Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林立虹(Li-Hung Lin)
dc.contributor.authorPao-Hsuan Chuen
dc.contributor.author朱寶萱zh_TW
dc.date.accessioned2021-06-15T00:45:09Z-
dc.date.available2008-09-27
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-27
dc.identifier.citation英文部份
Alain, K., Holler, T., Musat, F., Elvert, M., Treude, T., and Kruger, M., Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol, 2006. 8(4): p. 574-90.
Barnes, R.O. and Goldberg, E.D., Methane production and consumption in anoxic marine sediments. Geology, 1976. 4(5): p. 297-300.
Bekins, B.A., McCaffrey, A.M., and Dreiss, S.J., Episodic and constant flow models for the origin of low-chloride waters in a modern accretionary complex. Water Resources Research, 1995. 31(12): p. 3205-3215.
Berner, R. A. Princeple of chemical sedimetntology. New York, McGraw-Hill, 1971.
Berner, R. A. Early diagenesis : a theoretical approach. Princeton, N.J., Princeton University Press, 1980.
Boetius, A. and Suess, E. Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chemical Geology, 2004. 205(3-4): p. 291-310.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., Pfannkuche, O., A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000. 407(6804): p. 623-6.
Brysch, K., Schneider, C., Fuchs, G., Widdel, F., Lithoautotrophic growth of sulphate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch. Microbiol., 1987. 148: p. 264-274.
Castrec, M., Dia, A.N. and Boulegue, J., Major- and trace-element and Sr isotope constraints on fluid circulation in the Barbados accretionary complex .2. Circulation rates and fluxes. Earth and Planetary Science Letters, 1996. 142(3-4): p. 487-499.
Chistoserdova, L., J.A. Vorholt, and M.E. Lidstrom, A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol, 2005. 6(2): p. 208.
Chow, J., et al., A submarine canyon as the cause of a mud volcano - Liuchieuyu Island in Taiwan. Marine Geology, 2001. 176(1-4): p. 55-63.
Chow, J., et al., Characteristics of the bottom simulating reflectors near mud diapirs: offshore southwestern Taiwan. Geo-Marine Letters, 2000. 20(1): p. 3-9.
Clark, I. D. and P. Fritz. Environmental isotopes in hydrogeology. Boca Raton, FL, CRC Press/Lewis Publishers, 1997.
Claypool, G.E. and K.A. Kvenvolden, Methane and other Hydrocarbon Gases in Marine Sediment. Annual Review of Earth and Planetary Sciences, 1983. 11(1): p. 299-327.
D'Hondt, S., S. Rutherford, and A.J. Spivack, Metabolic Activity of Subsurface Life in Deep-Sea Sediments. 2002, American Association for the Advancement of Science. p. 2067-2070.
D'Hondt, S.L., Jørgensen, Bo B, Miller, D.Jay, Ivano W. Aiello, Barbara Bekins, Ruth Blake, Barry A. Cragg, Heribert Cypionka, Gerald R. Dickens, Timothy Ferdelman, Kathryn Ford, Glen L. Gettemy, Gilles Guèrin, Kai-Uwe Hinrichs, Nils Holm, Christopher House, Fumio Inagaki,, R.M.M. Patrick Meister, Thomas Naehr, Sachiko Niitsuma, R. John Parkes, Axel Schippers,, and D.C.S. C. Gregory Skilbeck, Arthur J. Spivack, Andreas Teske, Juergen Wiegel, Controls on Microbial Communities in Deeply Buried Sediments, Eastern Equatorial Pacific and Peru Margin. . Proceedings of the Ocean Drilling: Initial Report, 2003. 201.
Dimitrov, L.I., Mud volcanoes—a significant source of atmospheric methane. Geo-Marine Letters, 2003. 23(3): p. 155-161.
Distribution and Mechanism of Submarine Mud Volcanoes Offshore Southwestern Taiwan. 2006.
Fang, J., et al., Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiol Ecol, 2006. 57(3): p. 429-41.
Gulin, S.B., G.G. Polikarpov, and V.N. Egorov, The age of microbial carbonate structures grown at methane seeps in the Black Sea with an implication of dating of the seeping methane. Marine Geology, 2003. 84(1-2): p. 67-72.
Hallam, S.J., et al., Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 2004. 305(5689): p. 1457-62.
Hanson, R.S. and T.E. Hanson, Methanotrophic bacteria. Microbiol Rev, 1996. 60(2): p. 439-71.
Harmsen, H., et al., Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulphate-reducing bacteria. Arch. Microbiol., 1993. 160: p. 238-240.
Hinrichs, K.U., et al., Methane-consuming archaebacteria in marine sediments. Nature, 1999. 398(6730): p. 802-5.
Hoehler, T.M., et al., Field and Laboratory Studies of Methane Oxidation in an Anoxic Marine Sediment - Evidence for a Methanogen-Sulfate Reducer Consortium. Global Biogeochemical Cycles, 1994. 8(4): p. 451-463.
Humayoun, S.B., N. Bano, and J.T. Hollibaugh, Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol, 2003. 69(2): p. 1030-42.
Jorgensen, B.B., Mineralization of organic matter in the seabed [mdash] the role of sulphate reduction. Nature, 1982. 296: p. 643-645.
Jørgensen, N.O., Authigenic K-feldspar in recent submarine gypsum concretions from Denmark. Marine Geology, 1981. 39(1-2): p. M21-M25.
Jørgensen, N.O., Holocene methane-derived, dolomite-cemented sandstone pillars from the Kattegat, Denmark. Marine Geology, 1989. 88(1-2): p. 71-81.
Kastner, M., H. Elderfield, and J.B. Martin, Fluids in Convergent Margins - What Do We Know About Their Composition, Origin, Role in Diagenesis and Importance for Oceanic Chemical Fluxes. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1991. 335(1638): p. 243-259.
Kulm, L.D., et al., Oregon Subduction Zone: Venting, Fauna, and Carbonates. Science, 1986. 231(4738): p. 561-566.
Liu, C.S., I.L. Huang, and L.S. Teng, Structural features off southwestern Taiwan. Marine Geology, 1997. 137(3-4): p. 305-319.
Liu, Y. and W.B. Whitman, Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. 2008. 1125(1): p. 171-189.
Losekann, T., et al., Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol, 2007. 73(10): p. 3348-62.
Lowe, D.C., Global change: A green source of surprise. Nature, 2006. 439(7073): p. 148-149.
Martens, C.S. and R.A. Berner, Interstitial Water Chemistry of Anoxic Long Island Sound Sediments. 1. Dissolved Gases. Limnology and Oceanography, 1977. 22(1): p. 10-25.
Martinez, R.J., et al., Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol, 2006. 8(10): p. 1783-96.
Michaelis, W., et al., Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 2002. 297(5583): p. 1013-5.
Muyzer, G. and A.J.M. Stams, The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Micro, 2008. advanced online publication.
Nauhaus, K., et al., In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol, 2007. 9(1): p. 187-96.
Niemann, H., et al., Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 2006. 443(7113): p. 854-8.
Orphan, V.J., et al., Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol, 2001. 67(4): p. 1922-34.
Pancost, R.D., et al., Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. The Medinaut Shipboard Scientific Party. Appl Environ Microbiol, 2000. 66(3): p. 1126-32.
Panganiban, A.T., Jr., et al., Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol, 1979. 37(2): p. 303-9.
Parkes, R.J., et al., Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol, 2007. 9(5): p. 1146-61.
Peacock, S.M., Numerical-Simulation of Metamorphic Pressure-Temperature-Time Paths and Fluid Production in Subducting Slabs. Tectonics, 1990. 9(5): p. 1197-1211.
Pernthaler, A., et al., Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol, 2002. 68(2): p. 661-7.
Raghoebarsing, A.A., et al., A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 2006. 440(7086): p. 918-21.
Ramaswamy, V., et al., 2001: Radiative forcing of climate change. In: Climate Change 2001: The Scientifi c Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 349–416.
Reeburgh, W.S., Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters, 1976. 28(3): p. 337-344.
Reeburgh, W.S., Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments. Earth and Planetary Science Letters, 1980. 47(3): p. 345-352.
Reeburgh, W.S., Oceanic methane biogeochemistry. Chem Rev, 2007. 107(2): p. 486-513.
Scanlon, B.R., Evaluation of moisture flux from chloride data in desert soils. Journal of Hydrology, 1991. 128(1): p. 137.
Schouten, S., et al., Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl Environ Microbiol, 2003. 69(3): p. 1680-6.
Schubert, C.J., et al., Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ Microbiol, 2006. 8(10): p. 1844-56.
Stams, A.J.M., S.J.W.H. Oude Elferink, and P. Westermann, Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. Adv. Biochem. Eng. Biotechnol., 2003. 81: p. 31-56.
Thauer, R.K. and S. Shima, Biogeochemistry: Methane and microbes. Nature, 2006. 440(7086): p. 878-879.
Ussler Iii, W. and C.K. Paull, Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth and Planetary Science Letters, 2008. 266(3-4): p. 271-287.
Vonhuene, R. and D.W. Scholl, Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental-Crust. Reviews of Geophysics, 1991. 29(3): p. 279-316.
Wahlen, M., The Global Methane Cycle. Annual Review of Earth and Planetary Sciences, 1993. 21(1): p. 407-426.
Wallrabenstein, C., E. Hauschild, and B. Schink, Pure culture and cytological properties of Syntrophobacter wolinii. FEMS Microbiol. Lett., 1994. 123: p. 249-254.
Wang, C. H., Kuo, C.H., Peng, T.R., Chen, W.F., Chiang, C.J., Liu, W.C., and Hung J.J. The Symposium on Taiwan Quaternary & Workshop of the Asia Paleoenvironmental Change Projec, 2000, November 10-11, Keelung, National Taiwan Ocean University, p.3
Weijma, J., Competition for H2 between sulphate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci. Technol., 2002. 45: p. 75-80.
Whiticar, M.J., Carbon and hydrogen isotope systematics of bacterial formation an oxidation of methane. Chemical Geology, 1999. 161: p. 291-314.
Yang, T.F., et al., Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environmental Geology, 2004. 46(8): p. 1003-1011.
Yeh, G.-H., et al., Fluid Geochemistry of Mud Volcanoes in Taiwan. Mud Volcanoes, Geodynamics and Seismicity, 2005: p. 227-237.
You, C.-F., Gieskes, Joris. M., Lee, Typhoon, Yui, Tzen-Fu, Chen, Hsin-Wen. 'Geochemistry of mud volcano fluids in th eTaiwan accretionary prism. Applied Geochemistry, 2004. 19: 695-707.
Zehnder, A.J.B. and T.D. Brock, Methane Formation and Methane Oxidation by Methanogenic Bacteria. Journal of Bacteriology, 1979. 137(1): p. 420-432.
Zehnder, A.J. and T.D. Brock, Anaerobic Methane Oxidation: Occurrence and Ecology. Appl Environ Microbiol, 1980. 39(1): p. 194-204.
Zhang, C.L., Stable carbon isotopes of lipid biomarkers: analysis of metabolites and metabolic fates of environmental microorganisms. Curr Opin Biotechnol, 2002. 13(1): p. 25-30.

中文部份
鮑韋涵(2007)烏山頂泥火山之細菌多樣性分析與研究,國立中山大學生物科學研究所,碩士論文,共107頁。
李明書、劉彥求、林偉雄、林啟文(2004)活動斷層調查報告:觸口斷層,經濟部中央地質調查所施政計畫報告。
http://cgsweb.moeacgs.gov.tw/result/Fault/web/index-1.htm
台灣溫泉水資源之調查及開發利用(3/4) 主辦單位:經濟部水資源局執行單位:工研院能資所。
中國石油公司台探總處(1986),嘉義地質圖幅(1:100000)。
張阡肇 (2005) 台灣泥火山沈積物之特性、來源與西南部石灰岩體之隱示,國立台灣大學地質科學研究所,碩士論文,共頁。
張錫齡(1967)嘉義凍子腳及中崙構造地下地質之研究,臺灣石油地質第5號,第1-21頁。
詹博舜 (2001). 由穩定氫氧同位素探討台灣西南活動構造代泉水之來源,國立台灣大學地質科學研究所,碩士論文,共80頁。
詹新甫、耿文甫(1968)臺灣西南部新第三紀地層及主要地質構造,中國地質學會彙刊第11號,第45-59頁。
夏龍源應用地質技師事務所(2003)嘉義縣中崙風景特定區溫泉資源調查探測評估工作第一階段報告書。
趙鴻椿 (2003). 臺灣地區泥火山氣體成分分析及其對全球甲烷來源的可能影響,國立成功大學地質科學系碩博士班,碩士論文,共81頁。
陳柏村、劉彥求、林啟文、陳建良、張雲翔、衣德成、陳文山、黃能偉、楊志成、游能悌、周飛宏、顏一勤、宋時驊、楊小青(2006)活動斷層調查報告:旗山斷層,經濟部中央地質調查所施政計畫報告。
http://cgsweb.moeacgs.gov.tw/result/Fault/web/index-1.htm
石再添 (1967) 臺灣活泥山的調查及其類型與噴泥性質之關係的研究. 台灣石油地質,第5號,第259-311頁。
宋聖榮、劉佳玫 (2003) 台灣的溫泉,遠足文化事業有限公司。
曾威豪 (2007) 台灣西南海域海底泥火山之分布特徵與噴發機制,國立台灣大學海洋科學研究所,碩士論文,共頁。
王鑫、徐美玲、楊建夫 (1988) 臺灣泥火山地形景觀,台灣省立博物館年刊,第31卷,第31-49頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42072-
dc.description.abstract厭氧型甲烷氧化作用(Anaerobic Oxidation of Methane, AOM)是現今科學家認為減緩由海洋環境的甲烷逸散所造成的溫室效應中最有效的一種微生物作用。在海洋沉積物中 AOM發生於硫酸根及甲烷濃度趨近於零的一介面上(sulfate-methane-interface, SMI),由厭氧甲烷消耗菌與硫酸還原菌所組成的共生的微生物族群,消耗由海水向下滲透的硫酸根及深處由生物或地質作用(例如海底泥火山)所產生向上擴散的甲烷。瞭解這樣的微生物作用,是否得以因應地質作用所造成的硫酸根或甲烷供應的變化,有助於我們探討哪些因子控制全球尺度的甲烷溫室效應,並對碳與硫於不同環境間的循環與交互作用提供更深入的認識。
過去的研究顯示台灣西南部的陸上泥火山與海域泥火山的成因有密切的關係。雖然甲烷的通量無論於陸域或海域泥火山皆十分的高,但硫酸根的供應卻可能有數量級之別,因此本研究的目的在於探討AOM 是否得以適應台灣西南部陸上泥火山甲烷供應充足,而硫酸根較為短缺的情況,仍然扮演一重要的甲烷消耗作用。另外,於硫酸根較為短缺的情況下, AOM 是否仍須仰賴如海洋環境中的共生形式以維繫生存,或者發展出新的共生策略。
本研究選擇了三個採樣地點(嘉義中崙濁水潭、高雄燕巢新養女湖及高雄旗山小滾水)進行短岩芯 (30-50 cm) 的採樣,分析孔隙水與氣體化學,以建構可能的地球化學與微生物作用模式。結果顯示無論是孔隙水化學或氣體化學,於不同的採樣點或深度均有顯著的變化。於不同採樣點的比較中,濁水潭的孔隙水硫酸根濃度最高(介於0.5~8.0 mM之間),而甲烷濃度最低(0.1~0.5 mM);新養女湖與小滾水的硫酸根濃度皆較濁水潭為低(1 mM 以下),而甲烷濃度則遠大於濁水潭(最高可接近 20 mM)。
深度的變化顯示,大部分的岩芯中隨著深度的增加,硫酸鹽均具有不等程度減少,而甲烷濃度呈現不同程度的增加。由硫酸根與甲烷濃度對深度的變化,每一區域的岩芯皆具備 SMI 特徵相似的深度剖面,可能代表 AOM 作用的存在,其中(1)於濁水潭, SMI 可能發生於 4 公分至 12 公分深度;(2)於新養女湖, SMI 則出現於 8 公分至 15 公分深度;(3)於小滾水, SMI 則分佈於 7 公分至 12 公分深度以及 25公分至 32 公分深度。
綜合所有地球化學的特徵於深度的變化也顯示,除了 AOM 與厭氧型的硫酸鹽還原之外,好氧型的甲烷消耗、厭氧下製造甲烷及乙烷等微生物作用亦參與了於陸域泥火山的硫與碳循環。另外由 SMI 地球化學特徵顯示, AOM 作用仍然必須與硫酸鹽還原作用形成共生的關係;現地的甲烷製造所提供的高通量甲烷,以及經由泥火山噴發與地表的蒸發作用所造成的較高濃度硫酸鹽為延續此共生關係最重要的驅動力。
zh_TW
dc.description.abstractAnaerobic oxidation of methane (AOM) has been regarded as the most effective methane sink to attenuate the greenhouse effect caused by methane emission in marine environments. AOM typically occurs at the sulfate-methane interface (SMI) at which syntrophic microbial communities composed of anaerobic methanotrophs and sulfate reducing bacteria consume sulfate percolated from the top seawater and methane produced by either microbial or geological processes underneath. Unraveling whether such a syntrophic relationships would be subject to the variations in the sulfate and methane supply induced by geological processes would benefit to single out the factors governing the methane greenhouse effect on a global scale, and to provide insights to the carbon and sulfur cycling in different environmental settings.
Previous studies indicated that terrestrial and marine mud volcanoes in the southwestern Taiwan might bear the intimate origin. While methane concentrations are generally high in both marine and terrestrial mud volcanoes, sulfate supply could vary orders of magnitude. The purpose of this study was to explore (1) whether AOM could be still sustained or even actively act as an important methane sink in southwestern mud volcanoes where sulfate would be a limited factor for AOM; and (2) whether AOM is dependent upon the syntrophic relationships with sulfate reduction or a new syntrophic strategy is developed to accommodate the restricted sulfate supply.
This study chose three sites (Chao-Shih-Tan, Shin-Yang-Nih-Hu, and Shiao-Kun-Shih) for sampling of short push-cores (30-50 cm) from which pore water and gas chemistry of depth intervals were analyzed in order to construct a potential geochemical and microbiological model for terrestrial mud volcanoes. The results indicated that both pore water and gas geochemistry varied substantially both in geographic locations and on vertical scales. For geographical locations, pore water in Chao-Shih-Tan possessed highest sulfate (0.5-0.8 mM) but lowest methane (0.1-0.5 mM). In contrast, lower sulfate (<1 mM), and greater methane (up to 20 mM) were observed in Shin-Yang-Nih-Hu, and Shiao-Kun-Shih. Both pore waters in Chun-Lun and Shiao-Kun-Shih were highly saline (generally above 200mM and up to 650 mM Cl-), whereas moderately saline (generally 100-160 mM Cl-) for Shin-Yang-Nih-Hu.
Sulfate and methane abundances declined and enhanced at various degrees, respectively, with the increase of depth. The SMI features based on the sulfate and methane variations over depth were observed in all three locations, suggesting the ubiquitous presence of AOM in southwestern mud volcanoes. The depth intervals of the SMI were assigned at depths of 4 to 12 cm in Chun-Lun, of 8-15 cm in Shin-Yang-Nih-Hu, and of 7-12 cm and 25-32 cm in Shiao-Kun-Shih.
Despite AOM and sulfate reduction, aerobic methane oxidation, methanogesis and ethanogenesis were also involved in the carbon and sulfur cycling in the southwestern terrestrial mud volcanoes. The syntrophic relationships between AOM and sulfate reduction was primarily driven by the high methane flux produced from the in situ methanogenesis and elevated sulfate abundances generated during the surface evaporation of the erupted muddy fluids.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:45:09Z (GMT). No. of bitstreams: 1
ntu-97-R94224119-1.pdf: 4150412 bytes, checksum: e806c7b59ffd2a100459592597458c07 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents第一章 引言 1
前言 1
1-1甲烷循環 1
1-2 厭氧型甲烷氧化 4
1-3 增生楔與泥火山之形成: 6
第二章 研究目的 10
2-1動機 10
2-2 區域地質背景 13
第三章 實驗方法 17
3-1採樣地點 17
3-2準備工作 18
3-3 採樣方法 18
3-4 分析方法 20
3-4 氣體計算方法 23
第四章 分析結果 35
4-1沉積物含水量與其對應之深度剖面 35
4-2主要陰離子與氣體組成及其深度剖面 35
4-3 各培養基的甲烷濃度變化 40
第五章 討論 60
5-1 泥火山岩芯研究採樣方法之適用性 60
5-2 研究區域之流體傳輸模式及影響因素 60
5-3 影響泥火山流體傳輸的物理及生物化學作用 67
5-4厭氧型甲烷氧化作用、好氧型甲烷氧化作用、甲烷生成作用的關係 71
第六章 結論 80
參考文獻 81
英文部份 81
中文部份 90
附錄 92
dc.language.isozh-TW
dc.title厭氧型甲烷氧化作用在台灣西南部陸域泥火山的可能性評估zh_TW
dc.titleAssessing the potential of anaerobic oxidation of methane in the terrestrial mud volcanoes, southwestern Taiwanen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王珮玲(Pei-Ling Wang),楊燦堯(Tsan-Yao Yang),蘇志杰(Chih-Chieh Su)
dc.subject.keyword厭氧型甲烷氧化,陸域泥火山,zh_TW
dc.subject.keywordanaerobic oxidation of methane,terrestrial mud volcanoes,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2008-08-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved