請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42126
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴秀穗(Shiow-Suey Lai) | |
dc.contributor.author | Chu-Hsiang Pan | en |
dc.contributor.author | 潘居祥 | zh_TW |
dc.date.accessioned | 2021-06-15T00:48:10Z | - |
dc.date.available | 2013-09-02 | |
dc.date.copyright | 2008-09-02 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-21 | |
dc.identifier.citation | Ahmed R, Stevens JG, 1991. Viral persistence. In: Fields BN, Knipe DM Fundamental virology, 2nd edn. Raven Press, New York, p 241-265.
Aliken JM, Blore IC, 1964. Immunology of new born pigs: response to lapinized and sukling pigs. Am J Vet Res 25:1134-1139. Alizadeh A, Eisen M, Botstein D, Brown PO, Staudt LM, 1998. Probing lymphocyte biology by genomic-scale gene expression analysis. J Clin Immunol 18:373-379. Anonymous, 1999. Chapter on classical swine fever. In: Animal Health Code of the Office International des Epizooties, eighth ed. Rue de Prony, Paris, pp. 123-127. Arcellana-Panlilio M, Robbins SM, 2002. Cutting-edge technology. I. Global gene expression profiling using DNA microarrays. Am J Physiol Gastrointest Liver Physiol 282:397-402. Barlic-Maganja D, Grom J, 2001. Highly sensitive one-tube RT-PCR and microplate hybridisation assay for the detection and for the discrimination of classical swine fever virus from other pestiviruses. J Virol Methods 95:101-110. Bartak P, Greiser-Wilke I, 2000. Genetic typing of classical swine fever virus isolates from the territory of the Czech Republic. Vet Microbiol 77: 59-70. Baxi MK, Baxi S, Clavijo A, Burton KM, Deregt D, 2006. Microarray-based detection and typing of foot-and-mouth disease virus. Vet J 172:473-481. Biagetti M, Greiser-Wilke I, Rutili D, 2001. Molecular epidemiology of classical swine fever in Italy. Vet Microbiol 83: 205-215. Bjorklund HV, Stadejek T, Vilcek S, Belak S, 1998. Molecular characterization of the 3' noncoding region of classical swine fever virus vaccine strains. Virus Genes 16:307-312. Bjorklund H, Lowings P, Stadejek T, Vilcek S, Greiser-Wilke I, Paton D, Belak S, 1999. Phylogenetic comparison and molecular epidemiology of classical swine fever virus. Virus Genes 19:189-195. Bolin S, Black JW, Frey ML, Katz JB, Ridpath JF, Roblin RO, 1994. Detection of a cell line contaminated with hog cholera virus. Am J Vet Med Assoc. 205:742-745. Bouma A, De Smit AJ, De Jong MCM, De Kluijver EP, Moormann RJM, 2000. Determination of the onset of the herd-immunity induced by the E2 subunit vaccine against classical swine fever virus. Vaccine 18:1374-1381. Canal CW, Hotzel I, de Almeida LL, Roehe PM, Masuda A, 1996. Differentiation of classical swine fever virus from ruminant pestiviruses by reverse transcription and polymerase chain reaction (RT-PCR). Vet Microbiol 48:373-379. Cheville NF, Mengeling WL, 1969. The pathogenesis of chronic hog cholera (swine fever). Histologic, immunofluorescent, and electron miscroscopic studies. Lab Invest 20:261-274. Chizhikov V, Wagner M, Ivshina A, Hoshino Y, Kapikian AZ, Chumakov K, 2002. Detection and genotyping of human group A rotaviruses by oligonucleotide microarray hybridization. J Clin Microbiol 40:2398-2407. Cho HS, Park SJ, Park NY, 2006. Development of a reverse transcription-polymerase chain reaction assay with fluorogenic probes to discriminate Korean wild-type and vaccine isolates of classical swine fever virus. Can J Vet Res 70:226-229. Choi C, Chae C, 2003. Localization of classical swine fever virus from chronically infected pigs by in situ hybridization and immunohistochemistry. Vet Pathol 40:107-113. Coggins L, 1964. Study of hog cholera colostral antibody and its effect on active hog cholera immunization. Am J Vet Res 25:613-617. Correa GP, Coba-Ayala MA, Salinas LZ, Guadalupe SE, Amalia MA, 2006. Persistence of hog cholera vaccinal virus PAV-250 in tonsils of vaccinated pigs. IPVS Proceed: p117. Dahle J, Liess B, 1992. A review on classical swine fever infections in pigs: epizootiology, clinical disease and pathology. Comp Immunol Microbiol Infect Dis 15:203-11. David B. Allison, Grier P. Page, T. Mark Beasley, Jode W. Edwards, 2005. DNA Microarrays and Related Genomics Techniques: Design, Analysis, and Interpretation of Experiments, Chapman & Hall/CRC press. First edn. Chapter 1: pp1-6. Deng MC, Huang CC, Huang TS, Chang CY, Lin YJ, Chien MS, Jong MH, 2005. Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet Microbiol 106:187-193. Dong XN, Chen YH, 2007. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 25:205-230. Fan Y, Zhao Q, Zhao Y, Wang Q, Ning Y, Zhang Z, 2008. Complete genome sequence of attenuated low-temperature Thiverval strain of classical swine fever virus. Virus Genes 36:531-538. Felsenstein J, 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. Felsenstein J, 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Department of Genetics, University of Washington, Seattle. Floegel-Niesmann G, Bunzenthal C, Fischer S, Moennig V, 2003. Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J Vet Med B Infect Dis Vet Public Health, 50:214-220. Frias-Lepoureau MT, Greiser-Wilke I, 2002. An update on classical swine fever (CSF) virus molecular epidemiology. In: Morilla A, Hernandez P, Yoon JK, Zimmerman J (Eds), Trends in Emerging Viral Infections of Swine. Iowa State Press, Ames Iowa, pp. 165-171. Fritzemeier J, Teuffert J, Greiser-Wilke I, Staubach H, Moenning V, 2000. Epidemiology of classical swine fever in Germany in the 1990s. Vet Microbiol 77: 29-41. Gordon PF, Engstrand L, 2001. Comparison of genetic divergence and fitness between two subclones of Helicobacter pylori. Infect Immun 69:7823-7838. Greiser-Wilke I, Depner K, Fritzemeier J, Haas L, Moennig V, 1998. Application of a computer program for genetic typing of classical swine fever virus isolates from Germany. J Virol Methods 75: 141-150. Greiser-Wilke I, Fritzemeier J, Koenen F, Vanderhallen H, Rutili D, De Mia GM, Romero L, Sanchez-Vizcaino JM, San Gabriel A, 2000. Molecular epidemiology of a large classical swine fever epizootic in the European Community in 1997-1998. Vet Microbiol 77: 17-27. Ha SK, Choi C, Chae C, 2004. Development of an optimized protocol for the detection of classical swine fever virus in formalin-fixed, paraffin-embedded tissues by seminested reverse transcription-polymerase chain reaction and comparison with in situ hybridization. Res Vet Sci 77:163-169. Handel K, Kehler H, Hills K, Pasick J, 2004. Comparison of reverse transcriptase- polymerase chain reaction, virus isolation, and immunoperoxidase assays for detecting pigs infected with low, moderate, and high virulent strains of classical swine fever virus. J Vet Diagn Invest 16:132-138. Harasawa R, Giangaspero M, 1999. Genetic variation in the 5' end and NS5B regions of classical swine fever virus genome among Japanese isolates. Microbiol Immunol 43: 373-379. Harding MJ, Prud'homme I, Gradil CM, Heckert RA, Riva J, McLaurin R, Dulac GC, Vydelingum S, 1996. Evaluation of nucleic acid amplification methods for the detection of hog cholera virus. J Vet Diagn Invest 8:414-419. Heller MJ, 2002. DNA microarray technology: devices, system, and applications. Annu Rev Biomed Eng 4:129-153. Hofmann MA, Brechtbuhl K, Stauber N, 1994. Rapid characterization of new pestivirus strains by direct sequencing of PCR-amplified cDNA from the 5' noncoding region. Arch Virol 139: 217-229. Hulst MM, Westra DF, Wenswoord G, Moormann RJM, 1993. Glycoprotein E1 of Hog Cholera virus expressed in insect cells protects swine from Hog Cholera. J Virol 67:5435-5442. Iowa State University, 2007. DNA Facility-DNA Sequencing Troubleshooting Guide. Available at: http://www.dna.iastate.edu/frame_dna_sequencing_tsg.html Ishikawa K, Nagai H, Katayama K, Tsuttsui M, Tanabayashi K, Takeuchi K, Hishiyama M, Saitoh A, Gotoh K, Muramtsu M, Yamada A, 1995. Comparison of the entire nucleotide and deduced amino acid sequences of the attenuated hog cholera vaccine strain GPE- and the wild-type parental strain ALD. Arch Virol 140: 1385-1391. Kaden V, Hubert P, Strebelow G, Lange E, Steyer H, Steinhagen P, 1999a. Comparison of laboratory diagnostic methods for the detection of infection with the virus of classical swine fever in the early inspection phase: an experimental study Berl Munch Tierarztl Wochenschr 112:52-57. Kaden V, Steyer H, Strebelow G, Lange E, Hübert P, Steinhagen P, 1999b. Detection of low-virulent classical swine fever virus in blood of experimentally infected animals: comparison of different methods Acta Virol. 43:373-380. Kaden V, Lange E, Riebe R, Lange B, 2004. Classical swine fever virus strain 'C'. How long is it detectable after oral vaccination? J Vet Med B Infect Dis Vet Public Health 51:260-262. Kamolsiriprichaiporn S, Hooper PT, Morrissy CJ and Westbury HA, 1992. A comparison of the pathogenicity of two strains of hog cholera virus. 1. Clinical and pathological studies. Aus Vet J 69:240-242. Katz JB, Ridpath JF, Bolin SR, 1993. Presumptive diagnostic differentiation of hog cholera virus from bovine viral diarrhea and border disease viruses by using a cDNA nested-amplification approach. J Clin Microbiol 31:565-568. Kimura M, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111-120. Klaassen CHW, Prinsen CFM, de Valk HA, Horrevorts AM., Jeunink MAF, Thunnissen FBJM, 2004. DNA microarray format for detection and subtyping of human papillomavirus. J Clin Microbiol 42:2152-2160. Knowles NJ, Samuel AR, 2003. Molecular epidemiology of foot-and-mouth disease virus. Virus Res 91:65-80. Knudsen S, 2004. Guide to Analysis of DNA Microarray Data. 2th edn. Wiley-Liss Press. Chapter 1:pp1-13. Koenen F, Vanopdenbosch E, Wellemans G, Palate B, Caij A, De Smet A, 1988. Bovine viral diarrhea vaccination fails to protect pigs against classical swine fever challenge. Diergeneesk Tijdschr 57:398-404. Koenig P, Hoffmann B, Depner KR, Reimann I, Teifke JP, Beer M, 2007. Detection of classical swine fever vaccine virus in blood and tissue samples of pigs vaccinated either with a conventional C-strain vaccine or a modified live marker vaccine. Vet Microbiol 120:343-351. Konig M, Lengsfeld T, Pauly T, Stark R, Thiel HJ, 1995. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol 69:6479-6486. Koprowski H, James TR, Cox HR, 1946. Propagation of hog cholera virus in rabbits. Proc Soc Exp Biol Med 63:173-183. Lai SS, Chen CS, Huang TH, Ho WC, Wang JT, Wu FM, 1980. Immune response of pigs with different levels of colostral antibody to inoculation with LPC-Chinese strain of hog cholera vaccine. J Chinese Soc Vet Sci 6:77-81. Le Potier MF, Mesplede A, Vannier P, 2006. Classical swine fever and other pestiviruses. In: Diseases of Swine. 9th edn. B. E.Straw, J. J. Zimmerman, S. D'Allaire and D. J. Taylor. Ninth Edition. Chapter 15. pp. 309-322. Blackwell, Publishing, Ames, IA. Leblanc N, Gantelius J, Schwenk JM, Stahl K, Blomberg J, Andersson-Svahn H, Belak S, 2008. Development of a magnetic bead microarray for simultaneous and simple detection of four pestiviruses. J Virol Methods May 29 (in press). Lee LH, Lin KF, Yang SY, 1988. Biological characterization of field strains of hog cholera virus. J Chinese Soc Vet Sci 14:7-15. Lee Robert CT, 1954. Lapinized hog cholera vaccine in Taiwan. Scientific Agri (Taiwan) 2: 4-14. Lee Robert CT and Lin. Tracy TC, 1976. A potent and safe strain of lapinized hog cholera virus used for hog cholera control in Taiwan. Proceedings. 4th IPVS Congress. Ames, H4. Li J, Chen S, Evans DH, 2001. Typing and subtyping influenza virus using DNA microarrays and multiplex reverse transcriptase PCR. J Clin Microbiol 39:696-704. Li Y, Zhao JJ, Li N, Shi Z, Cheng D, Zhu QH, Tu C, Tong GZ, Qiu HJA, 2007. Multiplex nested RT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus. J Virol Methods 143:16-22. Liao YK, 1992. Detection of LPC-China strain hog cholera virus persisted in pigs by polymerase chain reaction. Thesis of Master Degree. Graduate Institute of Veterinary Medicine, National Taiwan University. Taipei. Liess B, 1981. Hog cholera. In: Gibbs, E.P.J. (Eds), Virus Diseases of Food Animals: A World Geography of Epidemiology and Control, vol. II. Academic Press, London, pp. 627-650. Lin Tracy TC, Lee Robert CT, 1981. An overall report on the development of a highly safe and potent lapinized hog cholera virus strain for hog cholera control in Taiwan. National Science Council Special Publication Number 5:1-42. Liou PP, Li NJ, Chiu SY, 1987. The characteristics of field strains of hog cholera virus isolated in Taiwan. Exp Rep Tawan Provincial Res Inst Animal Heath 23: 121-127. Liu MS, Amirkhanian VD, 2003. DNA fragment analysis by an affordable multiple-channel capillary electrophoresis system. Electrophoresis 24:93–95. Liu ST, Li RN, Wang DC, Chang SF, Chiang SC, Ho WC, Chang YS, Lai SS, 1991. Rapid detection of hog cholera virus in tissues by the polymerase chain reaction. J Virol Methods 35:227-236. Loeffen W, Smits-Mastebroek L, Quak S, 2005. Persistence of CSF-virus in E2- vaccinated and subsequently infected pigs. In: ESVV, Sixth Pestivirus Symposium, Thun, Switzerland, September 13-16. Lorena J, Barlic-Maganja D, Lojkic M, Madic J, Grom J, Cac Z, Roic B, Terzic S Lojkic I, Polancec D, Cajavec S, 2001. Classical swine fever virus (C strain) distribution in organ samples of inoculated piglets. Vet Microbiol 81:1-8. Lowings JP, Paton DJ, Sands JJ, De Mia GM, Rutili D, 1994. Classical swine fever: genetic detection and analysis of differences between virus isolates. J Gen Virol 75:3461-3468. Lowings P, Ibata G, Needham J, Paton D, 1996. Classical swine fever virus diversity and evolution. J Gen Virol 77:1311-1321. Lowings P, Ibata G, De Mia GM, Rutili D, Paton D, 1999. Classical swine fever in Sardinia: epidemiology of recent outbreaks. Epidemiol Infect 122:553-559. Lu CY, 1998. Surveillance on classical swine fever virus persistently infected farms and phenotypic alteration of peripheral blood mononuclear cells of swine after virus infection. Thesis of Master Degree. Graduate Institute of Veterinary Pathology, National Chung Hsing University. Taichung. Lu CY, Wu FM, Sheu CC, Huang, Lee WC, 2002. Pathological and serological surveillance on classical swine fever virus persistently infected farms. J Chinese Soc Vet Sci. 28:210-219. Luetticken D, Drexle C, Visser N, Kaden V, 1998. The relevance of CSF marker vaccines for field use. In: Proceedings of OIE Symposium on Classical Swine Fever (Hog Cholera), Birmingham, UK, July 9-10. Mangen MJJ, Jalvingh AW, Nielen M, Mourits MCM, Klinkenberg D, Dijkhuizen AA, 2001. Spatial and stochastic simulation to compare two emergency-vaccination strategies with a marker vaccine in the 1997/1998 Dutch classical swine fever epidemic. Prev Vet Med 48:177-200. McGoldrick A, Lowings JP, Ibata G., Sands JJ, Belak S, Paton DJ, 1998. A novel approach to the detection of classical swine fever virus by RT-PCR with a fluorogenic probe (TaqMan). J Virol Methods 72:125-135. Mengeling WL, Packer RA, 1969. Pathogenesis of chronic Hog Cholera: Host response. Am J Vet Res 30:409-417. Meyers G, Rumenapf T, Thiel HJ, 1989. Molecular cloning and nucleotide sequence of the genome of classical swine fever virus. Virology 171:555-567. Meyers G, Thiel HJ, 1996. Molecular characterization of pestiviruses. Adv Virus Res 47:53-118. Moenning V, Plagemann PG, 1992. The pestiviruses. Adv Virus Res 41:53-98. Moennig V, 2000. Introduction to classical swine fever: virus, disease and control policy. Vet Microbiol 73:93-102. Moennig V, Floegel-Niesmann G, Greiser-Wilke I, 2003. Clinical signs and epidemiology of classical swine fever: A review of new knowledge. Vet J 165:11-20. Moormann RJM, van Gennip HGP, Miedema GKW, Hulst MM, van Rijn PA, 1996. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J Virol 70:763-770. Narita M, Kawashima K, Kimura K, Mikami O, Shibahara T, Yamada S, Sakoda Y, 2000. Comparative immunohistopathology in pigs infected with highly virulent or less virulent strains of Hog Cholera virus. Vet Pathol 37:402-408. Neverov AA, Riddell MA, Moss WJ, Volokhov DV, Rota PA, Lowe LE, Chibo D, Smit SB, Griffin DE, Chumakov KM, Chizhikov VE, 2006. Genotyping of measles virus in clinical specimens on the basis of oligonucleotide microarray hybridization patterns. J Clin Microbiol 44:3752-3759. Oleksiewicz MB, Rasmussen TB, Normann P, Uttenthal, A, 2003. Determination of sequence of the complete open reading frame and the 5' NTR of the Paderborn isolate of classical swine fever virus. Vet Microbiol 92:311-325. Page RDM, 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357-358. Pan CH, 1995. Differentiation of hog cholrea virus strain by reverse transcription-polymerase chain reaction and restriction fragment length polymorphism. Thesis of Master Degree. Graduate Institute of Veterinary Medicine, National Taiwan University. Taipei. Pan CH, Jong MH, Huang TS, Liu HF, Lin SY, Lai SS, 2005. Phylogenetic analysis of classical swine fever virus in Taiwan. Arch Virol 150:1101-1119. Pan CH, Jong MH, Huang YL, Huang TS, Chao PH, Lai SS, 2008. Rapid detection and differentiation of wild-type and three attenuated lapinized vaccine strains of classical swine fever virus by reverse transcription-polymerase chain reaction. J Vet Diagn Invest 20:448-456. Parchariyanon S, Inui K, Pinyochon W, Damrongwatanapokin S, Takahashi E, 2000. Genetic grouping of classical swine fever virus by restriction fragment length polymorphism of the E2 gene. J Virol Methods 87:145-149. Paton DJ, Lowings JP, Barrett ADT, 1992. Epitope mapping of the gp53 envelope protein of bovine viral diarrhoea virus. Virology 190:763-772. Paton DJ, McGoldrick A, Greiser-Wilke I, Parchariyanon S, Song JY, Liou PP, Stadejek T, Lowings JP, Bjorklund H, Belak S, 2000. Genetic typing of classical swine fever virus. Vet Microbiol 73:137-157. Paton DJ, Greiser-Wilke I, 2003. Classical swine fever-an update. Res Vet Sci 75:169-178. Pearson JE, 1992. Hog cholera diagnostic techniques. Comp Immunol Microbiol Infect Dis 15:213-219. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP, 1994. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci 91:5022-5026. Pringle CR, 1999. The universal system of virus taxonomy, updated to include the new proposal ratified by the International Committee on Taxonomy of Virus during 1998. Arch Virol 144:421-429. Risatti GR, Callahan JD, Nelson WM, Borca MV, 2003. Rapid detection of classical swine fever virus by a portable real-time reverse transcriptase PCR assay. J Clin Microbiol 41:500-505. Ruggli N, Tratchin JD, Mittelholzer C, Hofmann MA, 1996. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. Journal of Virology 70:3478-3487. Rumenapf T, Unger G, Strauss JH, Thiel HJ, 1993. Processing of the envelope glycoproteins of Pestivirus. J Virol 67:3288-3294. Saitou N, Nei M, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425. Sakoda Y, Ozawa S, Damrongwatanapokin S, Sato M, Ishikawa K, Fukusho A, 1999. Genetic heterogeneity of porcine and ruminant pestiviruses mainly isolated in Japan. Vet Microbiol 65:75-86. Saunders NA, Alexander S, Tatt I, 2005. env Gene typing of human immunodeficiency virus type 1 strains on electronic microarrays. J Clin Microbiol 43:1910-1916. Schena M, Shalon D, Davis RW, Brown PO, 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467-70. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davies RW, 1996. Parallel human genomic analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci 93:10614-10619. Sims LD and Glastonbury JRW, 1996. Lymph nodes and thymus. In: Pathology of the pig, 1st edn. The Pig Research and Development Corporation Agriculture Victoria, Barton, Australia, pp.185-210. Song Y, Dai E, Wang J, Liu H, Zhai J, Chen C, Du Z, Guo Z, Yang R, 2006. Genotyping of hepatitis B virus (HBV) by oligonucleotides microarray. Mol Cell Probes 20:121-127. Stadejek T, Warg J, Ridpath JF, 1996. Comparative sequence analysis of the 5' noncoding region of classical swine fever virus strains from Europe, Asia, and America. Arch Virol 141:771-777. Stadejek T, Vilcek S, Lowings JP, Ballagi-Pordany A, Paton DJ, Belak S, 1997. Genetic heterogeneity of classical swine fever virus in central Europe. Virus Res 52:195-204. Stegeman A, Elbers A, de Smit H, Moser H, Smak J, Pluimers F, 2000. The 1997-1998 epidemic of classical swine fever in the Netherlands. Vet Microbiol 73:183-96. Strimmer K, von Haeseler A, 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree toplogies. Mol Biol Evol 13:964-969. Strimmer K, von Haeseler A, 1997. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. PNAS 94:6815-6819 Suradhat S, Intrakamhaeng M, Damrongwatanapokin S, 2001. The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection. Vet Microbiol 83:177-189. Suradhat S, Damrongwatanapokin S, 2003. The influence of maternal immunity on the efficacy of a classical swine fever vaccine against classical swine fever virus, genogroup 2.2, infection. Vet Microbiol. 92:187-94. Susa M, Konig M, Saalmuller A, Reddehase MJ, Thiel HJ, 1992. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J Virol 66:1171-1175. Taylor DJ, 1999. Classical swine fever. In Pig diseases 7th edn. St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk, Great Britain Press. pp 80-88. Terpstra C, Wensvoort G, 1987. Influence of the vaccination regime on the herd immune response for swine fever. Vet Microbiol 13:143-151. Terpstra C, 1991. Hog cholera: an update of present knowledge. Br Vet J 147:397-406. Terpstra C, 1996. Chapter on classical swine fever. In: Manual of standards for diagnostic tests and vaccines. Office International des Epizooties, Paris, France, third edn. Rue de Prony, Paris, pp. 145-154. Thiel HJ, Stark R, Weiland E, Rumenapf T, Meyers G, 1991. Hog cholera virus: molecular composition of virions from a pestivirus. J Virol 65:4705-4712. Tu C, Lu Z, Li H, Yu X, Liu X, Li Y, Zhang H, Yin Z, 2001. Phylogenetic comparison of classical swine fever virus in China. Virus Res 81:29–37. Van Oirschot JT, 1999. Hog cholera. In: Shaw, B.E, et al. (Eds), Diseases of swine, 8th Edition. Iowa State University Press, Iowa, pp. 159-172. Van Oirschot JT, 2003. Vaccinology of classical swine fever: from lab to field. Vet Microbiol 96:367-384. Van Rijn PA, Miedema GWK, Wensvoort G, Van Gennip HPG, Moormann RJM, 1994. Antigenic structure of envelope glyoprotein E1 of hog cholera virus. J Virol 68: 3934-3942. Vanderhallen H, Mittelholzer C, Hofmann MA, Koenen F, 1999. Classical swine fever virus is genetically stable in vitro and in vivo. Arch Virol 144:1669-1677. Vannier P, Plateau E, Tillon JP, 1981. Congenital tremor in pigs farowed from sows given hog cholera virus during pregnancy. Am J Vet Res 42:135-137. Vilcek S, Herring AJ, Herring JA, Nettleton PF, Lowings JP, Paton DJ, 1994. Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis. Arch Virol 136:309-323. Vilcek S, Stadejek T, Ballagi-Pordany A, Lowings JP, Paton DJ, Belak S, 1996. Genetic variability of classical swine fever virus. Virus Res 43:137-147 Vilcek S, Belak S, 1998a. Classical swine fever virus: discrimination between vaccine strains and European field viruses by restriction endonuclease cleavage of PCR amplicons. Acta Vet Scand 39:395-400. Vilcek S, Paton DJ, 1998b. Application of genetic methods to study the relationship between classical swine fever outbreaks. Res Vet Sci 65:89-90. Vilcek S, Paton D, Lowings P, Bjorklund H, Nettleton P, Belak S, 1999. Genetic analysis of pestiviruses at the 3' end of the genome. Virus Genes 18:107-14. Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL, 2002. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci 99:15687-15692. Wang LC, Pan CH, Severinghaus LL, Liu LY, Chen CT, Pu CE, Huang D, Lir JT, Chin SC, Cheng MC, Lee SH, Wang CH, 2008. Simultaneous detection and differentiation of Newcastle disease and avian influenza viruses using oligonucleotide microarrays. Vet Microbiol 127:217-226. Wang Y, Wang Q, Lu X, Zhang C, Fan X, Pan Z, Xu L, Wen G, Ning Y, Tang F, Xia Y, 2008. 12-nt insertion in 3' untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology 374:390-8. Weiland E, Ahl R, Stark R, Weiland F, Thiel HJ, 1992. A second envelope glycoprotein mediates neutralization of a Pestivirus, hog cholera virus. J Virol 66:3677-3682. Welsh MD, Adair BM, Foster JC, 1995. Effect of BVD virus infection on alveolar macrophage function s. Vet Immunol Immunopathol 46:195-210. Wengler G, Bradley DW, Colett MS, Heinz FX, Schlesinger RW, Strauss JH, 1995. Flaviviridae. In Virus Taxonomy. Sixth report of the International Committee on Taxonomy of Viruses. Arch Virol Suppl 10:415-427. Widjojoatmodjo MN, van Gennip HP, de Smith AJ, Moormann RJ, 1999. Comparative sequence analysis of classical swine fever virus isolates from the epizootic in The Netherlands in 1997–1998. Vet Microbiol 66:291-299. Wirz B, Tratschin JD, Muller HK, Mitchell DB, 1993. Detection of hog cholera virus and differentiation from other pestiviruses by polymerase chain reaction. J Clin Microbiol 31:1148-1154. Wong ML, Peng BY, Liu JJ, Chang TJ, 2001. Cloning and sequencing of full-length cDNA of classical swine fever virus LPC strain. Virus Genes 23:187-192. Wu HX, Wang JF, Zhang CY, Fu LZ, Pan ZS, Wang N, Zhang PW, Zhao WG, 2001. Attenuated lapinized Chinese strain of classical swine fever virus: complete nucleotide sequence and character of 3'-noncoding region. Virus Genes 23:69-76. Zaberezhny AD, Grebennikova TV, Kurinnov VV, Tsybanov SG, Vishnyakov IF, Biketov SF, Aliper TI, Nepoklonov EA, 1999. Differentiation between vaccine strain and field isolates of classical swine fever virus using polymerase chain reaction and restriction test. Dtsch Tierarztl Wochenschr 106:394-397. Zhao JJ, Cheng D, Li N, Sun Y, Shi Z, Zhu QH, Tu C, Tong GZ, Qiu HJ, 2008. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of classical swine fever virus. Vet Microbiol 126:1-10. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42126 | - |
dc.description.abstract | 豬瘟是由豬瘟病毒引起之高接觸性傳染病,親緣樹分析有助於追蹤豬瘟病毒發生的地理起源並了解病毒基因型別的分佈。將1989至2007年台灣分離到的167株豬瘟病毒,針對Erns及E2封套醣蛋白基因以RT-PCR增幅此兩區間並進行核酸定序及親緣樹分析。雖然兩者出現類似的樹形圖,但Erns比E2具有更好的區別效果。親緣樹分析結果顯示,124個田間分離株屬於2.1及2.2亞群,此兩亞群都屬於外來型病毒株,其餘的43個田間分離株則屬於3.4亞群的本土型病毒株。由於2.1亞群病毒株在Erns親緣樹分析時可進一步區分成信賴值(bootstrap values)高達98%及85%的兩個群組(clusters),顯示此兩群組間病毒的核酸序列有明顯差異,因此我們認為2.1亞群應再進一步區分為2.1a及2.1b。其中2.1a 亞群病毒株最早於1994年入侵台灣,1995年即爆發流行,之後成為田間優勢族群至今。然而3.4亞群病毒株盛行於1994年以前,但自1996年以後就無法從田間分離到此型病毒。過去近二十年間,我們看到台灣田間流行的豬瘟病毒從3.4亞群轉變成2.1a 亞群,這基因型轉變並非由本土型病毒株的基因突變所造成。從基因序列分析結果發現,2.1a亞群病毒與德國分離株Paderborn及寮國分離株L119最相近,然而2.1b 亞群與中國廣西省分離株最為相近。另針對完整的封套醣蛋白(Erns- E2)核酸序列(2,385 bp)以親緣樹分析27 個豬瘟病毒之核酸序列,發現此區間相較於全長的開放讀碼區(Open reading frame)核酸序列(11,691 bp)具有更好的區別效果,可以將具親緣關係之ALD病毒及GPE- 疫苗毒群集一起(cluster together)。兩株外來型病毒(基因型2.1a 及 2.1b)被選來評估LPC兔化豬瘟疫苗對於豬隻的保護效力試驗,SPF豬以不同劑量(1, 1/10及1/100劑量)之LPC疫苗免疫,14天後分別以基因型2.1a 及 2.1b外來型豬瘟病毒進行攻毒試驗。結果顯示,目前台灣使用的LPC兔化豬瘟疫苗可以完全保護這兩株外來型豬瘟病毒的攻擊。豬瘟活毒減毒疫苗免疫小豬後疫苗毒會持續存在豬隻體內一段時間,一般實驗室常用的RT-PCR檢測方法無法區別野外毒及疫苗毒,需將PCR產物進行核酸定序以排除被檢病例中來自疫苗毒之干擾。本論文基於兔化豬瘟疫苗毒核酸序列中有一段T-rich插入之特性,發展單一步驟RT-PCR檢測方法。使用單步驟RT-PCR或巣式RT-PCR增幅,經傳統洋菜膠或毛細管電泳後,可同時檢測及區別臨床檢體中的豬瘟野外毒及兔化豬瘟疫苗毒。本方法至少可應用於LPC、HCLV及C-strain等三種兔化豬瘟疫苗毒,對於豬瘟野外毒檢測的敏感度RT-PCR及巣式RT-PCR分別為6.3及0.63 TCID50/ml。前人報告指出,兔化豬瘟疫苗毒核酸序列3' 端未轉譯區有一段12至13個T-rich插入之特性,然而我們發現LPC/PRK及LPC/TS兩株疫苗毒T-rich插入片段長度分別多達42及36個核苷酸,這些不同大小的T-rich插入片段增加RT-PCR產物的大小,可當做很好的基因標記藉以快速區別豬瘟野外毒及不同兔化豬瘟疫苗毒株。本論文進一步開發DNA 晶片檢測方法以達到同步檢測、分型及區別豬瘟野外毒及兔化豬瘟疫苗毒之目標。豬瘟病毒特異性引子及探針設計在病毒基因3' 端未轉譯區,先利用生物素標示引子(biotin-labeled primer)進行單步驟RT-PCR增幅,隨後將增幅產物與固定在塑膠晶片上的DNA探針進行雜合反應。利用DNA晶片方法不僅可將豬瘟病毒區分成三種主要基因型,亦可同時區別豬瘟野外毒及兔化豬瘟疫苗毒。RT-PCR及DNA晶片檢測之敏感度分別為10 及1 TCID50/ml,DNA晶片檢測方法之敏感度較RT-PCR方法高約10倍。RT-PCR結合DNA探針雜合技術可提供一高敏感性的檢測工具,適用於臨床病例中豬瘟病毒之檢測、分型及區別野外毒及疫苗毒。 | zh_TW |
dc.description.abstract | Classical swine fever (CSF) is a highly contagious viral disease of swine caused by classical swine fever virus (CSFV). Phylogenetic analysis of CSFV field isolates are useful to trace the geographic origins of the disease and to understand the distribution of CSFV genotypes. Two envelope glycoprotein (Erns and E2) regions of CSFV were amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sequenced directly from 167 specimens collected between 1989 and 2007 in Taiwan. Phylogenetic analysis of the two regions revealed a similar tree topology and, furthermore, the Erns region provided better discrimination of CSFV genotypes than the E2 region. Of the 167 isolates collected, 124 were clustered within subgroups 2.1 and 2.2, which were considered to be potential exotic strains, whereas the remaining 43 isolates were clustered within subgroup 3.4, which is considered to contain the historical strains. Since the subgroup 2.1 could be further separated into two different clusters with high bootstrap values of 98% and 85% in the Erns tree, we proposed that subgroup 2.1 should be further classified as 2.1a and 2.1b. The subgroup 2.1a viruses were introduced to Taiwan in 1994 and caused CSF outbreaks in 1995, and then predominated in the field onwards. However, the subgroup 3.4 viruses were prevalent in Taiwan prior to 1996 and seemed to disappear from the field since it could not be isolated from the field thereafter. We have observed a dramatic switch in genotype from subgroup 3.4 to 2.1a in the last two decades. The subgroup 2.1a isolates are closely related to the Paderborn and Lao isolates, whereas 2.1b isolates have a close relationship to the Chinese Guangxi isolates. The phylogenetic tree of 27 CSFV sequences based on the complete envelope glycoprotein gene (containing 2,385 bp) displayed better resolution than that based on the complete open reading frame gene (containing 11,691 bp). The ALD strain showed cluster together with the GPE- vaccine virus only in the complete envelope glycoprotein gene tree. Two exotic viruses with the genotypes 2.1a and 2.1b were selected as challenging candidates to evaluate the protective efficacy of the LPC vaccine. SPF pigs were vaccinated with various dosages (1, 1/10, and 1/100 doses) of LPC vaccine and challenged with a CSFV exotic strains, either from genotype 2.1a or from genotype 2.1b. The results demonstrated that the LPC vaccine that is currently used in Taiwan could provide full protection against these two exotic CSFVs. Live attenuated vaccine strains of CSFV can persist in the tonsils and lymph nodes of piglets for a long period of time after immunization. Routinely, RT-PCR followed by DNA sequencing has been the method used to detect CSFV and excludes the interference of vaccine viruses in field cases. Herein, a simple one-step RT-PCR method was developed, based on T-rich insertions in the viral genome, for simultaneous detection and differentiation of wild-type and vaccine strains of CSFV. The CSFV-specific primers were designed to contain the sequences of the T-rich insertion sites that exist uniquely in the 3' nontranslated regions (3' NTR) of the genome of lapinized CSFV vaccine strains. Using a one-step RT-PCR or a semi-nested RT-PCR followed by agarose gel or multi-capillary electrophoresis, the wild-type and lapinized vaccine strains of CSFV in clinical samples could be detected and accurately distinguished. These assays can be applied to at least three attenuated lapinized vaccine strains, LPC (lapinized Philippines Coronel), HCLV (hog cholera lapinized virus), and C (Chinese)-strain. The detection limit for the wild-type virus was 6.3 TCID50 (50% tissue culture infective dose)/ml for RT-PCR and 0.63 TCID50/ml for semi-nested RT-PCR. In previous studies, notable T-rich insertions of 12–13 nucleotides (nts) were found in the 3' NTR of the genome of CSFV lapinized vaccine strains. However, this study discovered that two T-rich insertions of 42 and 36 nts are present in the viral genome of lapinized vaccine strains LPC/PRK (primary rabbit kidney) and LPC/TS (Tam-Sui), respectively. These T-rich insertions of 12, 36, and 42 nts increases the size of PCR fragments, which are thus simple genetic markers for the rapid detection of and differentiation between wild-type and different lapinized vaccine strains of CSFV. This study also developed a DNA chip to enable simultaneous detection, genotyping, and differentiation between wild-type and vaccine-type CSFV. One-step RT-PCR amplification was performed with biotin-labeled primers, followed by hybridization to the DNA probe immobilized on the plastic chips. The DNA chip can not only accurately differentiate between the three major genotypes of CSFV, but can also discriminate between the wild-type and vaccine-type CSFV. The limit of detection for the wild-type virus was 10 TCID50/ml for RT-PCR and 1 TCID50/ml for the DNA chips. The sensitivity of the visual DNA chip was 10 times higher than that of the RT-PCR, as confirmed by agarose gel. The RT-PCR coupled with DNA probe hybridization provides a highly sensitive diagnostic tool for genotyping CSFV and discriminating between vaccine and wild-type CSFV in clinical samples. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:48:10Z (GMT). No. of bitstreams: 1 ntu-97-D91629004-1.pdf: 1512696 bytes, checksum: 09bde7f55d754663cf4290c70d8b444a (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | Certificate .......................................... i
Acknowledgments ..................................... ii Abstract ............................................. iii Abstract in Chinese .................................. vi Contents ............................................. viii List of Tables ....................................... xii List of Illustrations ............................... xiii 1. Section I Introduction ............................ 1 2. Section II Literature reviews ..................... 6 2.1 History of classical swine fever ................. 7 2.2 Characters of classical swine fever virus......... 8 2.3 Clinical characteristics ......................... 10 2.4 Pathogenesis ..................................... 11 2.5 Pathology ........................................ 13 2.6 Persist infection of classical swine fever virus in pigs .................................................. 15 2.7 Genotyping and molecular epidemiology .............18 2.8 Vaccination against classical swine fever virus .. 20 2.9 Diagnosis of classical swine fever virus infection ............................................. 22 2.10 Differentiation of vaccine-type from wild-type CSFV .................................................. 24 2.11 DNA microarrays ................................. 26 3. Section III Genetic analysis of classical swine fever virus in Taiwan ............................ 29 3.1 Abstract ........................................ 30 3.2 Introduction .................................... 30 3.3 Material and methods ............................ 32 3.3.1 Virus samples ................................. 32 3.3.2 RT-PCR and sequencing ......................... 33 3.3.3 Phylogenetic trees ............................ 34 3.4 Results ......................................... 36 3.4.1 RT-PCR and nucleotide sequencing of Erns and E2 genes ................................................. 36 3.4.2 Phylogenetic analysis of Erns and E2 genes ... 36 3.4.3 Phylogenetic analysis and sequence comparison of complete envelope protein gene (Erns - E2).............38 3.5 Discussion ........................................ 39 4. Section IV Protective efficacy of LPC vaccine in pigs against two exotic strains of classical swine fever virus ..........56 4.1 Abstract ......................................... 57 4.2 Introduction .................................... 57 4.3 Material and methods ............................ 59 4.3.1 Vaccine ....................................... 59 4.3.2 Challenging viruses ........................... 59 4.3.3 Vaccination/challenge experiments ............ 60 4.3.4 Sampling procedures ........................... 61 4.3.5 Virus isolation and antigen detection ......... 61 4.3.6 Serum neutralizing antibody assay ............. 61 4.3.7 RNA extraction and RT-PCR amplification ....... 62 4.4 Results ........................................ 63 4.4.1 Protective efficacy of LPC vaccine immunized pigs against CSFV subgroup 2.1a and 2.1b viruses ........... 63 4.4.2 Analysis of anti-CSFV neutralizing antibody ... 63 4.4.3 CSFV isolation from anti-coagulated blood and tissue samples........................................ 64 4.4.4 RT-PCR for nasal swab, tissues and serum samples 64 4.4.5 Necropsy findings ............................. 64 4.5 Discussion ............... 65 5. Section V Rapid detection and differentiation of wild-type and three attenuated lapinized vaccine strains of classical swine fever virus by reverse transcription polymerase chain reaction ............................. 71 5.1 Abstract ........................................ 72 5.2 Introduction .................................... 73 5.3 Material and methods ............................ 75 5.3.1 Viruses and vaccine strains ................... 75 5.3.2 Clinical samples .............................. 75 5.3.3 Primer design ................................. 76 5.3.4 RT-PCR and semi-nested RT-PCR amplification ... 76 5.3.5 Detection of CSFV in sera samples from experimental infection of pigs by RT-PCR and semi-nested RT-PCR..................................................77 5.3.6 Analysis of amplified products by agarose gel...77 5.3.7 Analysis of amplified products by multi-capillary electrophoresis .................................. 78 5.3.8 Sensitivity and specificity assays ............ 78 5.3.9 Nucleotide sequence of 3' NTR of vaccine strains and wild-type CSFV .................................... 78 5.4 Results ........................................ 79 5.4.1 Specificity of the RT-PCR and semi-nested RT-PCR 79 5.4.2 Detection and differentiation of wild-type and attenuated lapinized vaccine strains from clinical samples by RT-PCR ............................................. 80 5.4.3 Multi-capillary electrophoresis analysis ....... 80 5.4.4 Sensitivity of the RT-PCR and semi-nested RT-PCR 81 5.4.5 Nucleotide sequence analysis of 3' NTR of vaccine viruses and wild-type CSFV ............................ 81 5.5 Discussion ...................................... 82 6. Section VI A visual DNA chip for simultaneous detection, genotyping and differentiation of wild-type and vaccine-type classical swine fever virus ........ 94 6.1 Abstract ........................................ 95 6.2 Introduction .................................... 95 6.3 Material and methods ............................ 97 6.3.1 Viruses and vaccine strains ................... 97 6.3.2 Clinical samples .............................. 98 6.3.3 Primer and probe design ....................... 98 6.3.4 RNA extraction and RT-PCR amplification ....... 99 6.3.5 DNA chip preparation .......................... 99 6.3.6 Hybridization reaction and image analysis ..... 100 6.3.7 Sensitivity and specificity test .............. 101 6.4 Results ......................................... 101 6.4.1 RT-PCR amplification .......................... 101 6.4.2 DNA chip assays ............................... 101 6.4.3 Test of clinical samples with DNA chip ........ 102 6.4.4 Comparison of sensitivity of RT-PCR and DNA chip Assays ................................................ 103 6.5 Discussion ....................................... 103 7. Section VII Conclusion ............................ 114 8. References ........................................ 118 9. Appendix ......................................... 135 9.1 Referred papers (2002-2008) ..................... 135 9.2 Conference papers (2002-2008) ................... 137 | |
dc.language.iso | en | |
dc.title | 台灣豬瘟病毒分子流行病學之研究 | zh_TW |
dc.title | Molecular Epidemiological Studies of Classical Swine Fever Viruses in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王金和(Ching-Ho Wang),張天傑(Tien-Jye Chang),李維誠(Wee-Cheng Lee),郭村勇(Tsun-yung Kuo),鍾明華(Ming-Hwa Jong) | |
dc.subject.keyword | 豬瘟病毒,DNA 晶片,兔化豬瘟疫苗株,非轉譯區,親緣樹分析,探針,反轉錄聚合酶,鏈反應, | zh_TW |
dc.subject.keyword | Classical swine fever virus,DNA chip,Lapinized vaccine strains,Nontranslated region,Phylogenetic analysis,Probe,Reverse transcription-polymerase chain reaction, | en |
dc.relation.page | 138 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-22 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。