Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42049
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁
dc.contributor.authorChin-Tsz Linen
dc.contributor.author林靜慈zh_TW
dc.date.accessioned2021-06-15T00:43:54Z-
dc.date.available2013-09-25
dc.date.copyright2008-09-25
dc.date.issued2008
dc.date.submitted2008-08-28
dc.identifier.citationAltschuler, Y. et al. ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J Cell Biol 1999, 147, 7–12.
Araki, S., Kikuchi, A., Hata, Y., Isomura, M. and Takai, Y. Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor. J Biol Chem 1990, 265, 13007– 13015.
Bhamidipati, A., Lewis, S. A. and Cowan, N. J. ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J Cell Biol 2000, 149, 1087-1096.
Bullions, L. C., Notterman, D. A., Chung, L. S. and Levine, A. J. Expression of wild-type α-catenin protein in cells with a mutant α-catenin gene restores both growth regulation and tumor suppressor activities. Mol Cell Biol 1997, 17, 4501–4508.
Chavrier, P. and B. Goud. The role of Arf and Rab GTPases in membrane transport. Curr Opin Cell Biol 1999, 11, 466-475.
D’Souza-Schorey, C. Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol 2005, 15, 19-26.
D’Souza-Schorey, C. and Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006, 7, 347-358.
Fujata, M. and Kaibuchi, K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol 2001, 2, 887-897.
Gillingham, A. K. and Munro, S. The small G proteins of the Arf family and their regulator. Annu. Rev. Cell. Biol. 2007, 23, 579-611.
Hong, J. X., Lee, F. J., Patton, W. A., Lin, C. Y., Moss, J. and Vaughan, M. Phospholipid- and GTP-dependent activation of cholera toxin and phospholipase D by human ADP-ribosylation factor-like 1 (HARL1). J Biol Chem 1998, 273, 15872-15876.
Hyman, T., Shmuel, M. and Altschuler, Y. Actin is required for endocytosis at the apical surface of MDCK cells where ARF6 and clathrin regulate the actin cytoskeleton. Mol Biol Cell 2005,17, 427–437.
Kahn R. A. and Gilman A.G. The protein cofactor necessary for ADP-rybosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 1986, 261, 7906-7911.
Kahn, R. A., Cherfils, J., Elias, M., Lovering, R. C., Munro, S. and Schurmann, A. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and Sar proteins. J. Cell Biol. 2006, 172, 645-650.
Kawasaki, M., Nakayama, K. and Wakatsuki, S. Membrane recruitment of effector proteins by Arf and Rab GTPases. Curr Opin Struct Biol 2005, 15, 681–689.
Kobiela A. and Fuchs, E. α-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 2004, 5, 614-625.
Kuroda, S. et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin mediated cell–cell adhesion. Science 1998, 281, 832–835.
Lee, M. C., Orci, L., Hamamoto, S., Futai, E., Ravazzola, M. and Schekman, R. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 2005, 122, 605–617.
Li, C. C., Chiang, T. C., Wu, T. S., Pacheco-Rodriguez, G., Moss, J. and Lee, F. J. S.
ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell 2007, 18, 4420–4437.
Lin, C.Y., Huang, P. H., Liao, W.L., Cheng, H. J., Huang, C. F. et al. ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J Biol Chem 2000, 275, 37815–23.
Lin, C.Y., Li, C. C., Huang, P. H. and Lee, F. J. S. A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J Cell Science 2002, 115, 4433-4445.
Neal, S. E., Eccleston, J. F., Hall, A. and Webb, M. R. Kinetic analysis of the hydrolysis of GTP by p21N-ras. The basal GTPase mechanism. J Biol Chem 1988, 263, 19718–19722.
Noritake, J., Watanabe, T., Sato, K., Wang, S. and Kaibuchi, K. IQGAP1: a key regulator of adhesion and migration. J Cell Sci 2005, 118, 2085-2092.
Molony, L. and Burridge, K. Molecular shape and selfassociation of vinculin and metavinculin. J Cell Biochem 1985, 29, 31–36.
Oda, T. et al. Cloning of the human α-catenin cDNA and its aberrant mRNA in a human cancer cell line. Biochem. Biophys. Res. Commun. 1993, 193, 897–904.
Palacios, F., Price, L., Schweitzer, J., Collard, J. G. and D’Souza-Schorey, C. An essential role for ARF6- regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J 2001, 20, 4973–4986.
Palacios, F., Schweitzer, J. K., Boshans, R. L. and D’Souza-Schorey, C. ARF6–GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nature Cell Biol 2002, 4, 929–936.
Perez-Moreno, M. and Fuchs, E. Catenins: keeping cells from getting their signals crossed. Dev Cell 2006, 11, 601-612.
Qin, Y., Capaldo, C., Gumbiner, B. M. and Macara, I. G. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 2005, 19, 1061-1071.
Sabe Hisataka. Requirement for Arf6 in cell adhesion, migration, and cancer cell invasion. J Biochem 2003, 134, 485-489.
Schurmann, A., Koling, S., Jacobs, S., Saftig, P., Krauss, S. et al. Reduced sperm count and normal fertility in male mice with targeted disruption of the ADP-ribosylation factor-like 4 (Arl4) gene. Mol Cell Biol 2002, 22, 2761–68.
Shimoyama, Y. et al. Cadherin dysfunction in a human cancer cell line: possible involvement of loss of α-catenin expression in reduced cell–cell adhesiveness. Cancer Res 1992, 52, 5770–5774.
Wheelock, M. J. and Johnson, K. R. Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 2003, 19, 207-235.
Van Valkenburgh, H., Shern, J. F., Sharer, J. D., Zhu, X. and Kahn, R. A. ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J Biol Chem 2001, 276, 22826-22837.
Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. and Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 2001, 104, 605–617.
Yang, C. Z., Heimberg, H., D’Souza-Schorey, C., Mueckler, M. M. and Stahl, P. D. Subcellular distribution and differential expression of endogenous ADP-ribosylation factor 6 in mammalian cells. J Biol Chem 1998, 273, 4006-4011.
Yang, J., Dokurno, P., Tonks, N. K. and Barford, D. Crystal structure of the M-fragment of α-catenin: implications for modulation of cell adhesion. EMBO J. 2001, 20, 3645–3656.
Yoshimi T., Takuya S. and Takashi M. Small GTP-Binding Proteins. Physiol Rev 2001, 81, 153-208.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42049-
dc.description.abstract四D腺嘌呤核苷二磷酸核醣化因子相似蛋白 (ARL4D) 隸屬於Ras小分子G蛋白家族中,腺嘌呤核苷二磷酸核醣化因子 (ARF) 次家族成員之一。ARL4D蛋白質表現受不同階段的發育時期調控。近來發現ARL4D作用在cytohesin-2 / ARNO上游;後者為ARF 的鳥糞嘌呤核苷酸轉換因子 (guanine nucleotide exchange factor, GEF),可刺激ARF6活化並促使肌動蛋白 (actin) 重組和細胞膜的褶皺。在此,我們指出ARL4D可與 Adherens junctions (AJs) 中的重要成員,α-catenin結合。ARL4D在活化態時可與α-catenin胺基酸片段 266至657結合,而非活化態則否。於狗的腎臟上皮細胞株 (Madin-Darby canine kidney, MDCK epithelial cells) 大量表現 ARL4D野生型 (wild type) 或其活化型突變蛋白 (putative active form, ARL4DQ80L),皆可影響側邊細胞膜 (lateral membranes) 形狀,形成不完整垂直排列與外旋分布,進而造成AJs結構受損。當細胞大量表現ARL4D非活化型突變蛋白 (ARL4DT35N, a putative GTP-binding defective mutant),則無上述現象發生。 利用Tet-off system篩選受Doxycyclin調控之ARL4D表現細胞株,亦可發現上述現象。綜合以上結果,我們推論ARL4D藉由影響α-catenin與AJs結合的穩定性,進而影響AJs結構。zh_TW
dc.description.abstractARL4D is a developmentally regulated protein which belongs to ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of Ras-related small G proteins. Recently we demonstrated that ARL4D acts as a novel upstream regulator of a guanine nucleotide-exchange factor (GEF), cytohesin-2/ARNO, to promote ARF6 activation and modulate actin remodeling. Here we show that ARL4D interacts with α-catenin, an essential component of adherens junctions (AJs). The residues 266-657 of α-catenin interact with ARL4D in a GTP-dependent manner. Overexpressing ARL4D and its putative active form, ARL4D(Q80L) caused lateral membranes disorganized in Madin-Darby canine kidney (MDCK) epithelial cells. As a consequence, the AJs structure was defective. The lateral membranes appeared less vertical and had convoluted edges in the cells expressing ARL4D and ARL4D(Q80L), but not ARL4D(T35N), a putative GTP-binding defective mutant. Together, our findings suggest that ARL4D affects the stabilization of α–catenin at the cell cortex and alters the structure of AJs complex.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:43:54Z (GMT). No. of bitstreams: 1
ntu-97-R94448010-1.pdf: 17032659 bytes, checksum: 68a36e20bbf70dcb11242d89be6125a8 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of content …………………………………………………………………….. 1
中文摘要 ……………………………………………………………………………. 2
Abstract ……………………………………………………………………………... 3
Abbreviations ……………………………………………………………………...... 4
Introduction ………………………………………………………………………… 5
Materials and methods ……………………………………………………………. 12
Results
Subcellular localization of ARL4D and its mutants in MDCK-T23 cells ……… 16
α-catenin interacted with ARL4D in a GTP-dependent manner ……………….. 16
The residues 266-657 of α-catenin were required for ARL4D binding ………... 17
Effects of ARL4D on the subcellular localization of α-catenin ………………... 17
Effects of ARL4D on the subcellular localization of E-cadherin ……………… 17
The expression of ARL4D in MDCK-T23 was doxycyclin-dependent ……….. 18
Expression of ARL4D caused a defect in adherens junction structure ………… 18
Triton X-100 extraction assay ………………………………………………….. 19
Other ARL4D(Q80L) expressing cells in MDCK-T23 ………………………… 19
ARF6(Q67L) induced E-cadherin endocytosis to the perinuclear site in MDCK cells, but ARL4D(Q80L) did not …………………………………………….. 20
Discussion ………………………………………………………………………….. 21
Figure legend ………………………………………………………………………. 23
Tables ………………………………………………………………………………. 27
Figures ……………………………………………………………………………... 30
References …………………………………………………………………………. 49
dc.language.isozh-TW
dc.title人類四D腺嘌呤核苷二磷酸核糖化相似因子與其結合蛋白α-catenin之特性探討zh_TW
dc.titleFunctional characterization of human ARF-like proteins, ARL4D and its interacted protein α-cateninen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張智芬,施修明,周祖述
dc.subject.keyword四D腺嘌呤核&#33527,二磷酸核糖化相似因子,zh_TW
dc.subject.keywordARF-like proteins,ARL4D,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2008-08-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
16.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved