Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42147
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明
dc.contributor.authorChien-Hao Leeen
dc.contributor.author李健豪zh_TW
dc.date.accessioned2021-06-15T00:49:19Z-
dc.date.available2010-07-31
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-18
dc.identifier.citation[1] Hansson GK. Inflammation, Atherosclerosis, and Coronary Artery Disease. N Engl J Med 2005;352:1685-1695.
[2] Libby P, Theroux P. Pathophysiology of Coronary Artery Disease. Am Heart Assoc 2005;111:3481-3488.
[3] National Heart, Lung, and Blood Institute, USA.
http://www.nhlbi.nih.gov/health/dci/Diseases/Cad/CAD_All.html.
[4] Mollet NR, Cademartiri F, de Feyter PJ. Non-invasive Multislice CT Coronary Imaging. Heart 2005;91:401-407.
[5] Mollet NR, Cadematiri F, Nieman K, Saia F, Lemos PA, McFadden EP, Serruys PW, Krestin GP, de Feyter PJ. Noninvasive Assessment of Coronary Plaque Burden Using Multislice Computed Tomography. Am J Cardiol 2005;95:1165-1169.
[6] Van Werkhoven JM, Schuijf JD, Jukema JW, Van Der Wall EE, Bax JJ. Multi-slice Computed Tomography Coronary Angiography. Anatomic vs. Functional Assessment in Clinical Practice. Minerva Cardioangiol 2008;56(2):215-26.
[7] Cook SC, Raman SV. Unique Application of Multislice Computed Tomography in Adults with Congenital Heart Disease. Int J Cardiol 2007;119:101-106.
[8] Bruining N, Roelandt J, Palumbo A, La Grutta L, Cademartiri F, de Feijter PJ, Mollet N, Van Domburg RT, Serruys PW, Hamers R. Reproducible Coronary Plaque Quantification by Multislice Computed Tomography. Catheter Cardiovasc Interv 2007;69:857-865.
[9] Nair D, Carrigan T, Curtin R, Popovic Z, Kuzmiak S, Schoenhagen P, Flamn S, Desai MY. Association of Coronary Atherosclerosis Detected by Multislice Computed Tomography and Traditional Risk-factor Assessment. Am J Cardiol 2008 (Article in Press)
[10] Coles DR, Smail MA, Negus IS, Wilde P, Oberhoff M, Karsch KR, Baumbach A. Comparison of Radiation Doses From Multislice Computed Tomography Coronary Angiography and Conventional Diagnostic Angiography. J Am Coll Cardiol 2006;47:1840-1845.
[11] Leber AW, Knez A, White CW, Becker A, von Ziegler F, Muehling O, Becker C, Reiser M, Steinbeck G, Boekstegers P. Composition of Coronary Atherosclerotic Plaques in Patients with Acute Myocardial Infraction and Stable Angina Pectoris Determined by Contrast-enhanced Multislice Computed Tomography. Am J Cardiol 2003;91:714-718.
[12] Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussen CD, Karsch KR. Noninvasive Detection and Evaluation of Atherosclerotic Coronary Plaques with Multislice Computed Tomography. J Am Coll Cardiol 2001;37:1430-1435.
[13] De Winter SA, Hamers R, Degertekin M, Tanabe K, Lemos PA, Serruys PW, Roelandt JR, Bruining N. Retrospective Image-based Gating of Intracoronary Ultrasound Images for Improved Quantitative Analysis: The Intelligate Method. Catheter Cardiovasc Interv 2004;61:84-94.
[14] Schenbach S, Moselewski F, Fopers D, Ferencik M, Hoffmann U, MacNeill B, Pohle K, Baum U, Anders K, Jang IK, Daniel WG, Brady TJ. Detection of Calcified and Noncalcified Coronary Atherosclerotic Plaque by Contrast-enhanced, Submillimeter Multidetector Spiral Computed Tomography: A Segment-based Comparison with Intravascular Ultrasound. Circulation 2004;109:14-17.
[15] Pundziute G, Schuijf JD, Jukema JW, Decramer I, Sarno G, Vanhoenaker PK, Reiber JHC, Schalij MJ, Wijns W, Bax JJ. Head-to-head Comparison of Coronary Plaque Evaluation Between Multislice Computed Tomography and Intravascular Ultrasound Radiofrequency Data Analysis. J Am Coll Cardiol Intv 2008;1:176-182.
[16] Renard F, Yang YY. Image Segmentation for Detection of Coronary Artery Soft Plaques in MDCT images. ISBI 2008:25-28.
[17] Klingensmith JD, Vince DG. B-spline Methods for Interactive Segmentation and Modeling of Lumen and Vessel Surfaces in Three Dimensional Intravascular Ultrasound. Comput Med Imag Graphics 2002;26:429-438.
[18] Avants BB, Williams JA. An Adaptive Minimal Path Generation Technique for Vessel Tracking in CTA/CE-MRA Volume. MICCAI 2000;1935:707-716.
[19] Laguitton S, Boldak C, Toumoulin C. Temporal Tracking of Coronaries in Multi-slice Computed Tomography. Conf Proc IEEE Eng Med Biol Soc 2007;1:4512-4515.
[20] Sen A, Lan L, Doi K, Hoffman KR. Quantitative Evaluation of Vessel Tracking Techniques on Coronary Angiograms. Med Phys 1999;26(5):698-706.
[21] Wink O, Niessen WJ, Viergever MA. Multiscale Vessel Tracking. IEEE Trans Med Imag 2004;23(1):130-133.
[22] Wink O, Frangi AF, Verdonck B, Viergever MA, Niessen WJ. 3D MRA Coronary Axis Determination Using a Minimum Cost Path Approach. Magn Reson Med 2002;47(6):1169-1175.
[23] Xu Y, Zhang H, Li H, Hu G. An Improved Algorithm for Vessel Centerline Tracking in Coronary Angiograms. Comput Method Program Biomed 2007;88(2):131-143.
[24] Aylward SR, Bullitt E. Initialization, Noise, Singularities, and Scale in Height Ridge Traversal for Tubular Object Centerline Extraction. IEEE Trans Med Imag 2002;21:61-75.
[25] Boll DT, Lewin JS, Duerk JL, Smith D, Subramanyan K, Merkle EM. Assessment of Automatic Vessel Tracking Techniques in Preoperative Planning of Transluminal Aortic Stent Graft Implantation. J Comput Assist Tomogr 2004;28(2):278-285.
[26] Manniesing R, Viergever MA, Niessen WJ. Vessel Axis Tracking Using Topology Constrained Surface Evolution. IEEE Trans Med Imag 2007;26:309-316.
[27] Chen Z, Molloi S. Multiresolution Vessel Tracking in Angiographic Images Using Valley Courses. Opt Eng 2003;46:1673-1682.
[28] Gao X, Bharath A, Stanton A, Hughes A, Chapman N, Thom S. A Method of Vessel Tracking for Vessel Diameter Measurement on Retinal Images. Int Conf Image Processing 2001;2:881-884.
[29] Ruggeri A, Grisan E, Giani A. A Robust Procedure for Vessel Tracking in Retinal Images. Invest Ophthalmol Vis Sci 2005;46:1157-B326.
[30] Zhou C, Chan H, Patel S, Cascade P, Sahiner B, Kazerooni E. Preliminary Investigation of Computer-aided Detection of Pulmonary Embolism in Three-dimensional Computed Tomography Pulmonary Angiography Images. Acad Radiol 2005;12(6):782-792.
[31] Boldak C, Rolland Y, Toumoulin C. An Improved Model-based Vessel Tracking Algorithm with Application to Computed Tomography Angiography. J Biocybernetics Biomed Eng 2003;3(1):41-63.
[32] Hoyos MH, Orkisz M, Douek PC, Magnin IE. Assessment of Carotid Artery Stenoses in 3D Contrast-enhanced Magnetic Resonance Angiography, Based on Improved Generation of the Centerline. Mach Graph Vis Int J 2005;14(4):349-378.
[33] Zhou C, Hadjiiski LM, Sahiner B, Chan HP, Patel S, Cascade P, Kazerooni EA, Wei J. Computerized Detection of Pulmonary Embolism in 3D Computed Tomography (CT) images: Vessel Tracking and Segmentation Techniques. Proc SPIE 2003;5032:1613-1620.
[34] Foo T, Ho VB, Hood MN. Vessel Tracking: Prospective Adjustment of Section-selective MR Angiographic Locations from Improved Coronary Artery Visualization over the Cardiac Cycle. Radiology 2000;214:283-289.
[35] Khan MF, Wesarg S, Gurung J, Dogan S, Maataour A, Brehmer B, Herzog C, Ackermann H, Aβmus B, Vogl TJ. Facilitating Coronary Artery Evaluation in MDCT Using a 3D Automatic Vessel Segmentation Tool. European Radiol 2006;16(8):1789-1795.
[36] Luo LM, Hamitouche C, Dillenseger JL, Coatrieux JL. A Moment-based Three Dimensional Edge Operator. IEEE Trans Biomed Eng 1993;40(7):693-703.
[37] Jiang X, Cheng DC. A Novel Parameter Decomposition Approach to Faithful Fitting of Quadric Surfaces. Patt Recog 2005;3663:168-175.
[38] Staal J, Abramoff MD, Viergever MA, van Ginneken B. Ridge-based Vessel Segmentation in Color Images of the Retina. IEEE Trans Med Imag 2004;23(4):501-509.
[39] Soares JVB, Leandro JJG, Cesar-Jr. RM, Jelinek HF, Cree MJ. Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification. IEEE Trans Med Imag 2006;25(9):1214-1222.
[40] Martinz-Perez ME, Highes AD, Stanton AV, Thorn SA, Chapman N, Bharath AA, Parker KH. Retinal Vascular Tree Morphology: A Semi-automatic Quantification. IEEE Trans Biomed Eng 2002;49(8):912-917.
[41] Zana F, Klein JC. Segmentation of Vessel-like Patterns Using Mathematical Morphology and Curvature Evaluation. IEEE Trans Image Processing 2001;10(7):1010-1019.
[42] Pinz A, Bemogger S, Datlinger P, Kruger A. Mapping the Human Retina. IEEE Trans Med Imag 1998;17:606-619.
[43] Gang L, Chutatape O, Krishnan SM. Detection and Measurement of Retinal Vessels in Fundus Images Using Amplitude Modified Second-order Gaussian Filter. IEEE Trans Biomed Eng 2002;49(2):168-172.
[44] Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale Vessel Enhancement Filtering. MICCAI 1998;1496;130-137.
[45] Lorenz C, Carlsen IC, Buzug TM, Fassnacht C, Weese J. Multi-scale Line Segmentation with Automatic Estimation of Width, Contrast and Tangential Direction in 2D and 3D Medical Images. CVRMed-MRCAS 1997;1205:233-242.
[46] Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Navabi A, Westin CF. CURVES: Curve Evolution for Vessel Segmentation. Med Imag Anal 2001;5(3):195-206.
[47] Yim PJ, Cebral JJ, Mullick RM, Marcos HB, Choyke PL. Vessel Surface Reconstruction with a Tubular Deformable Model. IEEE Trans Med Imag 2001;20:1411-1421.
[48] Antiga L, Ene-Iordache B, Remuzzi A. Computational Geometry for Patient-specific Reconstruction and Meshing of Blood Vessels from MR and CT Angiography. IEEE Trans Med Imag 2003;22:674-684.
[49] Kass M, Witkin A, Terzoopoulos D. Snakes: Active Contour Models. Int J Comp Vis 1988;1:321-331.
[50] Caselles V, Catte F, Coll T, Dibos F. A Geometric Model for Active Contours in Image Processing. Numer Math 1993;66:1-32.
[51] Osher S, Seithan JA. Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulation. J Comput Phys 1998;79:12-49.
[52] Malladi R, Seithan JA, Vemuri BC. Shape Modeling with Front Propagation: A Level Set Approach. IEEE Trans PAMI 1995;17:158-175.
[53] Seithan JA. Level Set Methods and Fast Marching Methods, 2nd ed. Cambridge, U.K., Cambridge University Press 1999.
[54] Xu CY, Prince JL. Snakes, Shapes, and Gradient Vector Flow. IEEE Trans Image Processing 1998;7(3):359-369.
[55] Ghanei A, Soltanian-Zadeh. A Discrete Curvature-based Deformable Surface Model with Application to Segmentation of Volumetric Images. IEEE Trans Inf Technol Biomed 2002;6(4):285-295.
[56] Zhu SC, Yuille A. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. IEEE Trans PAMI 1996;18(9):884-900.
[57] Sekiguchi H, Sugimoto N, Shigeru E, Hanakawa T, Urayama S. Blood Vessel Segmentation for Head MRA Using Branch-based Region Growing. Syst Comput Jpn 2005;36(5):80-88.
[58] Mory B, Ardon R. Fuzzy Region Competition: A Convex Two-phase Segmentation Framework. SSVM 2007;4485:214-226.
[59] Shi J, Malik J. Normalized Cuts and Image Segmentation. IEEE Trans PAMI 2000;22(8):888-905.
[60] Cai W, Chung ACS. Multi-resolution Vessel Segmentation Using Normalized Cuts in Retinal Images. MICCAI 2006;4191:928-936.
[61] Boykov Y, Veksler O, Zabih R. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans PAMI 2001;23(11):1222-1239.
[62] Homann H, Vesom G, Noble JA. Vasculature Segmentation of CT Liver Images Using Graph Cuts and Graph-based Analysis. ISBI 2008:53-56.
[63] Kirbas C, Quek F. A Review of Vessel Extraction Techniques and Algorithms. ACM Comput Surv 2004;36(2):81-121.
[64] Roerdink JBTM, Meijster A. The Watershed Transform: Definitions, Algorithms, and Parallelization Strategies. Fundam Inform 2000;41:187-228.
[65] Vincent L, Soille P. Watershed in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Trans PAMI 1991;13(6):583-597.
[66] Gauch JM. Image Segmentation and Analysis via Multiscale Gradient Watershed Hierarchies. IEEE Trans Image Processing 1999;8(1):69-79.
[67] Lin G, Adiga U, Olson K, Guzowski J, Barnes C, Roysam B. A Hybrid 3D Watershed Algorithm Incorporating Gradient Cues and Object Models for Automatic Segmentation of Nuclei in Confocal Image Stacks. Cytometry Part A 2003;56A:23-26.
[68] Hahn HK, Peitgen HO. IWT-Interactive Watershed Transform: A Hierarchical Method for Efficient Interactive and Automated Segmentation of Multidimensional Grayscale Images. Proc SPIE 2003;5032:643-653.
[69] Grau V, Mewes AUJ, Alcaniz M. Improved Watershed Transform for Medical Image Segmentation Using Prior Information. IEEE Trans Med Imag 2004;23(4):447-458.
[70] Straks M, La Cruz A, Koechl A, Sramek M, Groeller E, Fleischmann D. 3D Watershed Transform Combined with a Probabilistic Atlas for Medical Image Segmentation. J Med Inform Technol 2003;6:IT69-IT78.
[71] Sijbers J, Scheunders P, Verhoye M, Van der Linden A, Van Dyck D, Raman E. Watershed-based segmentation of 3D MR Data for Volume Quantization. Magn Reson Imag 1997;15:679-688.
[72] Tsai YP, Lai CC, Hung YP, Shih ZC. A Bayesian Approach to Video Object Segmentation via Merging 3D Watershed Volumes. IEEE Trans CSVT 2005;15(1):175-180.
[73] Nguyen HT, Worring M, Van den Boomgaard R. Watersnakes: Energy-driven Watershed Segmentation. IEEE Trans PAMI 2003;25:330-342.
[74] Chan TF, Vese LA. Active Contour without Edges. IEEE Trans Image Processing 2001;10(2):266-277.
[75] Garreau M, Coatrieux JL, Collorec R, Chardenon C. A Knowledge-based Approach for 3-D Reconstruction and Labeling of Vascular Networks from Biplane Angiographic Projections. IEEE Trans Med Imag 1991;10(2):122-131.
[76] Chen CM, Chou YH, Chen SK, Cheng JZ, Ou YF, Yeh FC, Chen KW. Cell-Competition Algorithm: A New Segmentation Algorithm for Multiple Objects with Irregular Boundaries in Ultrasound Images. Ultrasound Med Biol 2005;31(12):1647-1664.
[77] 李健豪,謝欣郁,吳旻鴻,陳中明。基於等時性演化之區域單元競爭演算法。九十五年度生物醫學工程科技研討會暨國科會醫學工程學門成果發表會。
[78] 張俊傑,李健豪,陳中明。電腦斷層掃描冠狀動脈影像分割與斑塊體積估計演算法之研究。九十六年度生物醫學工程科技研討會暨國科會醫學工程學門成果發表會。
[79] Lee CH, Chen CM. Three-Dimensional Cell Competition Algorithm Incorporates with Prior Information for Extracting Atherosclerotic Coronaries and Plaques in Multislice Computed Tomography. Proc SPIE 2009. (Submitted)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42147-
dc.description.abstract無論以學術或醫療為觀點,許多研究都顯示多切面電腦斷層掃描 (MSCT) 對於診斷心血管相關疾病而言具有偉大的貢獻。然而,過往在此類疾病的診斷上,大都是根據醫師們多年的臨床經驗,以視覺直接判斷來對MSCT影像進行大量的手動圈選工作,由此定義血管邊界、斑塊種類甚至鈣化的體積進而研判病因,這樣一系列流程不僅耗時費力,醫師們所判斷的結果也經常因人而異。因此,本研究的目的在於提出一套自動化的電腦輔助診斷系統,用以自動偵測粥樣硬化之冠狀動脈血管區段,期望能改善由人為操作變因所造成的不客觀因素。
本研究所提出的方法是一個複合型的影像分割演算法,稱為嵌入先驗之三維區域單元競爭演算法。首先我們採取模型化血管追蹤將影像裡的血管、背景等等特徵擷取出來,再將臨床上感興趣的區域打碎成許多性質相近的區塊,並同時嵌入血管追蹤所得之特徵作為先驗,稱之為「區域單元」,是進行區域競爭的基本元素。競爭機制初始當下,每個「區域單元」正巧唯一決定一個「區域集合」,基於所設計之統計能量函數,這些「區域集合」會反覆地以「區域單元」為單位相互競爭,每回合主動搶奪或被動讓出一個「區域單元」而成為較大或較小之「區域集合」,一旦能量函數收斂,所有「區域集合」便會各自成為一塊特徵區域,而我們所欲擷取之目標物則會突顯於一個或多個「區域集合」當中。換句話說,基於所嵌入之不同特徵的先驗,便能自動偵測出涵蓋斑塊的血管內腔,區隔影像的背景部份。同時,我們也設計了一些好用的工具與方便的介面以提供各項有利診斷的量化數據與統計資訊,這將使醫師在臨床上更容易判讀影像的表現,進而提高診斷的準確率。
本研究採用的影像資料來自12位在台大醫院進行MSCT冠狀動脈血管造影的病人,其中一位同時進行了血管內超音波 (IVUS) 的檢查,作為驗證本研究所提出之演算法的方式之ㄧ。而本研究所提出的方法,嵌入先驗之三維區域單元競爭演算法,在這12組MSCT影像當中都能成功地擷取出涵蓋斑塊的粥樣硬化冠狀動脈區段與其分支,並且斑塊部分是與冠狀動脈分離而自成一個區域,正說明了本方法分割的結果相當良好。至於所剩之1組IVUS影像正由台大醫院影像醫學部驗證本演算法的成效中。
zh_TW
dc.description.abstractElaborate studies have reported that multislice computed tomography (MSCT) appeared to make tremendous contributions and may be a standard imaging modality for the diagnosis of cardiovascular diseases. However, clinical practice for dealing with MSCT coronary angiography placed major importance on experiences, subjectively extracting coronaries and quantifying atherosclerotic plaques in MSCT datasets, which is an extremely tedious task if done manually and may cause different diagnoses. Therefore, this study aims to propose a computer aided diagnosis system, which enables to detect the atherosclerotic coronary segments and plaques automatically without any operator dependent factors.
A hybrid approach, called prior-embedded three-dimensional (3D) cell competition algorithm, is proposed in this study. It first decomposes the region-of-interest (ROI) into small homogeneous areas which are called cells, with features extracted by the model-based vessel tracking algorithm in it. Each cell uniquely defines a region at the very beginning. Based on a statistical energy function, all adjacent regions will compete against each other, merge or split simultaneously in a cell-by-cell fashion until a steady state is reached. Meantime, each region defines a prominent component and our object of interest is characterized by at least one of them, so that the plaques and the lumens throughout the coronary can be auto-identified by the prior information. Furthermore, this algorithm is designed with several valuable tools and a friendly user interface. All beneficial information such as statistical analyses and quantitative measurements will be provided to improve diagnostic accuracy.
The proposed method was validated by 12 patients who were scheduled for MSCT coronary angiography in National Taiwan University Hospital (NTUH). One of them also underwent intravascular ultrasound (IVUS) as a part of research protocol. Totally 12 MSCT datasets were examined in this study and the promising results were achieved. To make a comparative study and to strictly verify the proposed algorithm, the IVUS datum is in the process of making quantitative measurements in the department of medical imaging, NTUH.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:49:19Z (GMT). No. of bitstreams: 1
ntu-97-R95548058-1.pdf: 2284074 bytes, checksum: b84342c4d45e09035065b63070a2f2f9 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents論文口試委員審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
CONTENTS V
LIST OF FIGURES VII
LIST OF NOTATIONS IX
CHAPTER 1 Introduction 1
CHAPTER 2 Literature Review 4
2.1 Multiscale Filtering 5
2.2 Mathematical Morphology 5
2.3 Merging Schemes 6
2.4 Deformable Model 7
2.5 Graph Theoretic Approach 9
2.6 Tracking-based Method 10
2.7 Chang’s Vessel Segmentation Algorithm 10
CHAPTER 3 Model-Based Vessel Tracking Algorithm 11
3.1 Model Description 12
3.2 Cylinder Fitting 12
3.3 Vessel Tracking 16
CHAPTER 4 Prior-Embedded 3D Cell Competition Algorithm 19
4.1 Pre-processing Stage 21
4.2 Cell-generation Stage 23
4.3 Prior-embedding Stage 25
4.4 Cell-based Deformation Stage 26
4.5 Re-initialization Stage 33
CHAPTER 5 Experimental Results 34
CHAPTER 6 Discussion and Conclusion 47
REFERENCE 51
dc.language.isoen
dc.subject影像分割zh_TW
dc.subject多切面電腦斷層掃描zh_TW
dc.subject血管追蹤zh_TW
dc.subject分水嶺轉換zh_TW
dc.subject區域單元競爭zh_TW
dc.subject冠心病zh_TW
dc.subjectMultislice Computed Tomographyen
dc.subjectImage Segmentationen
dc.subjectVessel Trackingen
dc.subjectWatershed Transformationen
dc.subjectCell Competitionen
dc.subjectCoronary Artery Diseaseen
dc.title嵌入先驗之三維區域單元競爭演算法:多切面電腦斷層掃描冠狀動脈粥樣硬化影像分割與分析zh_TW
dc.titlePrior-Embedded Three-Dimensional Cell Competition Algorithm for Atherosclerotic Coronary Segmentation and Analysis in Multislice Computed Tomographyen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王宗道,李文正,楊炳德,詹寶珠,許志宇
dc.subject.keyword影像分割,血管追蹤,分水嶺轉換,區域單元競爭,冠心病,多切面電腦斷層掃描,zh_TW
dc.subject.keywordImage Segmentation,Vessel Tracking,Watershed Transformation,Cell Competition,Coronary Artery Disease,Multislice Computed Tomography,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2008-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved