Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42228
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊照彥(Yang Jaw Yen)
dc.contributor.authorBagus Putra Muljadien
dc.contributor.author李念達zh_TW
dc.date.accessioned2021-06-15T00:54:06Z-
dc.date.available2008-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-08-06
dc.identifier.citationREFERENCES
1. Huang J.C., Yang J.Y., “Rarefied Flow Computations Using Nonlinear Model Boltzmann Equation” Journal of Computational Physics 120, 323-339. 1995
2. Yang J.Y., Shi Y.H. “A Kinetic Beam Scheme for Ideal Quantum Gas Dynamics” Proceedings of Royal Society A. 462, 1553-1572. 2006
3. B. D. Shizgal.”A Gaussian Quadrature Procedure for Use in the Solution of the Boltzmann Equation and Related Problems”, Journal Computational Physics, 41, 309. 1981
4. Bhatnagar, P.L., Gross, E.P., and Krook, “A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems.” Physical Review, Vol. 94, No. 3, 511-525, 1954.
5. Grad, H. “On the Kinetic Theory of Rarefied Gases.” Communs. Pure and Appl. Math., Vol.2, 331-407, 1949.
6. Mott-Smith, H.M. “The Solution of the Boltzmann Equation for a Shock Wave.” Physical Review, Vol. 82, No. 6, 885-892, 1951
7. Bird, G.A. Monte Carlo Simulation of Gas Flows. Annual Review of Fluid Mechanics, Vol.10, 11-31, 1978
8. Huang, A.B. and Giddens, D.P. “A New Table for a Modified (Half-Range) Gauss-Hermite Quadrature with an Evaluation of the Integral.” Journal of Mathematics and Physics, vol. 47, No.2, 213-218, 1968
9. Shen, Shan-Fu. Lecture Notes on Rarefied Gas Dynamics, A course offered at Institute of Applied Mechanics, National Taiwan University. Copyright 1991
10. Chang, Sin-Chung. “Courant Number and Mach Number Insensitive CE/SE Euler Solvers.” AIAA 2005-4355, 2005
11. Chang, Sin-Chung and W.M. To, “A New Numerical Framework for Solving Conservation Laws-The Method of Space Time Conservation Element and Solution Element” , NASA TM 104495, August 1991
12. S.C. Chang and W.M. To, “A Brief Description of a New Numerical Framework for Solving Conservation Laws-The Method of Space Time Conservation Element and Solution Element, in Proceedings of the Thirteenth International Conference on Numerical Methods in Fluid Dynamics”, Rome, Italy 1992, edited by M. Napolitano and F. Sabetta, Lecture Notes in Physics 414, (Springer – Verlag, New York/Berlin, 1992), p. 396
13. S.C. Chang, “The method of Space-Time Conservation Element and Solution Element-A New Approach for solving the Navier-Stokes and Euler equations”, Journal of Computational Physics., 119, 295 (1995)
14. Sir James Jeans. Introduction to the Kinetic Theory of Gases. Cambridge University Press (1994)
15. Chapman and Cowling. Mathematical Theory of Non Uniform Gases. Cambridge University Press (1970)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42228-
dc.description.abstract中文摘要
氣體動力學理論歸類為二種,第一種方法,從巨觀空氣力學特性著手,將密度、質量與溫度視為獨立變數,並且考慮黏度、熱傳導係數等等。另一方面,第二種方法,則是由微觀的基本方程式層面下手,來探討氣體分子在巨觀表現下的一般特性,是現今最為被廣泛的接受,是為考慮單一粒子,在滿足波茲曼積分微方程下的分佈函數。本文著重的特色在運用新式的守恆算則,計算氣體動力流體,並建立在波茲曼方程式與局部熱力學平衡的假設下,配合分立坐標法的觀念,將一個原本在位置空間、時間及速度空間均連續的分佈函數的積分方程式,轉換為一在位置空間與時間連續。另一方面,經分立坐標法處理後之聯立微分方程組為一組念源項之雙曲線守恆律。進而由二階準確度,顯性算則稱著保守元素/解答方法,引入計算此方程式。積分捕捉SOD 震波管內流動結構的結果與Sjogreen 展開式問題,並且將其結果與Riemann’s Euler problem 比較程式的準確度為何。本文著重於將CE/SE算則引入分立坐標計算法,計算波茲曼方程式,這是先前研究都沒有使用過的。而在未來工作上,。本研究是著重於固態的基礎,將會把提高維度的計算,與引入碰撞項至波茲曼方程式中。
zh_TW
dc.description.abstractABSTRACT
The dynamic theory of gases may be studied from two points of view. One may take as starting point the macroscopic equations of aerodynamics with the density, mass velocity, and temperature as independent variables and involving various coefficients, e.g., viscosity, heat conduction, etc. On the other hand, one may use a more fundamental and general microscopic formalism. The most fruitful of such formalisms available at present is that in terms of one particle distribution functions satisfying integro-differential equation of the Boltzmann type.
This thesis features the usage of a novel Conservation Element/Solution Element scheme for solving gas dynamical flows. The Boltzmann equation approach is adopted and the local thermodynamic equilibrium distribution is assumed. The discrete ordinate method is first applied to remove the velocity space dependency of the distribution function which renders the model Boltzmann equation in phase space to a set of hyperbolic conservation laws. Then a two level accurate, explicit scheme called Conservation Element/Solution Element method is employed to solve those equations. The integrated results will capture the flow structure of a SOD’s shock tube and Sjögreen’s expansion problem and are to be compared to the results of Riemann’s Euler problem for the same condition.
Having known that the usage of CE/SE scheme simultaneously with Discrete Ordinate Method formulation to solve equilibrium Boltzmann equation have never been done before, this study emphasizes on making a solid foundation on a more complicated computations in the future; either that be in dimensional expansion or inclusion of collision terms of Boltzmann equation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:54:06Z (GMT). No. of bitstreams: 1
ntu-97-R95543071-1.pdf: 995234 bytes, checksum: 67441e7476e890742b0efd0715c6a062 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTABLE OF CONTENTS
PREFACE 1
ACKNOWLEDGEMENT 2
ABSTRACT 3
中文摘要 4
ABSTRAK 5
TABLE OF CONTENTS 6
LIST OF FIGURES 7
CHAPTER 1: INTRODUCTION 8
CHAPTER 2: BASIC THEORY 10
§2-0 Flow Regimes 10
§2-1 Velocity Distribution Function 13
§2-2 Boltzmann Equation 15
§2-3 Macroscopic Gas Characteristic 16
§2-4 Discrete Ordinate Method 17
CHAPTER 3: NUMERICAL METHOD 18
§3-0 Conservation Element/Solution Element 18
§3-1 Normalization 21
§3-2 Macroscopic values acquirement 22
CHAPTER 4: NUMERICAL RESULTS AND DISCUSSION 23
CHAPTER 5: CONCLUDING REMARKS AND FUTURE WORKS 32
REFERENCES 34
APPENDIX 36
Gauss-Hermite Quadrature Formula 36
dc.language.isoen
dc.title應用守恆元素/解答元素方法與離散座標法於理想氣體動力學zh_TW
dc.titleA Conservation Element/Solution Element Method
with Discrete Ordinate Method for Ideal Gas Dynamics
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor薛克民(Shyue Keh Ming),黃俊誠(Huang Juan Chen)
dc.contributor.oralexamcommittee#VALUE!
dc.subject.keyword守恆元素/解答元素,氣體動力學,zh_TW
dc.subject.keywordComputational,Fluid,Dynamics,Discrete,Ordinate,Method,Ideal,Gas,Dynamics,en
dc.relation.page28
dc.rights.note有償授權
dc.date.accepted2008-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
971.91 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved