Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42068
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金福
dc.contributor.authorYuan-Yu Wuen
dc.contributor.author吳原宇zh_TW
dc.date.accessioned2021-06-15T00:44:56Z-
dc.date.available2010-09-02
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-27
dc.identifier.citation[1] G. M. Whitesides, Sci. Am. 273, 146 (1995)
[2] G. M. Whitesides, J. P. Mathias, C.T.Seto, Science 254, 1312 (1991)
[3] R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. C. Wang, G. M.
Whitesides, D. E. Ingber, Science 264, 696 (1994)
[4] D. Philip, J. F. Stoddart, Angew. Chem. Int. Ed. 35, 1155 (1996)
[5] P. Ball, The Self-Made Tapestry: Pattern Formation in Nature (Oxford Univ.
Press,Oxford, 1999)
[6] R. Singh, V. M. Maru, P. S. Moharir, J. Nonlinear Sci. 8, 235 (1998)
[7] L. Isaacs, D. N. Chin, N. Bowden, Y. Xia, G. M. Whitesides, in Supramolecular
Technology, D. N. Reinhoudt, Ed. (Wiley, New York, 1999), pp. 1-46
[8] C. De Rosa, C. Park, E. L. Thomas, B. Lotz, Nature 405, 433 (2000)
[9] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, G. Ertl, Phys. Rev. Lett.
65, 3013 (1990)
[10] B. Hess, Naturwissenschaften 87, 199 (2000)
[11] N. Ban, P. Nissen, J. Hansen, P. B. Moore, T. A. Steitz, Science 289, 905 (2000)
[12] J. D. Hartgerink, E. Beniash, S. Stupp, Science 294, 1684 (2001)
[13] B. Grzybowski, G. M. Whitesides, unpublished results
[14] Image courtesy of O. Lavrentovich
[15] D. H. Gracias, V. Kavthekar, J. C. Love, K. E. Paul, G. M. Whitesides, Adv. Mater. 14, 235 (2002)
[16] T. D. Clark, J. Tien, D. C. Duffy, K. E. Paul, G. M. Whitesides, J. Am. Chem. Soc. 123, 7677 (2001)
[17] G. M. Whitesides, R. F. Ismagilov, Science 284, 89 (1999)
[18] R. F. Ismagilov, D. Rosmarin, D. H. Gracias, A. D. Strook, G. M. Whitesides, Appl. Phys. Lett. 79, 439 (2001)
[19] S. I. Stupp, V. LeBonheur, K. Walker, L. S. Li, K. E. Huggins, M. Keser,
A. Amstutz, Science 276, 384 (1997)
[20] D. G. Bucknall, H. L. Anderson, Science 302, 1904 (2003)
[21] J. M. Lehn, Supramolecular Chemistry (VCH Press, New York, 1995)
[22] J. M. Lehn, Science 295, 2400 (2002)
[23] C. T. Seto, J. P. Mathias, G. M. Whitesides, J. Am. Chem. Soc. 115, 1312 (1993)
[24] S. C. Zimmerman, F. Zeng, D. E. C. Reichert, S. V. Kolotuchin, Science 271, 1095 (1996)
[25] T. Kato, J. M. Frechet, J. Am. Chem. Soc. 111, 8533 (1989)
[26] F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, A. P. H. J. Schenning, Chem. Rev. 105, 1491 (2005)
[27] D. Braun, Mater. Today 5, 32 (2002)
[28] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J.-L. Bre´das, M. Lo¨glund, W. R. Salaneck, Nature 397, 121 (1999)
[29] C. D. Dimitrakopolous, P. R. L. Malenfant, Adv. Mater. 14, 99 (2002)
[30] C. J. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, Organic Photovoltaics Concepts and Realization (Springer-Verlag, London, 2003)
[31] C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 112, 5525 (1990)
[32] L. J. Prins, D. N. Reinhoudt, P. Timmerman, Angew. Chem. Int. Ed. 40, 2383 (2001)
[33] F. J¨ulicher, U. Seifert, R. Lipowsky, J. Phys. Ⅱ France 3, 1681 (1993)
[34] D. J. Pochan, Z. Chen, H. Cui, K. Hales, K. Qi, K. L. Wooley, Science 306, 94 (2004)
[35] Z. Hu, A. M. Jonas, S. K. Varshney, J-F Gohy, J. Am. Chem. Soc. 127, 6526 (2005)
[36] C.-X. Cheng, Y. Huang, R.-P. Tang, E. Chen, F. Xi, Macromolecules 38, 3044 (2005)
[37] S. A. Jenekhe, X. L. Chen, Science 283, 372 (1999)
[38] M. Yang, W. Wang, F. Yuan, X. Zhang, J. Li, F. Liang, B. He, B. Minch, G. Wegner, J. Am. Chem. Soc. 127, 15107 (2005)
[39] Y. Cai, S. P. Armes, Macromolecules 37, 7116 (2004)
[40] J. Hao, Z. Yuan, W. Liu, H. Hoffmann, J. Phys. Chem. B 108, 19163 (2004)
[41] A. M. G. da Silva, A. L. S. Gamboa, J. M. G. Martinho, Langmuir 14, 5327 (1998)
[42] S. Förster, M. Antonietti, Adv. Mater. 10, 195 (1998)
[43] S. Peleshanko, J. Jeong, R. Gunawidjaja, V. V. Tsukruk, Macromolecules 37, 6511 (2004)
[44] Y.-H. La, E. W. Edwards, S.-M. Park, P. F. Nealey, Nano Lett. 5, 1379 (2005)
[45] Y.-Y. Huang, H.-L. Chen, T. Hashimoto, Macromolecules 36, 764 (2003)
[46] P. Dastidar, S. Okabe, K. Nakano, K. Iida, M. Miyata, N. Tohnai, M. Shibayama, Chem. Mater. 17, 741 (2005)
[47] H. Xiang, K. Shin, T. Kim, S. I. Moon, T. J. McCarthy, T. P. Russell, Macromolecules 38, 1055 (2005)
[48] J. Du,Y. Chen, Macromol. Rapid Commun. 26, 491 (2005)
[49] C. Y. Li, K. K. Tenneti, D. Zhang, H. Zhang, X. Wan, E.-Q. Chen, Q.-F. Zhou, A.-O. Carlos, S. Igos, B. S. Hsiao, Macromolecules 37, 2854 (2004)
[50] E. Polushkin, S. Bondzic, J. de Wit, G. A. van Ekenstein, I. Dolbnya, W. Bras, O. Ikkala, G. Brinke, Macromolecules 38, 1804 (2005)
[51] P. Busch, D. Posselt, D.-M. Smilgies, B. Rheinla1nder, F. Kremer, C. M. Papadakis, Macromolecules 36, 8717 (2003)
[52] B.-K. Cho, A. Jain, S. M. Gruner, U. Wiesner, Science 305, 1598 (2004)
[53] K. Loos, A. Bo1ker, H. Zettl, M. Zhang, G. Krausch, A. H. E. M¨uller, Macromolecules 38, 873 (2005)
[54] Z. Zhang, X. Shao, H. Yu, Y. Wang, M. Han, Chem. Mater. 17, 332 (2005)
[55] I. W. Hamley, Soft Matter 1, 36 (2005)
[59] C. Koulic, R. Je´roˆme, Macromolecules 37, 888 (2004)
[57] R. B. Cheyne, M. G. Moffitt, Langmuir 21, 5453 (2005)
[58] S. Kadota, K. Aoki, S. Nagano, T. Seki, J. Am. Chem. Soc. 127, 8266 (2005)
[59] J. Du, S. P. Armes, J. Am. Chem. Soc. 127, 12800 (2005)
[60] L. Gao, L. Shi, W. Zhang, Y. An, Z. Liu, G. Li, Q. Meng, Macromolecules 38, 4548 (2005)
[61] G. Wang, X. Tong, Y. Zhao, Macromolecules 37, 8911 (2004)
[62] J. Zhu, Y. Jiang, H. Liang, W. Jiang, J. Phys. Chem. B 109, 8619 (2005)
[63] Y. Lin, A. Bo¨ ker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long, Q. Wang, A. Balazs, T. P. Russell1, Nature 434, 55 (2005)
[64] S.-H. Kim, M. J. Misner, T. P. Russell, Adv. Mater. 16, 2119 (2004)
[65] G. Kickelbick, J. Bauer, N. Hu¨ sing, M. Andersson, A. Palmqvist, Langmuir 19, 3198 (2003)
[66] Y.-W. Chiang, R.-M. Ho, B.-T. Ko, C.-C. Lin, Angew. Chem. Int. Ed. 44, 7969 (2005)
[67] N. Kang, M.-E. ve Perron, R. E. Prud’homme, Y. Zhang, G. Gaucher, J.-C. Leroux, Nano Lett. 5, 315 (2005)
[68] M. Kuang, H. Duan, J. Wang, M. Jiang, J. Phys. Chem. B 108, 16023 (2004)
[69] B. R. Blomqvist, T. Wa¨rnheim, P. M. Claesson, Langmuir 21, 6373 (2005)
[70] H. R. Allcock, E. S. Powell, Y. Chang, Macromolecules 37, 7163 (2004)
[71] M. R. Hammond, E. Cochran, G. H. Fredrickson, E. J. Kramer, Macromolecules 38, 6575 (2005)
[72] Y. Kim, J. Pyun, J. M. J. Fre´chet, C. J. Hawker, C. W. Frank, Langmuir 21, 10444 (2005)
[73] R.-M. Ho, Y.-W. Chiang, C.-C. Tsai, C.-C. Lin, B.-T. Ko, B.-H. Huang, J. Am. Chem. Soc. 126, 2704 (2004)
[74] S. H. Chen, A. C. Su, S. R. Han, S. A. Chen, Y. Z. Lee, Macromolecules 37, 181 (2004)
[75] M. Han, M. Hara, J. Am. Chem. Soc. 127, 10951 (2005)
[76] S. H. Chen, A. C. Su, C. S. Chang, H. L. Chen, D. L. Ho, C. S. Tsao, K. Y. Peng, S. A. Chen, Langmuir 20, 8909 (2004)
[77] J. J. Apperloo, R. A. J. Janssen, Macromolecules 33, 7038 (2000)
[78] H. Meier, Angew. Chem. Int. Ed. 44, 2482 (2005)
[79] X. Zhang, Z. Chen, and F. Würthner, J. Am. Chem. Soc. 129, 4886 (2007)
[80] L. Gehringer, C. Bourgogne, D. Guillon, B. Donnio, J. Am. Chem. Soc. 126, 3856 (2004)
[81] U. Jeng, C.-H. Hsu, H.-S. Sheu, H.-Y. Lee, A. R. Inigo, H. C. Chiu, W. S. Fann, S. H. Chen, A. C. Su, T.-L. Lin, K. Y. Peng, S. A. Chen, Macromolecules 38, 6566 (2005)
[82] S. C. J. Meskers, E. Peeters, B. M. W. Langeveld-Voss, R. A. J. Janssen, Adv. Mater. 12, 589 (2000)
[83] M. M. Alam, Y. Zhu, S. A. Jenekhe, Langmuir 19, 8625 (2003)
[84] S. Zheng, C. Tao, Q. He, H. Zhu, J. Li, Chem. Mater. 16, 3677 (2004)
[85] V. Urbanab, H. H. Wangc, P. Thiyagarajana, K. C. Littrella, H. B. Wangd, L. Yu., J. Appl. Cryst. 33, 645 (2000)
[86] M. Lee, C.-J. Jang, J.-H. Ryu, J. Am. Chem. Soc. 126, 8082 (2004)
[87] H. Wang, H. H. Wang, V. S. Urban, K. C. Littrell, P. Thiyagarajan, L. Yu, J. Am. Chem. Soc. 122, 6855 (2000)
[88] J. Kunzelman, B. R. Crenshaw, C. Weder, J. Mater. Chem. 17, 2989 (2007)
[89] A. Ajayaghosh, S. J. George, J. Am. Chem. Soc. 123, 5148 (2001)
[90] A. Ajayaghosh, S. J. George, V. K. Praveen, Angew. Chem. Int. Ed. 42, 332 (2003)
[91] R. Varghese, S. J. George, A. Ajayaghosh, Chem. Commun. 5, 593 (2005)
[92] A. Gesquiere, P. Jonkheijm, A. P. H. J. Schenning, E. Mena-Osteritz, P. Bauerle, S. De Feyterc, F. C. De Schryver, E. W Meijer, J. Mater. Chem. 13, 2164 (2003)
[93] S. J. George, A. Ajayaghosh, P. Jonkheijm, A. P. H. J. Schenning, E. W. Meijer, Angew. Chem. Int. Ed. 43, 3422 (2004)
[94] A. P. H. J. Schenning, E. W. Meijer, Chem. Commun., 3245 (2005)
[95] P. Jonkheijm, F. J. M. Hoeben, R. Kleppinger, J. van Herrikhuyzen, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem. Soc. 125, 15941 (2003)
[96] Z. Tomovic, Joost van Dongen, S. J. George, H. Xu, W. Pisula, P. Leclere,
M. M. J. Smulders, Steven De Feyter, E. W. Meijer, A. P. H. J. Schenning, J. Am. Chem. Soc. 129, 16190 (2007)
[97] 趙振慧,〝OBHPV共軛分子之合成及其自組裝性質結構之探討〞, 國立台灣大學材料科學與工程學研究所碩士論文 (2006)
[98] 周子瑜,〝OPV系列分子之合成與其自組裝光電超分子奈米結構、有機/無機掺和及其性質探討〞, 國立台灣大學材料科學與工程學研究所碩士論文初稿(2007)
[99] J. P. Ruiz, J. R. Dharia, J. R. Reynolds, Macromolecules 25, 849 (1999)
[100] H. Meier, D. Ickenroth, U. Stalmach, K. Koynov, A. Bahtiar, C. Bubeck, Eur. J. Org. Chem. 23, 4431 (2001)
[101] B. Wang, M. R. Wasielewski, J. Am. Chem. Soc. 119, 12 (1997)
[102] N. Kuhnert, A. L. Periago, G. M. Rossignolo, Org. Biomol. Chem. 3, 524 (2005)
[103] W. B. Davis, M. A. Ratner, M. R. Wasielewski, J. Am. Chem. Soc. 123, 7877 (2001)
[104] T. Jiu, Y. Li, H. Gan, Y. Li, H. Liu, S. Wang, W. Zhou, C. Wang, X. Li, X. Liu, D. Zhua, Tetrahedron 63, 232 (2007)
[105] P. F. V. Hutten, J.Wildeman, A. Meetsma, G. Hadziioannou, J. Am. Chem. Soc. 121, 5910 (1999)
[106] A. P. H. J. Schenning, P. Jonkheijm, E. Peeters, E. W. Meijer, J. Am. Chem. Soc. 123, 409 (2001)
[107] R. W. Sinkeldam, F. J. M. Hoeben, M. J. Pouderoijen, Inge De Cat, J. Zhang,
S. Furukawa, S. D. Feyter,J. A. J. M. Vekemans, E. W. Meijer, J. Am. Chem. Soc. 128, 16113 (2006)
[108] C. C. Hsieh, K.F. Lin, A.T. Chien, Macromolecules 39, 3043, (2006)
[109] P. Chen, G.Yang, C. Wang, W. Wang, M. Wang, T. Liu, polym. Int. 56, 996 (2007)
[110] N. Li, J. Lu, S. Yao, X. Xia, X. Zhu , Mater. Lett. 58, 3115 (2004)
[111] Y. Shirota, H. Kageyama, Chem. Rev. 107, 953 (2007)
[112] S. J. George, A. Ajayaghosh, Chem. Eur. J. 11, 3217 (2005)
[113] C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. M. J. Fréchet, Appl. Phys. Lett. 86, 122110 (2005)
[114] P. N. Murgatroyd, J. Phys. D. 3, 151 (1970)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42068-
dc.description.abstract在本研究中,我們成功地利用Wittig Reaction合成出oligo(2,5-dipropoxy-p-phenylene vinylene) (OPV3-C3),利用NMR與IR的圖譜去鑑定合成出來的產物,並且與之前實驗室的學姐利用Wittig-Horner Reaction合成出來的oligo(2,5-bis(hexyloxy)-p-phenylene vinylene) (OPV3-C6)與oligo(2,5-bis(octyloxy)-p
-phenylene vinylene) (OPV3-C8)共同做一系列熱性質、光學性質和自組裝奈米結構的探討與比較。利用TGA及DSC的熱分析結果,我們可得到三種化合物的熱裂解溫度(Td)、熔點(isotropic temperature)、與形成液晶的溫度,而且在DSC圖譜中,我們發現OPV3-C3在降溫的過程中出現了兩種不同的層列型(smetic)液晶相,然而在OPV3-C6與OPV3-C8的圖譜中只有發現一種層列型液晶相,這個結果亦可藉由POM的觀察得到印證。我們將再結晶所得到的OPV3系列化合物(簡稱原始試片)與加熱至熔點並緩慢冷卻後的OPV3系列化合物(簡稱加熱後試片)去測量SAXS及WAXD。在原始試片的SAXS圖譜中,代表著化合物排列形狀的a值隨著化合物側鏈增加而增加,並愈趨向於三度空間的排列,然而在加熱後試片的SAXS圖譜中,OPV3-C3的a值則因為具有兩種液晶態而趨向於三度空間的排列,但是OPV3-C6與OPV3-C8仍維持二度空間的排列。另外,在原始試片與加熱後試片的WAXD圖譜中可發現,前者可看到分子內結構所造成的peak,而後者在2θ=35o以上幾乎沒有peak產生。我們利用UV-Vis與PL光譜來研究OPV3系列化合物溶在chloroform、hexane與decane下以及藉由旋轉塗佈所形成固態薄膜的光學性質,當溶劑由極性改為非極性溶劑時,UV圖譜會有藍位移的現象,且固態的UV與PL圖譜會較溶液的UV與PL圖譜紅位移。另外,我們將OPV3系列的化合物溶在不同的溶劑下,以AFM觀察其沈降在雲母片上的自組裝奈米結構。當OPV3-C3溶在chloroform時,會自組裝排列成條狀結構,然而當溶在hexane及THF時僅會形成直徑約為20 nm的圓盤狀結構。而OPV3-C6溶在hexane與THF時易形成中空管狀結構,在chloroform當中亦會形成條狀結構。OPV3-C8則會在chloroform與THF中形成條狀結構,在hexane中僅形成片狀結構。藉由化合物的分子結構,我們推測其自組裝結構的驅動力為偶極-偶極作用力、π-π堆疊交互作用力與凡得瓦耳力。除此之外,我們還利用熱蒸鍍方式將化合物蒸鍍至雲母片上,同樣以AFM觀察其固態的自組裝奈米結構。在蒸鍍量較多的區域中可發現,OPV3系列的三種化合物皆會形成密密麻麻的條狀結構,而且條狀結構的長度隨著側鏈長度的增加而增加。最後,我們利用了循環伏安法與空間電荷限制電流法(space-charge limited current,SCLC)求出了OPV3系列分子的HOMO、LUMO與電洞位移率(hole mobility)。隨著化合物的側鏈長度愈長,則陽極起始電位、能帶間隙與HOMO則愈小。而OPV3-C3的電洞位移率經由計算可得為1.8×10-10 (cm2/Vs)。
zh_TW
dc.description.abstractIn this research, the oligo(2,5-dipropoxy-p-phenylene vinylene) (OPV3-C3) was successfully synthesized by Wittig reaction, and characterized by NMR and IR spectra. A series of experiments including thermal properties, optical properties, and observation of self-assembly nanostructure had been done on OPV3-C3, oligo(2,5-bis(hexyloxy)-p-
phenylene vinylene) (OPV3-C6), and oligo(2,5-bis(octyloxy)-p-phenylene vinylene) (OPV3-C8) to study the alkyl side chain effect on the basic properties. The thermal analysis showed the different degradation temperature(Td), isotropic temperature(Tm), and liquid crystal temperature(TLC). In the cooling process, the OPV3-C3 was observed two different smetic liquid crystal phase. However, OPV3-C6 and OPV33-C8 was observed only one. These phenomena were also verified by POM. The purified and solvent-recrytallized compound was treated with heating to its melting temperature and slowly cooling down to the room temperature. The structure of the compounds with and without heat-treatment were investigated at the same time by SAXS andWAXD. In the SAXS, we discovered the original compounds were turned to pack in 3-dimension, and the parameter “a” which symbolized the packing structure also increased with increasing the length of the alkyl side chain. However, after the compounds were heat-treated, the SAXS of them were analyzed its parameter “a”. The OPV3-C3 existed the 3-D packing due to two different smetic liquid crystal phase, but OPV3-C6 and OPV3-C8 still maintained the 2-D packing owing to only one smetic liquid crystal phase. So “a” of OPV3-C3 was close to 4, but “a” of other two were close to 2. Moreover, in the WAXD results, we found the compounds without heat-treatment have some peaks not observed on the heat-treated compounds at 2θ> 35o, which stands for the systematic arrangement of intramolecular structure. We used UV and PL to study the optical properties of OPV3 compounds dissolving in the chloroform, hexane, and decane and in thin films by spinning coating. From the UV spectra, compounds dissolving in different solvents showed absorption peaks would be blue-shifted with increasing the solvent polarity. Nevertheless, solid thin films showed red-shifted absorption peaks compared to the compounds in solutions. The self-assembly nanostructure of compounds was also comfirmed by AFM. The OPV3-C3 deposited on mica from chloroform solution would self-assembled as long stripes; but forming the disc about 20 nm in diameter from THF and hexane solution. The OPV3-C6 and OPV3-C8 would also have long stripes structure from chloroform solution as like as the OPV3-C3. But tubular structure would occur in OPV3-C6 from hexane and THF solution. It is believed that the driving forces for all above self-assembly processes were the combination of dipole-dipole interaction, π-π interaction, and Van der Waals force. In addition, the compounds would be evaporated on mica by vacuum evaporation, and self-assembly nanostructure of thin film was observed by AFM. In thin films of three compounds , confused long stripes would be observed, and the length of stripes would be increased with increasing the length of side chain. At last, we used cyclic voltammetry and space-charge limited current (SCLC) method to calculate the values of HOMO, LUMO, and hole mobilities of OPV3 compounds. With increasing the length of side chain, the values of onset anodic potential, band gap, and HOMO were small. The hole mobility of OPV3-C3 obtained from calculation was 1.8×10-10 (cm2/Vs).
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:44:56Z (GMT). No. of bitstreams: 1
ntu-97-R95549026-1.pdf: 25241496 bytes, checksum: ebb83e100cb12482aa433bd8b5737e37 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要……………………………………………………………...…...………..........I
英文摘要…...…………………………………………………..…………………........III
謝誌..................................................................................................................................V
圖目錄…………………………………………………………………………..……...VI
表目錄………………………………………………………………………………..XIV
第一章 緒論……………….……...…………….……………………….…….……......1
1-1 超分子化學與自組裝簡介……..........................…………………...….....…..........1
1-2 π共軛系統的自組裝與超分子結構………………..……………..……….…......6
1-2-1 π共軛系統的自組裝定律……………………………………...………......6
1-2-2 π共軛系統的自組裝文獻回顧………………………………….....…......9
1-3 有機薄膜電晶體(Organic Thin-firm Transistors,OTFTs)的概論…....…..…........25
1-3-1 OTFTs之基本構造…………………...…………………….…..………......25
1-3-2 OTFTs之半導體材料…………………………………………..………......27
1-3-3 OTFTs之優勢……………………………………...……….……..…...…...28
1-3-4 OTFTs之商機………………………………...…………………….....…..29
1-4 本研究的目標……………………………….……………...………………...........31
第二章 實驗設備與方法................................................................................................33
2-1化學藥品...................................................................................................................33
2-2儀器設備...................................................................................................................34
2-3合成步驟...................................................................................................................36
2-3-1 OPV3-C3之合成...........................................................................................36
2-3-2 OPV3-C6之合成...........................................................................................39
2-3-3 OPV3-C8之合成...........................................................................................39
2-4 樣品準備...................................................................................................................40
2-4-1 測量紫外光/可見光吸收光譜儀、螢光光譜儀之OPV3-C3(6)溶液樣品準備....................................................................................................................40
2-4-2 測量紫外光/可見光吸收光譜儀、螢光光譜儀之OPV3-C3(6)固態樣品準備....................................................................................................................40
2-4-3 OPV3-C3(6)在不同溶液、不同濃度下之AFM、TEM試片製備.................41
2-4-4 OPV3-C3(6)、OPV3-C6(13)、OPV3-C8(19)的循環伏安法(cyclic voltammetry,CV)之測量................................................................................42
第三章 結果與討論........................................................................................................43
3-1 化合物OPV3系列的基本鑑定...............................................................................43
3-1-1 OPV3系列的NMR圖譜之探討...................................................................43
3-1-2 OPV3系列的IR光譜之探討........................................................................44
3-2 化合物OPV3系列的熱性質與相關性質之探討...................................................45
3-2-1 OPV3系列的TGA分析................................................................................45
3-2-2 OPV3系列的DSC分析與POM分析...........................................................46
3-2-3 綜合討論.......................................................................................................49
3-3 化合物OPV3系列在溶液中的光學吸收特性與螢光特性...................................49
3-3-1 OPV3-C3在溶液中的光學吸收特性...........................................................50
3-3-2 OPV3-C3在溶液中的螢光特性...................................................................51
3-3-3 綜合討論.......................................................................................................53
3-4 化合物OPV3系列的固態薄膜光學吸收特性與螢光特性...................................54
3-4-1 OPV3-C3固態薄膜的光學吸收特性...........................................................54
3-4-2 OPV3-C3固態薄膜的螢光特性...................................................................55
3-4-3 綜合討論.......................................................................................................56
3-5 化合物OPV3系列在溶劑中的自組裝結構...........................................................57
3-5-1 OPV3-C3在hexane溶劑中的自組裝結構...................................................57
3-5-2 OPV3-C3在chloroform溶劑中的自組裝結構............................................58
3-5-3 OPV3-C3在THF溶劑中的自組裝結構.......................................................60
3-5-4 綜合討論.......................................................................................................61
3-6化合物OPV3系列在固態薄膜中的自組裝結構....................................................61
3-7 OPV3系列分子的能階軌域....................................................................................63
3-8 OPV3系列分子的載子位移率................................................................................65
第四章 結論...................................................................................................................67
第五章 參考文獻...........................................................................................................69
dc.language.isozh-TW
dc.title帶有烷基側鏈oligo-PPV之合成,自組裝奈米結構,和光電性質之研究zh_TW
dc.titleSynthesis, Self-assembly Nanostructure, and Optoelectric
Properties of Oligo-PPV with Alkyl Side Chains
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖文彬,王立義
dc.subject.keyword自組裝,超分子,π-共軛系統,OPV3,層列型液晶,空間電荷限制電流法,電洞位移率,循環伏安法,有機薄膜電晶體,zh_TW
dc.subject.keywordself-assembly,supramolecule,π-conjugated system,OPV3,smetic liquid crystal,space-charge limited current method,hole mobility,cyclic voltammetry,OTFTs,en
dc.relation.page130
dc.rights.note有償授權
dc.date.accepted2008-08-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
24.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved