Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如
dc.contributor.authorChia-Chi Linen
dc.contributor.author林嘉琪zh_TW
dc.date.accessioned2021-06-15T00:52:35Z-
dc.date.available2008-08-11
dc.date.copyright2008-08-11
dc.date.issued2008
dc.date.submitted2008-08-08
dc.identifier.citation[1] H. Li and K. Iga, “Vertical-Cavity Surface-Emitting Laser Devices,” (Berlin, New
York, Springer, 2003), Chap. 2,3.
[2] T. Fishman and A. Hardy, 'Injection- locking analysis of vertical-cavity laser
arrays,' J. Opt. Soc. Am. B - Opt. Phy. 16, 38-45 (1999).
[3] T. Fishman and A. Hardy, 'Effect of spatial hole burning on injection-locked
vertical-cavity surface-emitting laser arrays,' Appl. Opt. 39, 3108-3114 (2000).
[4] J. Y. Law, G. H. M. van Tartwijk, and G. P. Agrawal, 'Effects of transverse-mode
competition on the injection dynamics of vertical-cavity surface-emitting lasers,'
Quantum & Semiclassical Opt. 9, 737-47 (1997).
[5] D. L. Boiko, G. M. Stephan, and P. Besnard, 'Fast polarization switching with
memory effect in a vertical cavity surface emitting laser subject to modulated
optical injection,' J. of Appl. Phys. 86, 4096-4099 (1999).
[6] S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through
optical NRZ-to-RZ conversion andpassive time-division multiplexing for soliton
transmission systems,” Electron. Lett. 30, 984–985 (1994).
[7] D. Norte and A. E. Willner, “Demonstration of an all-optical data format
transparent WDM-to-TDM network node with extinction ratio enhancement for
reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715 (1996).
[8] K. Yonenaga, Y. Miyamoto, A Hirano, A. Sano, S. Kuwahara, H. Kawakami, H.
Toba, K. Murata, M. Fukutoku, Y. Yamane, K. Noguchi, T. Ishibashi, and K.
Nakajima., “320 Gb/s WDM field experiment using 40 Gb/s ETDM channels over
176 km dispersion-shifted fiber with nonlinearity-tolerant signal format,” Electron.
38
Lett. 36, 153-155 (2000).
[9] D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format
for 40-Gb/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett. 9,
398-400 (1997).
[10] Y. Onishi, N. Nishiyama, C. Caneau, F. Koyama, and C. E. Zah, 'Optical Inverter
Using a Vertical-Cavity Surface-Emitting Laser with External Light Injection,'
Proc. IEEE LEOS Annual Meeting, (2003).
[11] L. Li, “A unified description of semiconductor lasers with external light injection
and its application to optical bistability,” IEEE J. Quantum Electron. 30,
1723-1726 (1994).
[12] K. Hasebe and F. Koyama, “Modeling of All-Optical-Signal Processing Devices
Based on Two-Mode Injection-Locked Vertical-Cavity Surface-Emitting Laser,”
Jpn. J. Appl. Phys. 45, 6697-6703 (2006).
[13] Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ
format transformer with an injection-locked Fabry-Perot laser diode at unlasing
condition,” Opt. Express 12, 4449-4456 (2004).
[14] D. Norte and A. E. Willner, “Demonstration of an all-optical data format
transparent WDM-to-TDM network node with extinction ratio enhancement for
reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715-717 (1996).
[15] C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C.-S. Park, “Experimental
demonstration of 10-Gb/s data format conversions between NRZ and RZ using
SOA-loop-mirror,” J. Lightwave Technol. 23, 834-841 (2005).
[16] L. X. Wang, B.C. Baby, V. Glesk, and I. Prucnal, “All-optical data format
conversion between RZ and NRZ based on a Mach-Zehnder interferometric
wavelength converter,” IEEE Photon. Technol. Lett. 15, 308-310 (2003).
39
[17] L. Noel, X. Shan and A. D. Ellis, “Four WDM channel NRZ to RZ format
conversion using a single semiconductor laser amplifier,” Electron. Lett. 31,
277-278 (1995).
[18] D. Norte and A. E. Willner, “Demonstration of an all-optical data format
transparent WDM-to-TDM network node with extinction ratio enhancement for
reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715-717 (1996).
[19] H. J. Lee, H. G. Kim, J. Y. Choi and H. K. Lee, “All-optical clock recovery from
NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of
semiconductor optical amplifier,” Electron. Lett. 35, 989-990 (1999).
[20] C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C. S. Park, “Experimental
demonstration of 10-gb/s data format conversions between NRZ and RZ using
SOA-loop-mirror,” J. Lightwave Technol. 23, 834-841 (2005).
[21] A. Buxens, H. N. Poulsen, A. T. Clausen, and P. Jeppesen, “All-optical
OTDM-to-WDM signal-format translation and OTDM add-drop functionality
using bidirectional four wave mixing in semiconductor optical amplifier,”
Electron. Lett. 36, 156-158 (2000).
[22] L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “Vapor sensor realized in
an ultracompact polarization interferometer built of a freestanding porous-silicon
form birefringent film,” IEEE Photon. Technol. Lett. 6, 834-836 (2003).
[23] G.-R. Lin, Y.-C. Chang, and K.-C. Yu, “All-optical pulse data generation in a
semiconductor optical amplifier gain controlled by a reshaped optical clock
injection,” Appl. Phys. Lett. 88, 191114 (2006).
[24] G.-R. Lin, K.-C. Yu, and Y.-C. Chang, “10 Gbit/s all-optical non-return to
zero-return-to-zero data format conversion based on a backward
dark-optical-comb injected semiconductor optical amplifier,” Opt. Lett. 31,
40
1376-1378 (2006).
[25] S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp Reduction of Directly
Modulated Semiconductor Lasers at 10 Gb/s by Strong CW Light Injection,” J.
Lightwave Technol. 12, 418-424 (1994).
[26] C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and
wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209,
329-334 (2002).
[27] Y. D. Jeong, H. J. Lee, H. Yoo, and Y. H. Won, “All-optical NRZ-to-PRZ
converter at 10 Gb/s based on self-phase modulation of Fabry-Perot laser diode,”
IEEE Photon. Technol. Lett. 16, 1179-1181 (2004).
[28] Y.-C. Chang, Y.-H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ
format transformer with an injection-locked Fabry-Perot laser diode at unlasing
condition,” Opt. Express 12, 4449-4456 (2004).
[29] G.-R. Lin, Y.-H. Lin, and Y.-C. Chang, “Theory and Experiments of a Mode
Beating Noise Suppressed and Mutually Injection-Locked Fabry-Perot Laser
Diode and Erbium-Doped Fiber Amplifier Link,” IEEE J. of Quantum Electron.
40, 1014-1022 (2004)
[30] J. Wang, J. Q. Sun, Q. Z. Sun, D. L. Wang, and D. X. Huang, “Proposal and
simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and
difference-frequency generation,” Opt. Express 15, 583–588 (2006).
[31] J. Wang, J. Q. Sun, and Q. Z. Sun, “Proposal for all-optical format conversion
based on a periodically poled lithium niobate loop mirror,” Opt. Lett. 32,
1477–1479 (2007).
[32] J. Wang, J. Q. Sun, Q. Z. Sun, D. L. Wang, M. J. Zhou, X. L. Zhang, D. X. Huang,
and M. M. Fejer, “All-optical format conversion using a periodically poled lithium
41
niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys.
Lett. 91, 051107 (2007).
[33] J. Wang, J. Q. Sun, Q. Z. Sun, D. L. Wang, M. J. Zhou, X. L. Zhang, D. X. Huang,
and M. M. Fejer, “Experimental observation of all-optical
non-return-to-zero-to-return-to-zero format conversion based on cascaded
second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32,
2462–2464 (2007).
[34] L. Huo, Y. Dong, C. Lou, Y. Gao, “Clock extraction using an optoelectronic
oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,”
IEEE Photon. Technol. Lett. 15, 981-983 (2003).
[35] A. Reale, P. Lugli, and S. Betti, “Format conversion of optical data using
four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top.
Quantum Electron. 7, 703-709 (2001).
[36] H. Li, T. L. Lucas, J. G. McInerney, M. W. Wright, and R. A. Morgan, 'Injection
locking dynamics of vertical cavity semiconductor lasers under conventional and
phase conjugate injection,' IEEE J. Quantum Electron. 32, 227-235 (1996).
[37] K. Hasebe and F. Koyama, “Modeling of All-Optical-Signal Processing Devices
Based on Two-Mode Injection-Locked Vertical-Cavity Surface-Emitting Laser,”
Jpn. J. Appl. Phys. 45, 6697-6703 (2006).
[38] H. Kawaguchi, Y. Yamayoshi, and K. Tamura, “All-optical format conversion
using an ultrafast polarizationbistable vertical-cavity surface-emitting laser,”
Lasers and Electro-Optics, 2000. (CLEO 2000). Conference, 379-380 (2000).
[39] G.-R. Lin, K.-C. Yu, and Y.-C. Chang, “10 Gbit/s all-optical non-return-to-zero to
return-to-zero data format conversion based on a backward dark-optical-comb
injected semiconductor optical amplifier,” Opt. Lett. 31, 1376-1378 (2006).
42
[40] G. P. Agrawal and N. A. Olsson, “Amplification and compression of weak
picosecond optical pulses bu using semiconductor laser amplifiers,” Opt. Lett. 14,
500-502 (1989).
[41] N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer,
“Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm
ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 5, 657-660 (1993).
[42] G.-R. Lin, C.-L. Pan, and K.-C. Yu, “Dynamic chirp control of all-optical
format-converted pulsed data from a multi-wavelength inverse-optical-comb
injected semiconductor optical amplifier,” Opt. Express 15, 13330-13339 (2007)
[43] R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J.
Quantum Electron. 18, 976-983 (1982).
[44] L. Li, “Static and dynamic properties of injection-locked semiconductor lasers,”
IEEE J. Quantum Electron. 30, 1701-1708 (1994).
[45] R. Hui, S. Benedetto, I. Monitrosset, “Optical bistability in diode-laser amplifiers
and injection-locked laser diodes,” Opt. Lett. 18, 287-289 (1993).
[46] K. Petermann, Laser Diode Modulation and Noise. Publishers Dordrecht, The
Netherlands: Kluwer Academic, 1988 (corrected 1991).
[47] F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability
properties for a semiconductor laser with external light injection,” IEEE J.
Quantum Electron. 21, 784-793, 1985.
[48] R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection locking in distributed
feedback semiconductor lasers,” IEEE J. Quantum Electron. 27, 1688-1695
(1991).
[49] W. Sharfin, M. Dagenais, “Dynamics of optically switched bistable diode laser
amplifiers,” IEEE J. Quantum Electron. 23, 303-308 (1987).
43
[50] S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through
optical NRZ-to-RZ conversion andpassive time-division multiplexing for soliton
transmission systems,” Electron. Lett. 30, 984–985 (1994).
[51] D. Norte and A. E. Willner, “Demonstration of an all-optical data format
transparent WDM-to-TDM network node with extinction ratio enhancement for
reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715 (1996).
[52] K. Yonenaga, Y. Miyamoto, A Hirano, A. Sano, S. Kuwahara, H. Kawakami, H.
Toba, K. Murata, M. Fukutoku, Y. Yamane, K. Noguchi, T. Ishibashi, and K.
Nakajima., “320 Gb/s WDM field experiment using 40 Gb/s ETDM channels over
176 km dispersion-shifted fiber with nonlinearity-tolerant signal format,” Electron.
Lett. 36, 153-155 (2000).
[53] D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format
for 40-Gb/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett. 9,
398-400 (1997).
[54] L. Noel, X. Shan and A. D. Ellis, “Four WDM channel NRZ to RZ format
conversion using a single semiconductor laser amplifier,” Electron. Lett. 31,
277-278 (1995).
[55] D. Norte and A. E. Willner, “Demonstration of an all-optical data format
transparent WDM-to-TDM network node with extinction ratio enhancement for
reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715-717 (1996).
[56] H. J. Lee, H. G. Kim, J. Y. Choi and H. K. Lee, “All-optical clock recovery from
NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of
semiconductor optical amplifier,” Electron. Lett. 35, 989-990 (1999).
[57] C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C. S. Park, “Experimental
demonstration of 10-gb/s data format conversions between NRZ and RZ using
44
SOA-loop-mirror,” J. Lightwave Technol. 23, 834-841 (2005).
[58] A. Buxens, H. N. Poulsen, A. T. Clausen, and P. Jeppesen, “All-optical
OTDM-to-WDM signal-format translation and OTDM add-drop functionality
using bidirectional four wave mixing in semiconductor optical amplifier,”
Electron. Lett. 36, 156-158 (2000).
[59] L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “Vapor sensor realized in
an ultracompact polarization interferometer built of a freestanding porous-silicon
form birefringent film,” IEEE Photon. Technol. Lett. 6, 834-836 (2003).
[60] S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp Reduction of Directly
Modulated Semiconductor Lasers at 10 Gb/s by Strong CW Light Injection,” J.
Lightwave Technol. 12, 418-424 (1994).
[61] C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and
wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209,
329-334 (2002).
[62] H. Kawaguchi, Y. Yamayoshi, and K. Tamura, “All-optical format conversion
using an ultrafast polarizationbistable vertical-cavity surface-emitting laser,”
Lasers and Electro-Optics, 2000. (CLEO 2000). Conference, 379-380 (2000).
[63] C.-C. Lin, H.-C. Kuo, P.-C. Peng, and G.-R. Lin, “Chirp and error rate analyses of
an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ
converter,” Opt. Express 16, 4838-4847 (2008).
[64] Charles H. Henry, ”Theory of the Linewidth of Semiconductor Lasers,” IEEE J. of
Quantum Electron. 18, 259-264 (1982)
[65] T.C. Lu, J.Y. Tsai, H. C. Kuo, and S.C. Wang, “Comparisons of InP/InGaAlAs and
InAlAs/InGaAlAs distributed Bragg reflectors grown by metalorganic chemical
vapor deposition”, Materials Science and Engineering (B) 107, 66-70 (2004).
45
[66] J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW
operation and threshold characteristics of all-monolithic InAl-GaAs 1.55- m
VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14, 1031–1033
(2002).
[67] D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single
mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron.
21, 674-679 (1985).
[68] C. Henry and R. F. Kazarinov, “Instability of semiconductor lasers due to optical
feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 295-301 (1986).
[69] S. Sivaprakasam and R. Singh, “Gain change and threshold reduction of diode
laser by injection locking,” Opt. Commun. 151, 253 (1998).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42203-
dc.description.abstract在本論文中,我們使用2.5 GHz 的弦波時鐘訊號直接調變偏壓在臨界點之下的垂直共振腔面射型雷射(VCSEL),實現OC-48 下全光之非歸零碼轉歸零碼的格式轉換。消光比為5 dB 的非歸零碼資料訊號外部注入到VCSEL,在不需要放大的情況之下,經過半導體光放大器格式轉換器轉換後,歸零碼資料訊號的消光比可提升到9.2 dB。而在位元率2.5 Gbit/s 的操作下,轉換後歸零碼訊號的接收功率在-26.7dBm 時,仍可以獲得10-12 的誤碼率,並在傳輸25 km 後接收功率在-24.3 dBm 時,仍可以獲得10-9 的誤碼率。另外,我們也利用連續波及編碼調製波的光時鐘訊號分別注入垂直共振腔面射型雷射,進行轉換後歸零碼訊號的啾頻研究;理論分析顯示經由編碼調製波注入轉換後的訊號之啾嚬可以比連續波注入的結果還要明顯
降低2.2GHz (約為32 %),然而脈衝寬也相對地加寬3.2 ps (劣化度17 %)。我們提出的利用光注入被時鐘訊號調變之垂直共振腔面射型雷射實現全光非歸零碼轉歸零碼的格式轉換器,具有簡單的架構,而且轉換後的歸零碼訊號其波長與資料極性皆與輸入的非歸零碼訊號一致。
此外,為因應高速高容量的需求,我們也利用10 GHz 脈衝時鐘取代弦波時鐘調變面射型雷射二極體,實現OC-192 下全光之非歸零碼轉歸零碼的格式轉換,我們使用脈衝式電梳訊號直接調變垂直共振腔面射型雷射,配合非歸零格式光訊號的注入不僅能提高垂直共振腔面射型雷射的調變頻寬,更可以在時域上透過注入鎖定效應有效地窄化其增益線寬。實驗結果顯示欲達成高位元率的操作,必須提高垂直共振腔面射型雷射的偏壓電流及增加反向電梳時鐘訊號調變功率。經過轉換之10 Gbit/s 歸零格式訊號擁有消光比約達7 dB,在接收功率抵達 -17.1 dBm 之下仍可以得到10-9 之誤碼率,相較於低位元率之轉換,訊號啁啾也明顯提升至 4.09GHz。
zh_TW
dc.description.abstractOptically injection-locked single-wavelength gain-switching vertical cavity urface emitting laser (VCSEL) based all-optical converter is demonstrated to generate RZ data at 2.5 Gbit/s with bit-error-rate of 10-9 under receiving power of -29.3 dBm.A modified rate equation model is established to elucidate the optical injection induced gain-switching and NRZ-to-RZ data conversion in the VCSEL. The peak-to-peak frequency chirp of the VCSEL based NRZ-to-RZ is 4.5 GHz associated with a reduced frequency chirp rate of 178 MHz/ps at input optical NRZ power of -21 dBm, which is almost decreasing by a factor of 1/3 comparing with chirp on the SOA based NRZ-to-RZ converter reported previously. The power penalty of the BER measured back-to-back is about 2 dB from 1 Gbit/s to 2.5 Gbit/s.
Furthermore for the high bit rate, we proposed a novel OC-192 NRZ-to-RZ data format conversion based on VCSEL with a 10 GHz comb driven and external optical injection. As we know, the bandwidth of the TO-56-can package technology seems to limited up to 2.5 GHz. By using sinusoidal to 10 GHz directly modulated by the comb and external optical injection, the VCSEL resonance frequency is increased to 10 GHz. We can also increase the bias current and change the modulation shape for example to comb due to which support carrier can in short time immediately. We analyze the frequency chirp characteristic and the bit error rate (BER) performance under the different injection power and biased DC current. The peak-to-peak chirp is increased by increase the DC biased current and decrease the injection power which result from factor decreasing. Besides, the pulsewidth is reduced by increase the injection power and broaden by increase DC biased current with Δn’ add the phase shift. The peak-to-peak chirp of the optical signal with DC biased current 1.3 mA and injection power -5 dBm is 3.29 GHz. The BER of 10-9 is under receiving power –13 dBm, and the received power penalties improvement of 12dB from biased at lower DC biased current to higher DC biased current. Due to the threshold point left shift, the higher DC biased current has greater modulation depth compare to lower DC biased current, and further results the sharper shape on the transformed RZ signal. Besides, it also produces lager extinction ratio due to the part of comb shape under lasing is larger but has almost the same DC level, smaller chirp due to injection-locked improve the coherence of not only the signal but also the ASE and better timing jitter due to smaller phase noise from ASE. All of those can avoid the data format conversion’s sampling error. Therefore, the BER will be improved of 4-order is proposed. We also show the eye diagram of the converted RZ signal and different data stream. The signal to noise ratio, timing jitter, rising time, falling time and pulsewidth are measured 3.05, 7.14 ps, 120.5 ps, 132.2 ps and 97.8 ps, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:52:35Z (GMT). No. of bitstreams: 1
ntu-97-J95941005-1.pdf: 792026 bytes, checksum: b2a300ccf0a7a9d79f5ef84a941a3ed5 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書................................................... #
誌謝..................................................i
中文摘要 ............................................ ii
ABSTRACT .............................................iv
CONTENTS ..............................................vi
LIST OF FIGURES ..................................... viii
Chapter 1 Introduction ......................................... 1
1.1 Introduction ....................................... 1
1.2 Motivation ................................... 1
Chapter 2 Theory of Threshold Current Reduction under External Light
Injection Locking ....................................... 4
2.1 Theoretical Formula for Injection Locking of VCSELs ................................. 4
Chapter 3 Chirp and error rate analyses of an optical-injection gain-switch
VCSEL based all-optical NRZ-to-RZ converter ................................. 10
3.1 Introduction ...................................... 10
3.2 Experiments ................................... 11
3.2.1 Setup for the NRZ-to-PRZ format transformer. .................................. 11
3.3 Results and Discussions ......................................... 12
3.3.1 Injection power & RF power vs Extinction ratio ................................ 12
3.3.2 BER analysis ......................................... 14
3.3.3 Chirp analysis ........................................... 16
3.4 Summary ............................................. 17
vii
Chapter 4 Biased current dependent chirp of 10Gbit/s pulse data converted by
electrical comb modulated VCSEL with TO-56-can package............ 19
4.1 Introduction ........................................... 19
4.2 Experimental ...................................... 21
4.3 Results and Discussions ................................ 22
4.3.1 The structure and the characteristic diagram of VCSEL ..................... 22
4.3.2 Eye diagram ............................................ 23
4.3.3 BER and Q factor analysis .................................... 25
4.3.4 Chirp analysis ............................................. 28
4.4 Summary ........................................... 31
Chapter 5 Conclusion .......................................... 33
5.1 Conclusion I .............................................. 33
5.2 Conclusion II ................................................... 35
Chapter 6 References ...................................... 37
6.1 References ...................................... 37
dc.language.isozh-TW
dc.subject換zh_TW
dc.subject增&#64023zh_TW
dc.subject注入鎖模zh_TW
dc.subject暗梳直調zh_TW
dc.subject射zh_TW
dc.subjectNRZ-to-RZzh_TW
dc.subject垂直共振腔面射型&#63817zh_TW
dc.subjectOptical dataen
dc.subjectSemiconductor optical amplifiersen
dc.subjectFiber optics communicationsen
dc.title利用非歸零格式光數字訊號注入時鐘調變之垂直共振腔面射
型雷射進行歸零格式轉換
zh_TW
dc.titleAll-Optical Injection-Locking and NRZ-to-RZ Data-Format
Conversion in Clock Modulated VCSEL
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳靜雄,黃鼎偉,彭朋群
dc.subject.keyword垂直共振腔面射型&#63817,射,暗梳直調,注入鎖模,增&#64023,&#64000,換,NRZ-to-RZ,zh_TW
dc.subject.keywordFiber optics communications,Semiconductor optical amplifiers,Optical data,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2008-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
773.46 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved