-
dc.description.abstract微波加熱單模共振腔的發展雖有一段時間,但目前的研究中較少提到如何設計出一個高能量集中,並可針對液體做連續性加熱的微波單模共振腔,因此這樣的加熱系統仍是一個值得努力、研究的方向。
本研究針對如何設計出用於液體連續式加熱的微波加熱系統提出了一套有效的設計步驟。此微波加熱系統主要由TE10 矩形波導管傳播波源為2.45GHz的電磁波進入圓柱形共振腔,並在圓柱形共振腔中產生TM010的共振模態,在此模態下能量集中在共振腔中心處,能量集中的特性可用來對液體做連續加熱。由於阻抗匹配會隨著介電材料的加入而有所改變,本研究發現改變加熱水管的管徑可以輕易的調整阻抗匹配,我們使用商業軟體COMSOL Multiphysics作為模擬的輔助工具以求出在圓柱形共振腔內電場能量的分佈以及S參數,由S參數可知能量被介電材料吸收與反射的情形。利用反應曲面法得出在不同的介電材料下,其最適的加熱管徑範圍並以實際實驗加以驗證。
由研究結果可知,我們設計的微波單模共振腔加熱系統在匹配良好的情況下可使2%氯化鈉溶液達到90%以上的加熱效率;10%葡萄糖溶液達到80%以上的加熱效率,的確達到高效率,高能量集中的目的。而本研究所提供的方法,可使後人針對其他各種不同共振模態進行研究,更可以測試不同液體與共振腔如何達到最佳的匹配。
zh_TW
dc.description.abstractAlthough microwave single-mode resonant cavities for the purpose of heating have been developed for a long time, however, there are few researches concentrated on engineering design procedure to development a resonant cavity for heating of liquid food continuously with acceptable efficiency.
In this study an effective procedure for design of a continuous microwave heating system for liquid food was developed. The major component of the system was a TM010 mode cylindrical resonant cavity which being excited by a rectangular TE10 waveguide with 2.45GHz electromagnetic wave. Liquid flew through and microwave heated in tubing centered in the cavity. Impendence match that might vary with dielectric properties of the heated fluid was the most difficult task for the design. In this study we found that the impendence of the cavity could be easily varied by changing the diameter of the liquid tubing. We used commercial software COMSOL Multiphysics as a design tool to simulate electrical energy filed in the cavity and calculate scattering parameter (S-parameter) as an index for power transmission efficiency and response surface method to obtain the optimum diameter of tubing for model food with various dielectric properties. The designing procedure was validated with experimental works.
Our results point out under good impendence match, the heating efficiency can reach 90% and 80% for 2% NaCl solution and 10% glucose solution respectively and the designing procedure developed in this study provides an effective method for design of single-mode microwave heater at any resonant modes.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:54:48Z (GMT). No. of bitstreams: 1
ntu-97-R95631017-1.pdf: 3265005 bytes, checksum: 9bd688c937ab06f36c3611b6a76ed1af (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻探討 3
2-1 微波基本原理 3
2-1.1 微波簡介 3
2-1.2 材料的介電性質 4
2-1.3 微波加熱原理 8
2-2 微波傳輸裝置 9
2-3 微波共振腔 11
2-3.1 多模共振腔 11
2-3.2 單模共振腔 12
第三章 材料與方法 15
3-1 實驗設備之設計 15
3-1.1 加熱共振腔體設計程序 16
3-1.2波導管設計與設計軟體 18
3-1.3 圓柱形共振腔 20
3-2 模擬方法 23
3-2.1 模擬軟體 23
3-2.2 空腔狀態模擬 24
3-2.3 加入介電性材料的模擬 25
3-2.4 加入保溫材料後的模擬 28
3-3 試驗設計 29
3-3.1 田口試驗法與直交表 30
3-4 微波單模共振腔加熱系統實體製作 31
第四章 結果與討論 34
4-1 波導管設計 34
4-2 軟體模擬結果 37
4-2.1 接口處模擬 37
4-2.2 空腔內的電磁場分佈 39
4-2.3 介電材料的加入 41
4-2.4 田口試驗設計分析結果 54
4-2.5 反應曲面 55
4-3 實驗驗證與討論 60
第五章 結論 65
5-1 結論 65
參考文獻 66
附錄 69
dc.language.isozh-TW
dc.title微波單模共振腔於液體食品加熱之應用zh_TW
dc.titleApplication of Microwave Heating of Liquid Food in a Single-mode Resonant Cavityen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧福明(Fu-ming Lu),江昭皚(Joe-Air Jiang)
dc.subject.keyword微波加熱,單模共振腔,介電性質,有限元素法,zh_TW
dc.subject.keywordMicrowave heating,Single-mode cavity,FEM method,Dielectric property,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2008-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved