請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42169
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝宏昀 | |
dc.contributor.author | Ming-Fang Chen | en |
dc.contributor.author | 陳明芳 | zh_TW |
dc.date.accessioned | 2021-06-15T00:50:33Z | - |
dc.date.available | 2008-09-02 | |
dc.date.copyright | 2008-09-02 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-14 | |
dc.identifier.citation | [1] W. Stallings, High-Speed Networks and Internets: Performance and Quality of Service, 2nd ed. Prentice-Hall, 2002.
[2] IEEE Std 802.16-2004, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, October 2004. [3] C. Eklund, R. Marks, K. Stanwood, and S. Wang, 'IEEE Standard 802.16: A Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access,' IEEE Communications Magazine, vol. 40, pp.98-107, June 2002. [4] C. Cicconetti, L. Lenzini, E. Mingozzi, and C. Eklund, 'Quality of Service Support in IEEE 802.16 Networks,' IEEE Network, vol. 20, pp.50-55, March/April 2006. [5] A. Ghosh, D. Wolter, J. Andrews, and R. Chen, 'Broadband Wireless Access with WiMax/802.16: Current Performance Benchmarks and Future Potential,' IEEE Communications Magazine, vol. 43, pp.129-136, February 2005. [6] D. Zhao and X. Shen, 'Performance of Packet Voice Transmission Using IEEE 802.16 Protocol,' IEEE Wireless Communications, vol. 14, pp.44-51, February 2007. [7] I. KoRman and V. Roman, 'Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.16,' IEEE Communications Magazine, vol. 40, pp.96-103, April 2002. [8] IEEE Std 802.16e-2005, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, February 2006. [9] B. Li, Y. Qin, C. P. Low, and C. L. Gwee, 'A Survey on Mobile WiMAX,' IEEE Communications Magazine, vol. 45, pp.70-75, December 2007. [10] D. Wang and K. Cheng, 'General Discussion on Energy Saving,' in Proceedings of the First International Conference on Power Electronics Systems and Applications 2004, pp.298-303, November 2004. [11] P. Havinga, G. Smit, and M. Bos, 'Energy-Efficient Adaptive Wireless Network Design,' in Proceedings of the Fifth IEEE Symposium on Computers and Communications, ISCC 2000, pp.502-507, July 2000. [12] D. Niyato, E. Hossain, and J. Diamond, 'IEEE 802.16/WiMax-Based Broadband Wireless Access and Its Application for Telemedicine/E-health Services,' IEEE Communications Magazine, vol. 14, pp.72-83, February 2007. [13] M. Bhide, A. Deolasee, P.and Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy, 'Adaptive Push-Pull: Disseminating Dynamic Web Data,' IEEE Transactions on Computers, vol. 51, pp.652-668, June 2002. [14] 'The IEEE 802.16 Working Group on Broadband Wireless Access Standards.' Online Available at: http://wirelessman.org [15] C. R. Baugh and J. Huang, 'Traffic Model for 802.16 TG3 MAC/PHY Simulations,' IEEE 802.16 work in progress document, March 2001. Online Available at: http://wirelessman.org/tg3/contrib/802163c-01 30r1.pdf [16] A. Adas, 'Traffic Models in Broadband Networks,' IEEE Communications Magazine, July 1997. [17] I. Habib and T. Saadawi, 'Multimedia Traffic Characteristics in Broadband Networks,' IEEE Communications Magazine, vol. 30, pp.48-54, July 1992. [18] Z. Sahinoglu and S. Tekinay, 'On Multimedia Networks: Self-Similar Traffic and Network Performance,' IEEE Communications Magazine, vol. 37, pp.48-52, January 1999. [19] B. Ryu, 'Modeling and Simulation of Broadband Satellite Networks. II. Traffic Modeling,' IEEE Communications Magazine, vol. 37, pp.48-56, July 1999. [20] V. Frost and B. Melamed, 'Traffic Modeling for Telecommunications Networks,' IEEE Communications Magazine, vol. 32, pp.70-81, March 1994. [21] C. Aduba and M. Sadiku, 'Simulation and Analysis of Different Traffic Models for ATM Networks,' in Proceedings of the IEEE SoutheastCon, 2002, pp.73-75, August 2002. [22] W. E. Leland and M. S. Taqqu, 'On the Self-Similar Nature of Ethernet Traffic,' IEEE/ACM Transactions on Networking, vol. 2, no. 1, February 1994. [23] V. Paxson and S. Floyd, 'Wide-Area Traffic: The Failure of Poisson Modeling,' IEEE/ACM Transactions on Networking, pp.226-244, July 1995. [24] J. Huang, 'Generalizing 4IPP Traffic Model for IEEE 802.16.3,' IEEE 802.16 work in progress document, December 2000. Online Available at: http://wirelessman.org/tg3/contrib/802163c-00 58.pdf [25] M.-H. K.S. and F. W., 'The Markov-modulated Poisson process (MMPP) cookbook,' Performance Evaluation 18, pp.149-171, 1992. [26] Y. Xiao, 'Energy Saving Mechanism in the IEEE 802.16e Wireless MAN,' IEEE Communication Letters, vol. 9, no. 7, pp.595-597, July 2005. [27] Y. Xiao, 'Performance Analysis of an Energy Saving Mechanism in the IEEE 802.16e Wireless MAN,' in proceedings of the Consumer Communications and Networking Conference, 2006. CCNC 2006., vol. 1, pp.406-410, January 2006. [28] Y. Zhang and M. Fujise, 'Energy Management in the IEEE 802.16e MAC,' IEEE Communication Letters, vol. 10, no. 4, pp.311-313, April 2006. [29] G. Dong, C. Zheng, H. Zhang, and J. Dai, 'Power Saving Class I Sleep Mode in IEEE 802.16e System,' in proceedings of the 9th International Conference on Advanced Communication Technology, vol. 3, pp.1487-1491, February 2006. [30] M.-G. Kim, M. Kang, and J. Y. Choi, 'Performance Evaluation of the Sleep Mode Operation in the IEEE 802.16e MAC,' in proceedings of the 9th International Conference on Advanced Communication Technology, vol. 1, pp.602-605, February 2007. [31] Y.-H. Han, S.-G. Min, and D. Jeong, 'Performance Comparison of Sleep Mode Operations in IEEE 802.16e Terminals,' in proceedings of the International Conference on Computational Science 2007, ICCS 2007, vol. 4490, pp.441-448, July 2007. [32] L. Kong and D. H. Tsang, 'Performance Study of Power Saving Classes of Type I and II in IEEE 802.16e,' in Proceedings of the 31st IEEE Conference on Local Computer Networks, 2006, pp.20-27, November 2006. [33] J.-B. Seo, S.-Q. Lee, N.-H. Park, H.-W. Lee, and C.-H. Cho, 'Performance Analysis of Sleep Mode Operation in IEEE 802.16e,' in proceedings of the Vehicular Technology Conference, 2004, vol. 2, pp.1169-1173, September 2004. [34] K. Han and S. Choi, 'Performance Analysis of Sleep Mode Operation in IEEE 802.16e Mobile Broadband Wireless Access Systems,' in proceedings of the Vehicular Technology Conference, 2006, vol. 3, pp.1141-1145, May 2006. [35] S. Zhu and T. Wang, 'Enhanced Power Efficient Sleep Mode Operation for IEEE 802.16e Based WiMAX,' in proceedings of the IEEE Mobile WiMAX Symposium, 2007, pp.43-47, March 2007. [36] Z. Niu, Y. Zhu, and V. Benetis, 'A Phase-Type Based Markov Chain Model for IEEE 802.16e Sleep Mode and Its Performance Analysis,' in proceedings of the International Teletraffic Congress 2007, ITC 2007, vol. 4516, pp.791-802, 2007. [37] J. Xiao, S. Zou, B. Ren, and S. Cheng, 'An Enhanced Energy Saving Mechanism in IEEE 802.16e,' in proceedings of the IEEE Global Telecommunications Conference 2006, GLOBECOM '06., pp.1-5, November 2006. [38] J. Jang, K. Han, and S. Choi, 'Adaptive Power Saving Strategies for IEEE 802.16e Mobile Broadband Wireless Access,' in proceedings of the Asia-Pacific Conference on Communications 2006, APCC 2006., pp.1-5, August 2006. [39] M.-G. Kim, J. Choi, and M. Kang, 'Adaptive Power Saving Mechanism Considering the Request Period of Each Initiation of Awakening in the IEEE 802.16e System,' IEEE Communications Letters, vol. 12, pp.106-108, February 2008. [40] M.-G. Kim, J. Choi, B. Jung, and M. Kang, 'Adaptive Power Management Mechanism Considering Remaining Energy in IEEE 802.16e,' IEICE Transactions on Communications, 2007, vol. E90-B, no. 9, pp.2621-2624, September 2007. [41] D. T. T. Nga, M.-G. Kim, and M. Kang, 'Delay-Guaranteed Energy Saving Algorithm for the Delay-sensitive Applications in IEEE 802.16e Systems,' IEEE Transactions on Consumer Electronics, vol. 53, pp.1339-1347, November 2007. [42] F. Xu, W. Zhong, and Z. Zhou, 'A Novel Adaptive Energy Saving Mode in IEEE 802.16E System,' in proceedings of the Military Communications Conference 2006, MILCOM 2006, pp.1-6, October 2006. [43] M.-G. Kim, M. Kang, and J. Y. Choi, 'Remaining Energy-Aware Power Management Mechanism in the 802.16e MAC,' in proceedings of the IEEE 5th Consumer Communications and Networking Conference 2008, CCNC 2008., pp.222-226, January 2008. [44] J. Shi, G. Fang, Y. Sun, J. Zhou, Z. Li, and E. Dutkiewicz, 'Improving Mobile Station Energy Efficiency in IEEE 802.16e WMAN by Burst Scheduling,' in proceedings of the IEEE Global Telecommunications Conference, 2006. GLOBECOM'06, November 2006 [45] S.-C. Huang, R.-H. Jan, and C. Chen, 'Energy Efficient Scheduling with QoS Guarantee for IEEE 802.16e Broadband Wireless Access Networks,' in proceedings of the International Wireless Comunications and Mobile Computing conference 2007, IWCMC 2007, pp.547-552, August 2007. [46] Y.-L. Chen and S.-L. Tsao, 'Energy-Efficient Sleep-Mode Operations for Broadband Wireless Access Systems,' in proceedings of the IEEE 64th Vehicular Technology Conference 2006, VTC-2006 Fall., pp.1-5, September 2006. [47] H.-H. Choi, J.-R. Lee, and D.-H. Cho, 'Hybrid Power Saving Mechanism for VoIP Services with Silence Suppression in IEEE 802.16e Systems,' IEEE Conmunication Letters, vol. 11, no. 5, pp.455-457, May 2007. [48] Sheldon M. Ross, Introduction to Probability Models, 9th ed. Academic Press, 2007. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42169 | - |
dc.description.abstract | 對於行動裝置而言,如何省電是一個重要的議題;在IEEE 802.16e標準中,也特別針對行動裝置訂定了第一類、第二類及第三類等三種不同省電機制。這三種省電機制各具有不同的特性及參數,以適用在不同的流量模型 (traffic model) 下達到省電之目的。為了研究各省電機制在不同參數或是流量類型下的效能表現,許多相關的研究都提出了不同的分析模型。在這些相關的研究當中,大部分都假設網路流量為Poisson或是CBR流量模型。然而以這樣的假設所分析的省電效能模型,在真實的網路環境與流量模型下,將無法準確地表現出802.16e省電機制的效能。因此,在本論文中我們首先針對802.16e第一類省電機制提出一個可廣泛適用在不同流量模型下的分析模型,包含Poisson、Pareto以及4IPP等流量模型。其中,4IPP流量模型是WiMAX標準所推薦用來模擬HTTP/FTP資料流量之模型。本論文所提出之分析模型除了可更精準地分析802.16e省電機制在不同流量模型下的效能之外,亦可推廣至第二類省電機制之效能分析。
透過分析模型的研究,我們歸納出不同的省電參數對於行動裝置省電效能之特性與影響。我們發現雖然省電機制可延長移動式裝置供電時間,但也因此造成封包傳送時間的延遲。此外,封包傳送延遲時間的長短亦與省電機制中多項參數有關,包括最小、最大睡眠時間及網路流量之負載。因此,為了控制封包之延遲時間,必須能依據不同的網路流量特性去改變省電參數之設定,以能動態在省電效能與封包延遲取得平衡點。基於我們所提出之省電機制分析模型,在本論文中,我們設計了一可適性省電演算法。此演算法藉由即時觀察網路流量統計特性來求得最佳之省電參數設定,使得行動裝置之省電機制可隨著網路特性之變化而調整參數,以控制封包傳送延遲時間,達到最佳之省電效能。模擬結果顯示,我們設計之可適性省電演算法確能比相關文獻上的方法達到更好的省電效率,且有較佳的適用性與彈性。 | zh_TW |
dc.description.abstract | Power saving is an important issue for mobile stations (MSs). IEEE 802.16e defines three types of power saving classes (PSCs) for supporting the sleep mode operations on MSs with different types of traffic. Related work has developed analytical models to evaluate the performance of power saving operations. Most of them employ Poisson process or CBR as the traffic model, and hence their capability is limited in capturing the characteristics of realistic traffic. In this thesis, we first propose a generic analytic model for capturing the behaviors of IEEE 802.16 sleep mode operations under arbitrary traffic distribution, including Pareto and 4IPP traffic models for describing the characteristic of HTTP/FTP data traffic. While we focus primarily on the operation of PSC of type I, we also show that the proposed model can be extended to PSC of type II. Simulation results show that the proposed model has better flexibility and can achieve higher accuracy compared with existing models.
While power saving operation can prolong the lifetime of MSs, one significant tradeoff is that they may potentially increase the packet transmission delay. Based on the proposed analytical model, we observe that the delay depends on setting of minimal/maximal sleep window size. If we can dynamically change the size of window depending on the traffic conditions, we can avoid delay from increasing with varying traffic distributions. To address the tradeoff between energy efficiency and packet delay, we propose an adaptive power saving algorithm for maintaining packet delay on MSs under different traffic loads. Through on-line observing the distribution of arriving packets, the algorithm can determine the optimal power saving parameter setting and adaptively change them according to varying traffic conditions. Simulations show that the proposed algorithm can indeed achieve minimal energy consumption and satisfy the desired delay constraint. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:50:33Z (GMT). No. of bitstreams: 1 ntu-97-R95942103-1.pdf: 2123519 bytes, checksum: d5550907a059e37f8c2a0a5383bd0db9 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Sleep Mode Operations in IEEE 802.16e . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Power saving class of type I . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Power saving classes of type II . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Power saving classes of type III . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Poisson traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Pareto traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 4IPP traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 CHAPTER 3 ANALYTICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 Analytical Model for Power Saving Class of Type I . . . . . . . . . . . . . . . . . . 20 3.2 Numerical and Simulation Results for Poisson Traffic Model . . . . . . . . . . . . . . 26 3.2.1 Comparison with other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Simulation results of static operation . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Numerical and Simulation Results for Pareto Traffic Model . . . . . . . . . . . . . . 35 3.3.1 Analytical model for Pareto traffic model . . . . . . . . . . . . . . . . . . . . . 35 3.3.2 Static simulation for Pareto traffic model . . . . . . . . . . . . . . . . . . . . . 38 3.3.3 Comparison with power saving performance under Poisson and Pareto traffic model . . 40 3.4 Numerical and Simulation Results for 4IPP Traffic Model . . . . . . . . . . . . . . . 42 3.4.1 Impact of previous packet delay Dp . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.2 Simulation results of static operation . . . . . . . . . . . . . . . . . . . . . . . 44 3.5 Analytical Model for Power Saving Class of Type II . . . . . . . . . . . . . . . . . . 49 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 CHAPTER 4 DESIGN OF ADAPTIVE POWER SAVING ALGORITHMS . . . . . . . . . . . . . . . . . . . 58 4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Design of Adaptive Power Saving Algorithms . . . . . . . . . . . . . . . . . . . . . . 61 CHAPTER 5 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1 Evaluation of Historical Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 Adaptability Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.4 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 CHAPTER 6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . 84 APPENDIX A 4IPP PARAMETRIC MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 APPENDIX B MARKOV-MODULATED POISSON PROCESS . . . . . . . . . . . . . . . . . . . . . . . 90 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 | |
dc.language.iso | en | |
dc.title | 802.16 可適性省電機制之分析與設計 | zh_TW |
dc.title | Modeling, Analysis, and Design of Adaptive Power Saving Algorithms for 802.16 Sleep Mode Operations | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 高鴻榮,葉丙成,周俊廷,鄭振牟 | |
dc.subject.keyword | 802.16省電機制, | zh_TW |
dc.subject.keyword | 802.16 power saving, | en |
dc.relation.page | 101 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。