請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42194
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高全良(Chuan-Liang Kao) | |
dc.contributor.author | Hui-Ling Cheng | en |
dc.contributor.author | 鄭惠玲 | zh_TW |
dc.date.accessioned | 2021-06-15T00:52:02Z | - |
dc.date.available | 2013-09-11 | |
dc.date.copyright | 2008-09-11 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-11 | |
dc.identifier.citation | 1. Drake, J.W. and J.J. Holland, Mutation rates among RNA viruses. Proc Natl
Acad Sci U S A, 1999. 96(24): p. 13910-3. 2. Santti, J., et al., Evidence of recombination among enteroviruses. J Virol, 1999. 73(10): p. 8741-9. 3. Takeda, N., M. Tanimura, and K. Miyamura, Molecular evolution of the major capsid protein VP1 of enterovirus 70. J Virol, 1994. 68(2): p. 854-62. 4. Simmonds, P. and J. Welch, Frequency and dynamics of recombination within different species of human enteroviruses. J Virol, 2006. 80(1): p. 483-93. 5. Pallansch, M.A. and R. Roos, Enteroviruses:Polioviruses, Coxsackieviruses, Echoviruses,and newer enteroviruses, in Fields Virology, 5th Ed., Vol. 1. 2007, Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PA: USA. p. 839–893. 6. Kim, M.S. and V.R. Racaniello, Enterovirus 70 receptor utilization is controlled by capsid residues that also regulate host range and cytopathogenicity. J Virol, 2007. 81(16): p. 8648-55. 7. Ho, M., et al., An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med, 1999. 341(13): p. 929-35. 8. Lin, T.Y., et al., Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis, 2003. 9(3): p. 291-3. 9. Chen, S.C., et al., An eight-year study of epidemiologic features of enterovirus 71 infection in Taiwan. Am J Trop Med Hyg, 2007. 77(1): p. 188-91. 10. Palacios, G. and M.S. Oberste, Enteroviruses as agents of emerging infectious diseases. J Neurovirol, 2005. 11(5): p. 424-33. 11. Abzug, M.J., The enteroviruses: an emerging infectious disease? The real, the speculative and the really speculative. Adv Exp Med Biol, 2008. 609: p. 1-15. 12. Stanway, G., F. Brown, and P. Christian, 8th report of the International Committee on the Taxonomy of Viruses, in Virus taxonomy classifiaction and nomenclature of viruses, M.M. Fauquet CM, Maniloff J, Desselberger U, Ball LA (Eds). Editor. 2005, Elsevier Academic Press, Amsterdam, The Netherlands 13. Nasri, D., et al., Basic rationale, current methods and future directions for molecular typing of human enterovirus. Expert Rev Mol Diagn, 2007. 7(4): p. 419-34. 14. Picornaviridae Study Group. [cited; www.picornastudygroup.com]. 15. Brown, B., et al., Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol, 2003. 77(16): p. 8973-84. 16. Oberste, M.S., et al., Complete genome sequences of all members of the species Human enterovirus A. J Gen Virol, 2004. 85(Pt 6): p. 1597-607. 17. Tseng, F.C., et al., Epidemiological survey of enterovirus infections occurring in Taiwan between 2000 and 2005: analysis of sentinel physician surveillance data. J Med Virol, 2007. 79(12): p. 1850-60. 18. 林翠莉、黃教威、徐秋菊、李宜學、林瑩貞、吳和生、李麗俐, 『紅眼症』 病原體之確認與分子流病之分析與探討. 疫情報導, 2008. 第 24 卷第 4 期: p. 254-268. 19. 行政院衛生署疾病管制局, 病毒合約實驗室病毒分離型別監控分析. 2008. 20. 行政院衛生署疾病管制局, 疾病管制局 定點監視週報. 2008. 第4 卷第13 期. 21. Lipson, S.M., et al., Sensitivity of rhabdomyosarcoma and guinea pig embryo cell cultures to field isolates of difficult-to-cultivate group A coxsackieviruses. J Clin Microbiol, 1988. 26(7): p. 1298-303. 22. Romero, J.R., Reverse-transcription polymerase chain reaction detection of the enteroviruses. Arch Pathol Lab Med, 1999. 123(12): p. 1161-9. 23. Vuorinen, T., R. Vainionpaa, and T. Hyypia, Five years' experience of reverse-transcriptase polymerase chain reaction in daily diagnosis of enterovirus and rhinovirus infections. Clin Infect Dis, 2003. 37(3): p. 452-5. 24. Poyry, T., et al., Genetic and phylogenetic clustering of enteroviruses. J Gen Virol, 1996. 77 ( Pt 8): p. 1699-717. 25. Oberste, M.S., K. Maher, and M.A. Pallansch, Molecular phylogeny of all human enterovirus serotypes based on comparison of sequences at the 5' end of the region encoding VP2. Virus Res, 1998. 58(1-2): p. 35-43. 26. Oberste, M.S., et al., Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol, 1999. 37(5): p. 1288-93. 27. Casas, I., et al., Molecular characterization of human enteroviruses in clinical samples: comparison between VP2, VP1, and RNA polymerase regions using RT nested PCR assays and direct sequencing of products. J Med Virol, 2001. 65(1): p. 138-48. 28. Mateu, M.G., Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res, 1995. 38(1): p. 1-24. 29. Norder, H., L. Bjerregaard, and L.O. Magnius, Homotypic echoviruses share aminoterminal VP1 sequence homology applicable for typing. J Med Virol, 2001. 63(1): p. 35-44. 30. Oberste, M.S., et al., Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol, 1999. 73(3): p. 1941-8. 31. Thoelen, I., et al., Molecular typing and epidemiology of enteroviruses identified from an outbreak of aseptic meningitis in Belgium during the summer of 2000. J Med Virol, 2003. 70(3): p. 420-9. 32. Nix, W.A., et al., Failure to detect enterovirus in the spinal cord of ALS patients using a sensitive RT-PCR method. Neurology, 2004. 62(8): p. 1372-7. 33. Rose, T.M., et al., Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res, 1998. 26(7): p. 1628-35. 34. Provencher, C., et al., Consensus-degenerate hybrid oligonucleotide primers for amplification of priming glycosyltransferase genes of the exopolysaccharide locus in strains of the Lactobacillus casei group. Appl Environ Microbiol, 2003. 69(6): p. 3299-307. 35. Baines, J.E., et al., Consensus-degenerate hybrid oligonucleotide primers (CODEHOP) for the detection of novel papillomaviruses and their application to esophageal and tonsillar carcinomas. J Virol Methods, 2005. 123(1): p. 81-7. 36. Nix, W.A., M.S. Oberste, and M.A. Pallansch, Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol, 2006. 44(8): p. 2698-704. 37. Sambrook, J. and D.W. Russell, Molecular cloning : a laboratory manual. 2001, Cold Spring Harbor Laboratory Press: New York. 38. Protocol Online. [cited; Available from: http://www.protocol-online.org. 39. Iturriza-Gomara, M., B. Megson, and J. Gray, Molecular detection and characterization of human enteroviruses directly from clinical samples using RT-PCR and DNA sequencing. J Med Virol, 2006. 78(2): p. 243-53. 40. Oberste, M.S., et al., Species-specific RT-PCR amplification of human enteroviruses: a tool for rapid species identification of uncharacterized enteroviruses. J Gen Virol, 2006. 87(Pt 1): p. 119-28. 41. Triki, H., et al., Molecular characterisation of a coxsackievirus A24 that caused an outbreak of acute haemorrhagic conjunctivitis, Tunisia 2003. Clin Microbiol Infect, 2007. 13(2): p. 176-82. 42. Oberste, M.S., et al., Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol, 2000. 38(3): p. 1170-4. 43. Oberste, M., et al., Molecular identification of new picornaviruses and characterization of a proposed enterovirus 73 serotype. J Gen Virol, 2001. 82(Pt 2): p. 409-16. 44. Oberste, M.S., et al., Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J Clin Virol, 2003. 26(3): p. 375-7. 45. Hirst, G.K., Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold Spring Harb Symp Quant Biol, 1962. 27: p. 303-9. 46. Ledinko, N., Genetic recombination with poliovirus type 1. Studies of crosses between a normal horse serum-resistant mutant and several guanidine-resistant mutants of the same strain. Virology, 1963. 20: p. 107-19. 47. Pringle, C.R., Evidence of Genetic Recombination in Foot-and-Mouth Disease Virus. Virology, 1965. 25: p. 48-54. 48. Lukashev, A.N., Role of recombination in evolution of enteroviruses. Rev Med Virol, 2005. 15(3): p. 157-67. 49. Oberste, M.S., K. Maher, and M.A. Pallansch, Evidence for frequent recombination within species human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J Virol, 2004. 78(2): p. 855-67. 50. Kew, O.M., et al., Circulating vaccine-derived polioviruses: current state of knowledge. Bull World Health Organ, 2004. 82(1): p. 16-23. 51. Rousset, D., et al., Recombinant vaccine-derived poliovirus in Madagascar. Emerg Infect Dis, 2003. 9(7): p. 885-7. 52. Smura, T., et al., Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5'-untranslated region evolution. J Gen Virol, 2007. 88(Pt 9): p. 2520-6. 53. Rossen, L., et al., Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol, 1992. 17(1): p. 37-45. 54. Bezold, G., et al., Detection of herpes simplex virus and varicella-zoster virus in clinical swabs: frequent inhibition of PCR as determined by internal controls. Mol Diagn, 2000. 5(4): p. 279-84. 55. Blomqvist, S., et al., Characterization of a recombinant type 3/type 2 poliovirus isolated from a healthy vaccinee and containing a chimeric capsid protein VP1. J Gen Virol, 2003. 84(Pt 3): p. 573-80. 56. Bouslama, L., et al., Natural recombination event within the capsid genomic region leading to a chimeric strain of human enterovirus B. J Virol, 2007. 81(17): p. 8944-52. 57. Arita, M., et al., A Sabin 3-derived poliovirus recombinant contained a sequence homologous with indigenous human enterovirus species C in the viral polymerase coding region. J Virol, 2005. 79(20): p. 12650-7. 58. Pallansch MA, R.R., Enteroviruses:Polioviruses, Coxsackieviruses, Echoviruses,and newer enteroviruses, in Fields Virology, 5th Ed., Vol. 1. 2007, Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PA: USA. p.839–893. 59. Chaves, S.S., et al., Coxsackie virus A24 infection presenting as acute flaccid paralysis. Lancet, 2001. 357(9256): p. 605. 60. Rose, T.M., CODEHOP-mediated PCR - a powerful technique for the identification and characterization of viral genomes. J Virol, 2005. 2: p. 20. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42194 | - |
dc.description.abstract | 腸病毒(Human enterovirus, HEV)是屬於微小RNA病毒科(picornaviridae family)的病毒,可以分為四群,分別是HEV-A, B, C, D,現在已知至少有八十七種血清型(serotype)被鑑定出來。目前臨床實驗室偵測及鑑定腸病毒血清型主要是以病毒培養分離出的病毒再進一步鑑定型別,由台灣 2000~2008 年六月底前的腸病毒統計來看,以病毒培養方式偵測並鑑定出的腸病毒,只有24種血清型被報導過,除了因為有些腸病毒仍無法在細胞中複製之外,是否因為受限於低病毒離率之故,使得無法完整了解台灣腸病毒流行的真實情況。因分子檢測法比病毒培養檢出率高,所以直接由檢體檢測腸病毒核酸的存在,是快速方便的方法。
本研究利用2006 年Nix 團隊發展的檢測法- VP1 RT-snPCR (CODEHOP),進行台灣北部地區病毒的檢測及鑑定,(1)盼藉由檢測病毒培養結果為陰性的檢體,了解是否有未被分離出之病毒存在;(2)並探討其血清型與疾病的相關性;(3)尋找是否有未曾發表過之其他血清型;(4)尋找國內外皆未曾發表過之其他血清型。實驗總共檢測了177 件病毒培養為陰性的檢體,VP1 RT-snPCR (CODEHOP)檢測法的陽性檢出率(67.2%) 比5’NTR-nPCR (46.9%)檢測法高,且也比一般病毒培養敏感,證明VP1 RT-snPCR (CODEHOP)確實比較敏感也可以增加腸病毒的檢出率。119 件陽性檢體中,55 件可以鑑定型別,主要為CVA24 variant, CVA6, CVA16,及CVA10。其中一件檢體分析其VP1 的全長基因,與標準株的核苷酸相似度,發現其應是新的血清型腸病毒候選株。另外有64 件定序訊號無法判讀的檢體,則使用CODEHOP HEV-A, B, C screening 檢測法進行篩檢,有39 件為陽性,可以直接用於分型,其中混合感染(mix infection) 就佔了10 件。雖然CODEHOP HEV-A, B, C敏感度比VP1 RT-snPCR(CODEHOP)差,但對於混合感染的檢體可以有效分群並可以進一步定序鑑定出型別。 陰性檢體分離出來最多的血清型為CVA24 variant,主要會引起急性出血性結膜炎,而在這之前,未曾有研究指出CVA24 variant 會造成神經方面相關的疾病,但是由本研究結果發現,在懷疑是腦炎及無菌性腦膜炎病人的CSF 中檢體可以偵測到CVA24 variant,這是否表示CVA24 variant 除了引起急性出血性結膜炎之外,亦會造成其他的疾病,是值得持續觀察的。 | zh_TW |
dc.description.abstract | Human enterovirus (HEV) is a genus of the Picornaviridae including more than 87 serotypes belonging to four species designed Human enterovirus A to D. The diagnosis of enterovirus infections, and in particular the characterization of enterovirus strains, relies on the isolation of virus in cell culture from clinical samples. Based cell culture method, there were 24 serotypes of human enteroviruses reported in Taiwan, 2000-June, 2008. Because many enteroviruses do not grow readily in cell culture and that was limited to the low sensitivity, make us unable to study enterovirus prevalence in Taiwan completely. Hence, diagnostic tests based on PCR are developed and found that it is more sensitive and much faster than conventional culture method.
This study has planned to use the method-VP1 RT-snPCR (CODEHOP) that developed by Nix and his coworkers in 2006 to detect and identify enteroviruses in northern Taiwan. The specific aims of study are: (1) To detect and identify HEV that could not be isolated by virus culture; (2) To analysis the association between disease and HEV infection; (3) To identify possible new serotypes that haven’t been reported in Taiwan; (4) To identify possible new serotypes that haven’t been reported internationally. 177 virus-culture negative specimens were collected and tested by VP1 RT-snPCR (CODEHOP) and 5’ NTR RT-nPCR methods. VP1 RT-snPCR (CODEHOP) method (67.2%) was more sensitive than 5’ NTR RT-nPCR method (47.9%). Also, VP1 RT-snPCR (CODEHOP) method was more sensitive than virus culture and could increase the positive rate of EV detection. Among 119 CODEHOP-positive samples, 55 EV were identified as CVA24 variant, CVA6, CVA16, and CVA10 mainly by partial VP1 sequence analysis. A new EV serotype candidate was found. The identity of complete VP1 gene of this candidate was less than 70% when compared with reference strains. In addition, there were still 64 EV-positive results that sequence signal were unable to interpret. Therefore, a new method, called CODEHOP HEV-A, B, C screening method was designed to solve those problems. The result show that 39 of 64 specimens were detected by this new method and all positive results could be directly grouped. Among 39 positive samples, there were 10 positive results show mix infection. Moreover the sequence signals were all good to interpret. Although CODEHOP HEV-A, B, C screening method was less sensitive than VP1 RT-snPCR (CODEHOP), it could identify the specimens with two or three serotypes of enteroviruses mix infection. Serotype, CVA24 variant, usually causes acute hemorrhagic conjunctivitis and was never reported association with neural diseases. In this study, there were many cases identified as CVA24 variant through the detection of virus-culture negative specimens. Particularly, CVA24 variants were isolated from the CSF specimens of patients diagnosed with encephalitis and aseptic meningitis. It suggested that CVA24 variant was concerned as the pathogen of neural diseases. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:52:02Z (GMT). No. of bitstreams: 1 ntu-97-R95424024-1.pdf: 1669931 bytes, checksum: d4fa7966b0d8008622c0a99cd63ab94d (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………………… i
誌謝………………………………………………………………………………… ii 中文摘要…………………………………………………………………………… iii 英文摘要…………………………………………………………………………… v 第一章 緒論……………………………………………………………………… 1 11 腸病毒基本性……………………………………………………… 1 12 傳播方式……………………………………………………………… 1 13 臨床症狀……………………………………………………………… 2 14 腸病毒血清型分類……………………………………………… 2 15 台灣腸病毒流行………………………………………………………… 3 16 傳統腸病毒檢驗方法…………………………………………………… 4 17 分子檢測法用於腸病毒檢測…………………………………………… 5 171 5’ untranslated region, 5’NTR………………………… 5 172 Capsid protein region……………………………………………… 6 18 新 primer 策略的使用--- Consensus-Degenerate Hybrid Oligonucleotide Primers, CODEHOP primer …………………………………………………… 7 19 研究目標及原由………………………………………………………… 8 第二章 材料與方法……………………………………………………………… 9 21 實驗材料………………………………………………………………… 9 211 Reagents、buffer and medium…………………………………… 9 212 Collection of clinical specimens………………………………… 11 22 實驗方法……………………………………………………………… 12 221 Determination of virus titers …………………………………… 12 222 Extraction of viral RNA ………………………………… 13 223 VP1 RT-seminested PCR (CODEHOP) method………………… 13 224 5’NTR RT-nested PCR method………………………………… 14 225 CODEHOP HEV-A, B, C screening method… 14 226 Synthesis of cDNA used for the PCR of complete VP1 and 3C region …………………………………… 15 227 RT-snPCR for complete VP1…………………………………… 15 228 PCR for 3C region of coxsackievirus A 24 variant……… 16 229 Gel purification…………………………………………………… 17 2210 Sequence analysis ……………………………………… 17 2211 TA cloning………………………………………………… 18 2212 Spiking virus experiment……………………………………… 20 第三章 結果……………………………………………………………………… 21 31 VP1 RT-snPCR (CODEHOP)與5’NTR RT-nPCR 檢測法敏感度的比 較…………………………………………………………… 21 32 急性出血性結膜炎之眼部結膜檢體以各種檢測法檢測結果的比較… 21 33 培養陰性之檢體以VP1 RT-snPCR(CODEHOP)法與5’NTR RT-nPCR 法 檢測結果之比較……………………………………………………… 22 34 定序結果分析……………………………………………………… 22 35 使用 group-specific CODEHOP HEV-A, B, C screening primers 23 36 以VP1 RT-snPCR(CODEHOP) 法產生的部分VP1 序列無法鑑定其血清 型之進一步分析……………………………………………………… 25 37 疑似新型腸病毒的鑑定…………………………………………… 26 38 腸病毒血清型分析……………………………………………… 26 381 陰性檢體鑑定出之血清型的排名及種類……………………… 26 382 Coxsackievirus A24; CVA24v…………………………………… 26 第四章 討論……………………………………………………………………… 28 圖表附錄…………………………………………………………………………… 33 參考文獻…………………………………………………………………………… 67 | |
dc.language.iso | zh-TW | |
dc.title | 使用RT-Seminested PCR方法直接由檢體偵測並鑑定
北台灣腸病毒 | zh_TW |
dc.title | Direct Detection and Identification of Enterovirus
Collected from Clinical Specimens in Northern Taiwan by RT-Seminested PCR | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張淑媛,李君男 | |
dc.subject.keyword | 陰性檢體,新型腸病毒,混合感染, | zh_TW |
dc.subject.keyword | CODEHOP HEV-ABC screening method,mix infection, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-11 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。