Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42220
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林守德
dc.contributor.authorYu-Chun Shenen
dc.contributor.author沈砡君zh_TW
dc.date.accessioned2021-06-15T00:53:37Z-
dc.date.available2011-08-23
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citation[1] World Health Organization. Depression. Retrieved June 27, 2011, from http://www.who.int/mental_health/management/depression/definition/en/.
[2] J. L. Ayuso-Mateos, J. L. Vazquez-Barquero, C. Dowrick, V. Lehtinen, O. S. Dalgard, P. Casey, C. Wilkinson, L. Lasa, H. Page, G. Dunn and G. Wilkinson. Depressive Disorders in Europe: Prevalence Figures from the ODIN Study. The British Journal of Psychiatry, 179, 308-316, 2001.
[3] M. M. Ohayon and S. C. Hong. Prevalence of Major Depressive Disorder in the General Population of South Korea. Journal of Psychiatry research, 40, 30-6, 2006.
[4] D. G. Blazer, R. C. Kessler, K. A. McGonagle and M. S. Swartz. The Prevalence and Distribution of Major Depression in a National Community Sample: the National Comorbidity Survey. The American Journal of Psychiatry, 151, 979-986, 1994.
[5] PTT. Retrieved June 27, 2011, from http://www.ptt.cc/index.html.
[6] Yahoo! 斷章取義API. Retrieved June 27, 2011, from http://tw.developer.yahoo.com/cas/.
[7] R. E. Fan, K. W. Chang. C. J. Hsieh. X. R. Wang and C. J. Lin. LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research, 9, 1871-1874.2008.
[8] N. Tintarev and J. Masthoff. A Survey of Explanations in Recommender Systems. In Proceedings of the International Conference on Data Engineering Workshop, 2007.
[9] M. Bilgic and R. J. Mooney. Explaining Recommendations: Satisfaction vs. Promotion. In Proceedings of the Beyond Personalization Workshop, IUI, 2005.
[10] J. L. Herlocker, J. A. Konstan and J. Riedl. Explaining Collaborative Filtering Recommendations. In Proceedings of the ACM Conference on Computer Supported Cooperative Work, 241-250, 2000.
[11] I. Kononenko. Machine Learning for Medical Diagnosis: History, State of the Art and Perspective. Artificial Intelligence in Medicine, 23, 89-109, 2001.
[12] J. Sim and C. C. Wright. The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Physical Therapy, 85, 257-268, 2005.
[13] J.R. Landis and G. G. Koch. The Measurement of Observer Agreement for Categorical Data. Biometrics, 33, 159-174, 1988.
[14] Y. Neuman, G. Kedma, Y. Cohen and O. Nave. Using Web-Intelligence for Excavating the Emerging Meaning of Target-Concepts. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 22-25, 2010.
[15] American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. American Psychiatric Association, Washington, DC, 2000.
[16] G. E. Simon, M. VonKorff, M. Piccinelli, C. Fullerton and J. Ormel. An International Study of the Relation between Somatic Symptoms and Depression. The New England Journal of Medicine, 341, 1329-1335, 1999.
[17] M. H. Trivedi. The Link between Depression and Physical Symptoms. Primary Care Companion to The Journal of Clinical Psychiatry, 6, 12-16, 2004.
[18] C. I. Hung, L. J. Weng. Y. J. Su and C. Y. Liu. Depression and Somatic Symptoms Scale: A New Scale with Both Depression and Somatic Symptoms Emphasized. Psychiatry and Clinical Neurosciences, 60, 700-708, 2006.
[19] L. Katz. Software Might Know If You’re Depressed. Retrieved June 27, 2011, from http://news.cnet.com/8301-17938_105-20008486-1.html?tag=mncol;title, 23 June, 2010.
[20] B. Pang, L. Lee and S. Vaithyanathan. Thumbs Up? Sentiment Classification using Machine Learning Techniques. In Proceedings of the Conference on Empirical methods in Natural Language Processing, 10, 79-86, 2002.
[21] C. Strapparava and R. Mihalcea. Learning to Identify Emotions in Text. In proceedings of the ACM Symposium on Applied Computing, 1556-1560, 2008.
[22] G. Mishne. Experiments with Mood Classification in Blog Posts. In Proceedings of the 1st Workshop on Stylistic Analysis of Text For Information Access, 2005.
[23] M. R. Eastwood and S. Stiasny. Psychiatric Disorder, Hospital Admission, and Season. Archives of General Psychiatry, 35, 769-771, 1978.
[24] G. Morken, S. Lilleeng and L. M. Linaker. Seasonal Variation in Suicides and in Admissions to Hospital for Mania and Depression. Journal of Affective Disorders, 69, 39-45, 2002.
[25] M. Kerkhofs, P. Linkowski, F. Lucas and J. Mendelwicz. Twenty-Fore-Hour Patterns of Sleep in Depression. Sleep, 14, 501-506, 1991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42220-
dc.description.abstract憂鬱症是當前人類社會的重要疾病,然而許多人有憂鬱症的問題卻不自知。由於人們熱衷於將自己的日記或情緒發洩寫在網路上,利用文字來做憂鬱症的偵測應是一個值得研究的問題。而這篇論文的目標在於設計一個分類系統,能藉由一個人所寫的文章來判斷他是否為潛在的憂鬱症患者。
為了解決這個問題,我們提出了一個使用監督式學習(supervised learning)方法的兩階段分類器。第一個階段先判斷目標是否為負面情緒,第二個階段再判斷目標是否為憂鬱症。所有的訓練資料皆來自PTT電子佈告欄,且我們以字詞的TF-IDF值作為基本的特徵。兩階段的交叉驗證準確度(cross validation accuracy)分別為96.17%及81.86%。此外,在第二階段中,我們還額外考慮了時間資訊,將一個時間性特徵定義為“時間-字詞”的配對,在這些時間性特徵加入後,得到2.65%的準確度提升。這表示,在不同的時間講同樣的字可能代表不同的傾向(憂鬱症或一般負面情緒)。我們也發現時間資訊在缺乏明顯字詞的情況下效果特別明顯,由於在真實世界中,許多憂鬱症患者並不會使用明顯的字詞,因此我們可以期待時間資訊在系統實際使用時所發揮的效果。
為了檢視系統與真人判斷的一致性,我們進行了使用者測試,結果顯示系統在偵測重度憂鬱症上的表現比起偵測中度或輕度憂鬱要好。最後,本研究提出了一個解釋的方法,希望能在不失去準確率的情況下增進真人判斷的效率,並且以實際的使用者測試證實了它的效果。
zh_TW
dc.description.abstractDepression is now an important disease in human society, while many people have this problem without being aware of it. Since people like to post their diary or vent emotions on the web, detect depression by texts should be a worthwhile topic. The goal of this thesis is to design a classification system that determines whether a person is a potential candidate for depression given the texts written by the person.
To solve this problem, we propose to use a “two-stage” classifier with supervised learning method. The first stage determines whether the target is negative-emotion or not, and if it is, the second stage further determines whether it is clinical depression or just ordinary sadness. All of our training data come from PTT bulletin board system, and TF-IDF values of words is used as the basic features for classification. The cross validation accuracy of the two stages are 96.17% and 81.86% respectively. In addition, for the second stage, we further consider time information, define a temporal feature to be a time-term pair, and result in 2.65% improvement when these temporal features are added. It shows that saying one word in different time may represent different tendencies (clinical depression or ordinary sadness). We also found that time information works especially when obvious terms are not available, since lots of depression people in real world do not speak obvious terms, we can expect the effect of time information when the system is in reality use.
To see the consistency between system and human judgment, a user study has been conducted. It shows that our system performs better in detecting major depression than in detecting moderate or minor depression. In the end, we demonstrate an explanation way to improve the efficiency of human judgment without losing accuracy, and a user study proved the effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:53:37Z (GMT). No. of bitstreams: 1
ntu-100-R98922071-1.pdf: 4056035 bytes, checksum: a7b93c5f0aefd845bcaff43b558e0d26 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAcknowledgement ............i
Abstract ............ii
摘要............iii
Table of Contents ............iv
List of Figures ............vi
List of Tables ............vii
Chapter 1 Introduction ............1
1.1 Background and Motivation ............1
1.2 Methodology Overview ............3
1.3 Summary of Contributions ............4
1.4 Thesis Organization ............4
Chapter 2 Depression Detection ............6
2.1 Research Problems ............6
2.2 Methodology Overview ............6
2.3 Description of the Training Data ............7
2.4 Stage 1 – “negative-emotion vs. non-negative-emotion” Classifier ............10
2.4.1 Feature Generation ............10
2.4.2 Experiment Results ............10
2.5 Stage 2 – “depression vs. sadness” Classifier ............11
2.5.1 Feature Generation ............11
2.5.1.1 Term Features ............11
2.5.1.2 Temporal Features ............11
2.5.2 Experiment Results ............13
2.5.2.1 Term Features ............14
2.5.2.2 Temporal Features ............16
Chapter 3 Explanation System ............23
3.1 Goal of Explanation ............23
3.2 Explanation Methodology ............24
3.3 Explanation Demonstrate ............25
Chapter 4 User Study ............29
4.1 Depression Detection User Study ............29
4.1.1 Design ............29
4.1.2 Results and Discussion ............32
4.2 Explanation User Study ............36
4.2.1 Design ............36
4.2.2 Results and Discussion ............38
Chapter 5 Related Works ............40
5.1 Definition of Depression ............40
5.2 Pedesis – A Depression Detection System ............42
5.3 Emotion Classification ............43
5.4 Time Information in Depression ............44
Chapter 6 Conclusions ............45
Bibliography ............47
Appendix A Top 200 depression and sad features ............50
dc.language.isoen
dc.subject解釋zh_TW
dc.subject憂鬱症zh_TW
dc.subject憂鬱症判斷zh_TW
dc.subject時間資訊zh_TW
dc.subject文章分類zh_TW
dc.subjecttime informationen
dc.subjectexplanationen
dc.subjecttext classificationen
dc.subjectdepressionen
dc.subjectdepression detectionen
dc.title基於PTT電子佈告欄之憂鬱症偵測:以文字及時間資訊為特徵zh_TW
dc.titleDepression Detection Based on PTT Bulletin Board System: Using Text and Time Information as Featuresen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張俊盛,陳信希,劉昭麟,鄭卜壬
dc.subject.keyword憂鬱症,憂鬱症判斷,時間資訊,文章分類,解釋,zh_TW
dc.subject.keyworddepression,depression detection,time information,text classification,explanation,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2011-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved