Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42107
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周瑞仁(Jui-Jen Chou)
dc.contributor.authorHuan-Ping Suen
dc.contributor.author蘇煥評zh_TW
dc.date.accessioned2021-06-15T00:47:06Z-
dc.date.available2010-09-02
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-25
dc.identifier.citation1. Chen, B. S., Y. C. Wang, W. S. Wu, and W. H. Li. 2005. A new measure of the robustness of biochemical networks. Bioinformatics. 21(11): 2698-2705.
2. Curto, R., A. Sorribas, and M. Cascante. 1995. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Model definition and nomenclature. Mathematical Biosciences. 130: 25-50.
3. Galazzo, J. L., and J. E. Bailey. 1990. Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme and microbial technology. 12: 162-172.
4. Gonzalez, O. R., C. Kuper, K. Jung, P. C. Naval, and E. Mendoza. 2007. Parameter estimation using simulated annealing for S-system models of biochemical networks. Bioinformatics. 23(4): 480-486.
5. Irvine, D. H., and M. A. Savageau. 1985. Network regulation of the immune response: Alternative control points for suppressor modulation of effector lymphocytes. The Journal of Immunology. 134: 2100-2116.
6. Juang, J. N., and R. S. Pappa. 1985. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of Guidance. 8(5): 620-627.
7. Juang, J. N., J. E. Cooper, and J. R. Wright. 1988. An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification. Control-Theory and Advanced Technology. 4(1): 5-14.
8. Juang, J. N., L. G. Horta, W. K. Belvin, J. Sharkey, and F. H. Bauer. 1992. An application of the Observer/Kalman Filter Identification (OKID) technique to hubble flight data. NASA/DOD Controls-Structures Interaction Technology Conference, Nevada.
9. Kikuchi, S., D. Tominaga, M. Arita, K. Takahashi, and M. Tomita. 2003. Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics. 19(5): 643-650.
10. Kimura, S., K. Ide, A. Kashihara, M. Kano, M. Hatakeyama, R. Masui, N. Nakagawa, S. Yokoyama, S. Kuramitsu, and A. Konagaya. 2005. Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics. 21(7): 1154-1163.
11. Kitano, H. 2002. Systems biology: A brief overview. Science. 295: 1662-1664.
12. Ko, C. L., F. S. Wang, Y. P. Chao, and T. W. Chen. 2006. S-system approach to modeling recombinant Escherichia coli growth by hybrid differential evolution with data collocation. Biochemical Engineering Journal. 28: 10-16.
13. Lin, L. H., H. C. Lee., W. H. Li, and B. S. Chen. 2005. Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC Bioinformatics. 6: 258-275.
14. Ma, L., and P. A Iglesias. 2002. Quantifying robustness of biochemical network models. BMC Bioinformatics. 3(38): 1-13.
15. Michaelis, L. and M. L. Menten. 1913. Die kinetik der invertinwirkung. Biochem. Zschr. 49: 333-369.
16. PLAS. 1996. Power Law Analysis and Simulation. Ver. 1.0. Lisbon, Portugal: Department of Chemistry and Biochemistry, university of Lisbon, Portugal.
17. Savageau, M. A. 1969a. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology. 25: 365-369.
18. Savageau, M. A. 1969b. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. Journal of Theoretical Biology. 25: 370-379.
19. Voit, E. O. 2000. Computational Analysis of Biochemical Systems. 1st ed., 37-192. New York: Cambridge University Press.
20. Voit, E. O. and J. Almeida. 2004. Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics. 20(11): 1670-1681.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42107-
dc.description.abstract本研究係應用OKID(Observer / Kalman Filter Identification)於生物系統的建模上,藉由OKID求出的系統矩陣與觀測增益矩陣可以進行系統性地分析、探討擾動系統的穩定性與強健性。OKID屬於狀態空間模型的參數估計方法之ㄧ,本研究藉此描述代謝反應與強健性評估。OKID可有效地鑑別狀態空間模型參數,在少許資料量下即可估計參數、確定適當的模型階數、降低雜訊影響並接受各式資料輸入等特性。由於S-system模型目前被廣泛地應用於代謝網路的建模上,因此藉由輸入各種型式的資料,透過S-system產生輸出資料,利用這些輸出入資料以及OKID的鑑別方法,得出系統參數,並將OKID鑑別出來的模型與S-system比較,OKID鑑別之狀態空間系統矩陣更適於分析生物系統。針對7個生化反應路徑,經由OKID鑑別出來的模型資料與原始資料相比對,至少具有92.1%以上的相似度;並且可依據模型特徵值有效地評估系統強健性。zh_TW
dc.description.abstractThe purpose of this paper is to apply OKID (Observer/Kalman Filter Identification), which is an approach for state space model parameter estimation, to the modeling of bio-systems. With the identified system matrices and observer gain matrix obtained from OKID approach, we can systematically investigate and analyze the stability and robustness of a perturbed system. OKID can effectively and easily identify a state space model, which requires fewer data for estimation, determines appropriate model order, reduces disturbance effect and allows general data inputs. Since S-system has currently been widely used in the modeling of metabolism networks, we adopt S-system to generate output data with various inputs, and use the input-output data sets to identify parameters by OKID approach. Furthermore, compared with S-system model, the model identified by OKID is more suitable for analyzing a bio-system based on the system matrices of the model. Seven numerical examples for biological pathways are given to illustrate and validate the method developed in this study. Results suggest that the built models can fit original data with at least 92.1% similarity and easily evaluate the robustness of the system by eigenvalues of the model.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:47:06Z (GMT). No. of bitstreams: 1
ntu-97-R95631006-1.pdf: 700658 bytes, checksum: d441086a68761cd87ec4146430a59888 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents v
Figures vii
Tables xi
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
Chapter 3 Materials and Methods 7
3.1 S-system Model of Biochemical Networks 7
3.2 Research Framework 8
3.3 OKID 10
3.4 A Novel Robustness Measure 16
Chapter 4 Results and Discussions 20
4.1 Example 1: Pathway with two dependent variables, two constant sources, and two feedforward/one feedback 20
4.2 Example 2: Linear pathway with three dependent variables, one constant source, and one feedback 26
4.3 Example 3: Cascaded pathway with three dependent variables, one constant source, and two feedback 33
4.4 Example 4: Branched pathway with three dependent variables, one constant source, and two feedback 42
4.5 Example 5: Branched pathway with four dependent variables, one constant source, and one feedback 50
4.6 Example 6: Generic branched pathway with four dependent variables, one constant source, and one feedforward/one feedback 61
4.7 Example 7: Ethanol production pathway in Saccharomyces cerevisiae with five dependent variables, nine constant sources, and one feedforward/one feedback 70
Chapter 5 Conclusions 84
References 85
Appendix A Identified Parameters 88
Appendix B Similarity Measure 110
Appendix C Robustness Analysis (Chen, et al., 2005) 111
dc.language.isoen
dc.title應用OKID於生物系統建模與強健性評估zh_TW
dc.titleApplication of OKID on Modeling and Robustness Evaluation of Bio-systemsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳倩瑜(Chien-Yu Chen),蕭介宗(Jai-Tsung Shaw),林聖泉(Tshen-Chan Lin),王逢盛(Feng-Sheng Wang)
dc.subject.keywordOKID,ERA/DC,穩定性,強健性,S-system模型,zh_TW
dc.subject.keywordOKID,ERA/DC,Stability,Robustness,S-system model,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2008-08-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
684.24 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved