請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42203完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林恭如 | |
| dc.contributor.author | Chia-Chi Lin | en |
| dc.contributor.author | 林嘉琪 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:52:35Z | - |
| dc.date.available | 2008-08-11 | |
| dc.date.copyright | 2008-08-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-08 | |
| dc.identifier.citation | [1] H. Li and K. Iga, “Vertical-Cavity Surface-Emitting Laser Devices,” (Berlin, New
York, Springer, 2003), Chap. 2,3. [2] T. Fishman and A. Hardy, 'Injection- locking analysis of vertical-cavity laser arrays,' J. Opt. Soc. Am. B - Opt. Phy. 16, 38-45 (1999). [3] T. Fishman and A. Hardy, 'Effect of spatial hole burning on injection-locked vertical-cavity surface-emitting laser arrays,' Appl. Opt. 39, 3108-3114 (2000). [4] J. Y. Law, G. H. M. van Tartwijk, and G. P. Agrawal, 'Effects of transverse-mode competition on the injection dynamics of vertical-cavity surface-emitting lasers,' Quantum & Semiclassical Opt. 9, 737-47 (1997). [5] D. L. Boiko, G. M. Stephan, and P. Besnard, 'Fast polarization switching with memory effect in a vertical cavity surface emitting laser subject to modulated optical injection,' J. of Appl. Phys. 86, 4096-4099 (1999). [6] S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion andpassive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30, 984–985 (1994). [7] D. Norte and A. E. Willner, “Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715 (1996). [8] K. Yonenaga, Y. Miyamoto, A Hirano, A. Sano, S. Kuwahara, H. Kawakami, H. Toba, K. Murata, M. Fukutoku, Y. Yamane, K. Noguchi, T. Ishibashi, and K. Nakajima., “320 Gb/s WDM field experiment using 40 Gb/s ETDM channels over 176 km dispersion-shifted fiber with nonlinearity-tolerant signal format,” Electron. 38 Lett. 36, 153-155 (2000). [9] D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett. 9, 398-400 (1997). [10] Y. Onishi, N. Nishiyama, C. Caneau, F. Koyama, and C. E. Zah, 'Optical Inverter Using a Vertical-Cavity Surface-Emitting Laser with External Light Injection,' Proc. IEEE LEOS Annual Meeting, (2003). [11] L. Li, “A unified description of semiconductor lasers with external light injection and its application to optical bistability,” IEEE J. Quantum Electron. 30, 1723-1726 (1994). [12] K. Hasebe and F. Koyama, “Modeling of All-Optical-Signal Processing Devices Based on Two-Mode Injection-Locked Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 45, 6697-6703 (2006). [13] Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express 12, 4449-4456 (2004). [14] D. Norte and A. E. Willner, “Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715-717 (1996). [15] C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C.-S. Park, “Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror,” J. Lightwave Technol. 23, 834-841 (2005). [16] L. X. Wang, B.C. Baby, V. Glesk, and I. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308-310 (2003). 39 [17] L. Noel, X. Shan and A. D. Ellis, “Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier,” Electron. Lett. 31, 277-278 (1995). [18] D. Norte and A. E. Willner, “Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715-717 (1996). [19] H. J. Lee, H. G. Kim, J. Y. Choi and H. K. Lee, “All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,” Electron. Lett. 35, 989-990 (1999). [20] C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C. S. Park, “Experimental demonstration of 10-gb/s data format conversions between NRZ and RZ using SOA-loop-mirror,” J. Lightwave Technol. 23, 834-841 (2005). [21] A. Buxens, H. N. Poulsen, A. T. Clausen, and P. Jeppesen, “All-optical OTDM-to-WDM signal-format translation and OTDM add-drop functionality using bidirectional four wave mixing in semiconductor optical amplifier,” Electron. Lett. 36, 156-158 (2000). [22] L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photon. Technol. Lett. 6, 834-836 (2003). [23] G.-R. Lin, Y.-C. Chang, and K.-C. Yu, “All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection,” Appl. Phys. Lett. 88, 191114 (2006). [24] G.-R. Lin, K.-C. Yu, and Y.-C. Chang, “10 Gbit/s all-optical non-return to zero-return-to-zero data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier,” Opt. Lett. 31, 40 1376-1378 (2006). [25] S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp Reduction of Directly Modulated Semiconductor Lasers at 10 Gb/s by Strong CW Light Injection,” J. Lightwave Technol. 12, 418-424 (1994). [26] C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329-334 (2002). [27] Y. D. Jeong, H. J. Lee, H. Yoo, and Y. H. Won, “All-optical NRZ-to-PRZ converter at 10 Gb/s based on self-phase modulation of Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 16, 1179-1181 (2004). [28] Y.-C. Chang, Y.-H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express 12, 4449-4456 (2004). [29] G.-R. Lin, Y.-H. Lin, and Y.-C. Chang, “Theory and Experiments of a Mode Beating Noise Suppressed and Mutually Injection-Locked Fabry-Perot Laser Diode and Erbium-Doped Fiber Amplifier Link,” IEEE J. of Quantum Electron. 40, 1014-1022 (2004) [30] J. Wang, J. Q. Sun, Q. Z. Sun, D. L. Wang, and D. X. Huang, “Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation,” Opt. Express 15, 583–588 (2006). [31] J. Wang, J. Q. Sun, and Q. Z. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett. 32, 1477–1479 (2007). [32] J. Wang, J. Q. Sun, Q. Z. Sun, D. L. Wang, M. J. Zhou, X. L. Zhang, D. X. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium 41 niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007). [33] J. Wang, J. Q. Sun, Q. Z. Sun, D. L. Wang, M. J. Zhou, X. L. Zhang, D. X. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462–2464 (2007). [34] L. Huo, Y. Dong, C. Lou, Y. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15, 981-983 (2003). [35] A. Reale, P. Lugli, and S. Betti, “Format conversion of optical data using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7, 703-709 (2001). [36] H. Li, T. L. Lucas, J. G. McInerney, M. W. Wright, and R. A. Morgan, 'Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection,' IEEE J. Quantum Electron. 32, 227-235 (1996). [37] K. Hasebe and F. Koyama, “Modeling of All-Optical-Signal Processing Devices Based on Two-Mode Injection-Locked Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 45, 6697-6703 (2006). [38] H. Kawaguchi, Y. Yamayoshi, and K. Tamura, “All-optical format conversion using an ultrafast polarizationbistable vertical-cavity surface-emitting laser,” Lasers and Electro-Optics, 2000. (CLEO 2000). Conference, 379-380 (2000). [39] G.-R. Lin, K.-C. Yu, and Y.-C. Chang, “10 Gbit/s all-optical non-return-to-zero to return-to-zero data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier,” Opt. Lett. 31, 1376-1378 (2006). 42 [40] G. P. Agrawal and N. A. Olsson, “Amplification and compression of weak picosecond optical pulses bu using semiconductor laser amplifiers,” Opt. Lett. 14, 500-502 (1989). [41] N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 5, 657-660 (1993). [42] G.-R. Lin, C.-L. Pan, and K.-C. Yu, “Dynamic chirp control of all-optical format-converted pulsed data from a multi-wavelength inverse-optical-comb injected semiconductor optical amplifier,” Opt. Express 15, 13330-13339 (2007) [43] R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976-983 (1982). [44] L. Li, “Static and dynamic properties of injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 30, 1701-1708 (1994). [45] R. Hui, S. Benedetto, I. Monitrosset, “Optical bistability in diode-laser amplifiers and injection-locked laser diodes,” Opt. Lett. 18, 287-289 (1993). [46] K. Petermann, Laser Diode Modulation and Noise. Publishers Dordrecht, The Netherlands: Kluwer Academic, 1988 (corrected 1991). [47] F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784-793, 1985. [48] R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection locking in distributed feedback semiconductor lasers,” IEEE J. Quantum Electron. 27, 1688-1695 (1991). [49] W. Sharfin, M. Dagenais, “Dynamics of optically switched bistable diode laser amplifiers,” IEEE J. Quantum Electron. 23, 303-308 (1987). 43 [50] S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion andpassive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30, 984–985 (1994). [51] D. Norte and A. E. Willner, “Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715 (1996). [52] K. Yonenaga, Y. Miyamoto, A Hirano, A. Sano, S. Kuwahara, H. Kawakami, H. Toba, K. Murata, M. Fukutoku, Y. Yamane, K. Noguchi, T. Ishibashi, and K. Nakajima., “320 Gb/s WDM field experiment using 40 Gb/s ETDM channels over 176 km dispersion-shifted fiber with nonlinearity-tolerant signal format,” Electron. Lett. 36, 153-155 (2000). [53] D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett. 9, 398-400 (1997). [54] L. Noel, X. Shan and A. D. Ellis, “Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier,” Electron. Lett. 31, 277-278 (1995). [55] D. Norte and A. E. Willner, “Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 8, 715-717 (1996). [56] H. J. Lee, H. G. Kim, J. Y. Choi and H. K. Lee, “All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,” Electron. Lett. 35, 989-990 (1999). [57] C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C. S. Park, “Experimental demonstration of 10-gb/s data format conversions between NRZ and RZ using 44 SOA-loop-mirror,” J. Lightwave Technol. 23, 834-841 (2005). [58] A. Buxens, H. N. Poulsen, A. T. Clausen, and P. Jeppesen, “All-optical OTDM-to-WDM signal-format translation and OTDM add-drop functionality using bidirectional four wave mixing in semiconductor optical amplifier,” Electron. Lett. 36, 156-158 (2000). [59] L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photon. Technol. Lett. 6, 834-836 (2003). [60] S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp Reduction of Directly Modulated Semiconductor Lasers at 10 Gb/s by Strong CW Light Injection,” J. Lightwave Technol. 12, 418-424 (1994). [61] C. W. Chow, C. S. Wong, H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329-334 (2002). [62] H. Kawaguchi, Y. Yamayoshi, and K. Tamura, “All-optical format conversion using an ultrafast polarizationbistable vertical-cavity surface-emitting laser,” Lasers and Electro-Optics, 2000. (CLEO 2000). Conference, 379-380 (2000). [63] C.-C. Lin, H.-C. Kuo, P.-C. Peng, and G.-R. Lin, “Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter,” Opt. Express 16, 4838-4847 (2008). [64] Charles H. Henry, ”Theory of the Linewidth of Semiconductor Lasers,” IEEE J. of Quantum Electron. 18, 259-264 (1982) [65] T.C. Lu, J.Y. Tsai, H. C. Kuo, and S.C. Wang, “Comparisons of InP/InGaAlAs and InAlAs/InGaAlAs distributed Bragg reflectors grown by metalorganic chemical vapor deposition”, Materials Science and Engineering (B) 107, 66-70 (2004). 45 [66] J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAl-GaAs 1.55- m VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14, 1031–1033 (2002). [67] D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21, 674-679 (1985). [68] C. Henry and R. F. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 295-301 (1986). [69] S. Sivaprakasam and R. Singh, “Gain change and threshold reduction of diode laser by injection locking,” Opt. Commun. 151, 253 (1998). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42203 | - |
| dc.description.abstract | 在本論文中,我們使用2.5 GHz 的弦波時鐘訊號直接調變偏壓在臨界點之下的垂直共振腔面射型雷射(VCSEL),實現OC-48 下全光之非歸零碼轉歸零碼的格式轉換。消光比為5 dB 的非歸零碼資料訊號外部注入到VCSEL,在不需要放大的情況之下,經過半導體光放大器格式轉換器轉換後,歸零碼資料訊號的消光比可提升到9.2 dB。而在位元率2.5 Gbit/s 的操作下,轉換後歸零碼訊號的接收功率在-26.7dBm 時,仍可以獲得10-12 的誤碼率,並在傳輸25 km 後接收功率在-24.3 dBm 時,仍可以獲得10-9 的誤碼率。另外,我們也利用連續波及編碼調製波的光時鐘訊號分別注入垂直共振腔面射型雷射,進行轉換後歸零碼訊號的啾頻研究;理論分析顯示經由編碼調製波注入轉換後的訊號之啾嚬可以比連續波注入的結果還要明顯
降低2.2GHz (約為32 %),然而脈衝寬也相對地加寬3.2 ps (劣化度17 %)。我們提出的利用光注入被時鐘訊號調變之垂直共振腔面射型雷射實現全光非歸零碼轉歸零碼的格式轉換器,具有簡單的架構,而且轉換後的歸零碼訊號其波長與資料極性皆與輸入的非歸零碼訊號一致。 此外,為因應高速高容量的需求,我們也利用10 GHz 脈衝時鐘取代弦波時鐘調變面射型雷射二極體,實現OC-192 下全光之非歸零碼轉歸零碼的格式轉換,我們使用脈衝式電梳訊號直接調變垂直共振腔面射型雷射,配合非歸零格式光訊號的注入不僅能提高垂直共振腔面射型雷射的調變頻寬,更可以在時域上透過注入鎖定效應有效地窄化其增益線寬。實驗結果顯示欲達成高位元率的操作,必須提高垂直共振腔面射型雷射的偏壓電流及增加反向電梳時鐘訊號調變功率。經過轉換之10 Gbit/s 歸零格式訊號擁有消光比約達7 dB,在接收功率抵達 -17.1 dBm 之下仍可以得到10-9 之誤碼率,相較於低位元率之轉換,訊號啁啾也明顯提升至 4.09GHz。 | zh_TW |
| dc.description.abstract | Optically injection-locked single-wavelength gain-switching vertical cavity urface emitting laser (VCSEL) based all-optical converter is demonstrated to generate RZ data at 2.5 Gbit/s with bit-error-rate of 10-9 under receiving power of -29.3 dBm.A modified rate equation model is established to elucidate the optical injection induced gain-switching and NRZ-to-RZ data conversion in the VCSEL. The peak-to-peak frequency chirp of the VCSEL based NRZ-to-RZ is 4.5 GHz associated with a reduced frequency chirp rate of 178 MHz/ps at input optical NRZ power of -21 dBm, which is almost decreasing by a factor of 1/3 comparing with chirp on the SOA based NRZ-to-RZ converter reported previously. The power penalty of the BER measured back-to-back is about 2 dB from 1 Gbit/s to 2.5 Gbit/s.
Furthermore for the high bit rate, we proposed a novel OC-192 NRZ-to-RZ data format conversion based on VCSEL with a 10 GHz comb driven and external optical injection. As we know, the bandwidth of the TO-56-can package technology seems to limited up to 2.5 GHz. By using sinusoidal to 10 GHz directly modulated by the comb and external optical injection, the VCSEL resonance frequency is increased to 10 GHz. We can also increase the bias current and change the modulation shape for example to comb due to which support carrier can in short time immediately. We analyze the frequency chirp characteristic and the bit error rate (BER) performance under the different injection power and biased DC current. The peak-to-peak chirp is increased by increase the DC biased current and decrease the injection power which result from factor decreasing. Besides, the pulsewidth is reduced by increase the injection power and broaden by increase DC biased current with Δn’ add the phase shift. The peak-to-peak chirp of the optical signal with DC biased current 1.3 mA and injection power -5 dBm is 3.29 GHz. The BER of 10-9 is under receiving power –13 dBm, and the received power penalties improvement of 12dB from biased at lower DC biased current to higher DC biased current. Due to the threshold point left shift, the higher DC biased current has greater modulation depth compare to lower DC biased current, and further results the sharper shape on the transformed RZ signal. Besides, it also produces lager extinction ratio due to the part of comb shape under lasing is larger but has almost the same DC level, smaller chirp due to injection-locked improve the coherence of not only the signal but also the ASE and better timing jitter due to smaller phase noise from ASE. All of those can avoid the data format conversion’s sampling error. Therefore, the BER will be improved of 4-order is proposed. We also show the eye diagram of the converted RZ signal and different data stream. The signal to noise ratio, timing jitter, rising time, falling time and pulsewidth are measured 3.05, 7.14 ps, 120.5 ps, 132.2 ps and 97.8 ps, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:52:35Z (GMT). No. of bitstreams: 1 ntu-97-J95941005-1.pdf: 792026 bytes, checksum: b2a300ccf0a7a9d79f5ef84a941a3ed5 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書................................................... #
誌謝..................................................i 中文摘要 ............................................ ii ABSTRACT .............................................iv CONTENTS ..............................................vi LIST OF FIGURES ..................................... viii Chapter 1 Introduction ......................................... 1 1.1 Introduction ....................................... 1 1.2 Motivation ................................... 1 Chapter 2 Theory of Threshold Current Reduction under External Light Injection Locking ....................................... 4 2.1 Theoretical Formula for Injection Locking of VCSELs ................................. 4 Chapter 3 Chirp and error rate analyses of an optical-injection gain-switch VCSEL based all-optical NRZ-to-RZ converter ................................. 10 3.1 Introduction ...................................... 10 3.2 Experiments ................................... 11 3.2.1 Setup for the NRZ-to-PRZ format transformer. .................................. 11 3.3 Results and Discussions ......................................... 12 3.3.1 Injection power & RF power vs Extinction ratio ................................ 12 3.3.2 BER analysis ......................................... 14 3.3.3 Chirp analysis ........................................... 16 3.4 Summary ............................................. 17 vii Chapter 4 Biased current dependent chirp of 10Gbit/s pulse data converted by electrical comb modulated VCSEL with TO-56-can package............ 19 4.1 Introduction ........................................... 19 4.2 Experimental ...................................... 21 4.3 Results and Discussions ................................ 22 4.3.1 The structure and the characteristic diagram of VCSEL ..................... 22 4.3.2 Eye diagram ............................................ 23 4.3.3 BER and Q factor analysis .................................... 25 4.3.4 Chirp analysis ............................................. 28 4.4 Summary ........................................... 31 Chapter 5 Conclusion .......................................... 33 5.1 Conclusion I .............................................. 33 5.2 Conclusion II ................................................... 35 Chapter 6 References ...................................... 37 6.1 References ...................................... 37 | |
| dc.language.iso | zh-TW | |
| dc.subject | 換 | zh_TW |
| dc.subject | 增益 | zh_TW |
| dc.subject | 注入鎖模 | zh_TW |
| dc.subject | 暗梳直調 | zh_TW |
| dc.subject | 射 | zh_TW |
| dc.subject | NRZ-to-RZ | zh_TW |
| dc.subject | 垂直共振腔面射型雷 | zh_TW |
| dc.subject | Optical data | en |
| dc.subject | Semiconductor optical amplifiers | en |
| dc.subject | Fiber optics communications | en |
| dc.title | 利用非歸零格式光數字訊號注入時鐘調變之垂直共振腔面射
型雷射進行歸零格式轉換 | zh_TW |
| dc.title | All-Optical Injection-Locking and NRZ-to-RZ Data-Format
Conversion in Clock Modulated VCSEL | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳靜雄,黃鼎偉,彭朋群 | |
| dc.subject.keyword | 垂直共振腔面射型雷,射,暗梳直調,注入鎖模,增益,切,換,NRZ-to-RZ, | zh_TW |
| dc.subject.keyword | Fiber optics communications,Semiconductor optical amplifiers,Optical data, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 773.46 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
