Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42034
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor夏復國(Fuh-Kwo Shiah)
dc.contributor.authorJia-Lu Chungen
dc.contributor.author鍾家祿zh_TW
dc.date.accessioned2021-06-15T00:43:06Z-
dc.date.available2008-09-02
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-29
dc.identifier.citation第一章
Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science, 280: 694-696.
Behrends G, Schneider G (1995) Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel Bight (western Baltic Sea). Mar Ecol Prog Ser, 127: 39-45.
Calbet A (2001) Mesozooplankton grazing effect on primary production: A global comparative analysis in marine ecosystems. Limnol Oceanogr, 46: 824-1830.
Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr, 49: 51-57.
Calbet A, Sainz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Micorb Ecol, 38: 157-167.
Drits AV, Semenova TN (1984) Experimental investigations of the feeding of Oithona similis Claus. Oceanologica 24: 755–759.
Gallienne CP and Robins DB (2001) Is Oithona the most important copepod in the world`s oceans? J Plankton Res, 23: 1421-1423.
Gonzales HE, Smetacek V (1994) The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar Ecol Prog Ser, 113: 233–246.
Huys R, Boxshall GA (1991) Copepod Evolution. The Royal Society, London, p9-14.
Hwang JS, Chen QC, Wong CK (1998) Taxonomic composition and grazing rate of calanoid copepods in coastal waters of northern Taiwan. Crustaceana, 71: 378-389.
Hwang, JS, Souissi S, Tseng LC, Seuront L, and 11 others (2006) A 5-year Study of the influence of the northeast and southwest monsoons of copepod assemblages in the boundary coastal waters between the East China Sea and the Taiwan Strait. J plankton Res, 28: 943-958.
Lan YC, Shih CT, Lee MA, Shieh HZ (2004) Spring distribution of copepods in relation to water masses in the northern Taiwaan Strait. Zool Studies, 43: 322-343.
Lee CY, Shih CT, Hsu CC (2006) Community structure of planktonic copepods in I-Lan Bay and the Adjacent Kuroshio water off northeastern Taiwan. Crustaceana, 79: 1233-1240.
Lo WT, Hwang JS, Chen QC (2004) Spatial distribution of copepods in surface waters of the southeastern Taiwan Strait. Zool Studies, 43: 218-228.
Kimmerer WT, Ferm N, Nicolini MH, Penalva C (2006) Chronic food limitation of egg production in populations of copepods of the genus Acartia in the San Francisco Estuary. Estuaries, 28: 541-550.
Li CL, Wang R, Sun S (2003) Grazing impact of copepods on phytoplankton in the Bohai Sea. Estu Coast Shelf Sci, 58: 487-498.
Lampitt RS (1978) Carnivorous feeding by a small marine copepod. Limnol Oceanogr, 23: 1228–1231.
Lampitt RS, Gamble JC (1982) Diet and respiration of the small planktonic marine copepod Oithona nana. Mar Biol, 66: 185–190.
Miralto A, Barone G, Romano G, Poulet SA and 7 others (1999) The insidious effect of diatoms on copepod reproduction. Nature, 402: 173-176.
Paffenhofer GA, Stearns DE (1988) Why is Acartia tonsa (Copepoda: Calanoida) restricted to nearshore environments? Mar Ecol Prog Ser, 42: 33-38.
Paffenhofer GA (1993) On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). J plankton Res, 15: 37-55.
Paffenhofer GA, Mazzocchi MG (2002) On some aspects of the behaviour of Oithona plumifera (Copepod: Cyclopoida). J Plankton Res, 24: 129-135.
Pasternak AF (1984) Feeding of copepods of the genus Oncaea (Cycloplida) in the southeastern Pacific Ocean. Oceanology (USSR), 24: 609-612.
Pechenik JA (1991) Biology of the Invertebrates. Wn C Brown Publish, p375-381.
Pucrell, JE, White JR, Roman MR (1994) Predation by gelationous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesapeaks Bay. Limnol Oceanogr, 39: 263-278.
Schneider G, Behrends G (1998) Top-down control in a neritic plankton system by Aurelia aurita medusae—a summary. Ophelia, 48: 71-82.
Shih CT, Chiu TS (1998) Copepods diversity in the water masses of the southern East China Sea north of Taiwan. J Mar Systems, 15: 533-542.
Stibor H, Vadstein O, Diehl S, Gelzleichter A and 11 others (2004) Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecol Lett, 7: 321-328.
Suzuki K, Nakamura Y, Hiromi J (1999) Feeding by the small calanoid copepod Paracalanus sp. on heterotrophic dinoflagellates and ciliates. Aquat Microb Ecol, 17: 99-103.
Svensen C, Kiorboe T (2000) Remote prey detection in Oithona similis: hydromechanical vs. chemical cues. J Plankton Res, 22: 1155–1166.
Turner JT (1986) Zooplankton feeding ecology. Content of fecal pellets of the cyclopoid copepods Oncaea venusta, Corycaeus amazonica, Oithona plumifera and O. simplex from the northern Gulf of Mexico. P. S. Z. N. I Mar Ecol, 7: 289-302.
Turner JT (1994) Planktonic copepods of Boston Harbor, Massachusetts Bay and Cape Cod Bay, 1992. Hydrobiologia, 292/293: 405-413.
Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoo Studies, 43: 255-266.
Uchima M (1988) Gut content analysis of neritic copepods Acartia omorii and Oithona davisae by a new method. Mar Ecol Prog Ser, 48: 93-97.
Uchima M, Hirano R (1986) Food of the Oithona davisae (Copepoda: Cyclopoida) and the effect of food concentration at first feeding on the larvae growth. Bull plankton Soc Jpn, 33: 21-28.
Vargas CA, Gonzalez HE (2004) Plankton community structure and carbon cycling in a coastal upwelling system. II. Microheterotrophic pathway. Mar Ecol Prog Ser, 34: 165-180.
Wong CK, Hwang JS, Chen QC (1998) Taxonomic composition and grazing impact of calanoid copepods in coastal water near nuclear power plants in northern Taiwan. Zool Studies, 37: 330-339.
李佳蓉 (1998) 臺灣西南海域橈足類哲水蚤(Calanoida)攝食效應之研究。57頁。
黃祥豪 (2002) 高屏海域浮游橈足類之時空分布及攝食實驗。國立中山大學海洋資源研究所碩士論文。124頁。
謝智偉 (2002) 淡水河口浮游動物群聚與橈足類攝食效應之研究。國立海洋大學海洋生物研究所碩士論文。67頁。
第二章
Chihara and Murano (1997) An illustrated Guide to Marine Plankton In Japan. Tokai Uni, p649-1004.
Frost BW (1972) Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr, 17: 805-815.
Fisher NS, Wente M (1993) The release of trace elements by dying phytoplankton. Deep Sea Res II, 40: 671-694.
Gong GC, Shyu CZ, Shin WH, Liu KK (1992) Temperature fluctuation of the cold water off northern Taiwan. Acta Oceanogr Taiwan, 21: 1-17.
Hwang JS, Chen QC, Wong CK (1998) Taxonomic composition and grazing rate of calanoid copepods in coastal waters of northern Taiwan. Crustaceana, 71: 378-389.
Kiørboe T, Nielsen TG (1994) Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol Oceanogr, 39: 493-507.
Lee BG, Fisher NS (1992b) Degradation and elemental release rates from phytoplankton debris and their geochemical implications. Limnol Oceanogr, 37: 1345-1360.
Mackas D, Bohrer R (1976) Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J Exp Mar Biol Ecol, 25: 77-85.
Nielsen TG, Kiørboe T (1994) Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol Oceanogr, 39: 508-519.
Nimoto T (1968) Chlorophyll pigments in the stomach of euphausiids. J Oceanogr Soc Jpn, 24: 253-260.
Pai SC, Yang CC, Reliey JP (1990) Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Anal Chim Acta, 232: 345-349.
Parsons TR, Miata Y, Lalli M (1984) A Manual of Chemical and Biological Methods for Sea Water Analysis. Pergamon, New York.
Shih CT, (1998) Keys to the genera and species of copepod families occurring in the marginal sea of China (Unedited). p1-61.
Strickland JDH, Parsons TR (1972) A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa. p1-360.
Shiah FK, Tu YY, Tsai HS, Kao SJ, Jan S (2005) A case study of system and planktonic responses in a subtropical warm plume receiving thermal effluents from a power plant. Terr Atmos Ocean Sci, 16: 513-528.
Shiah, FK, Wu TH, Li KY, Kao SJ, Tseng YF, Chung JL, Jan S (2006) Thermal effects on heterotrophic processes in a coastal ecosystem adjacent to a nuclear power plant. Mar Ecol Prog Ser, 309: 55-65.
Wong CK, Hwang JS, Chen QC (1998) Taxonomic composition and grazing impact of calanoid copepods in coastal waters near power plants in northern Taiwan. Zool Studies, 37: 330-339.
黃將修 (2000) 北部核能電場及核能四廠附近海域生態調查。1-1至1-90頁。
第三章
Arai MN (2001) Pelagic coelenterates and eutrophication: a review. Hydrobiologia, 451: 69-87.
Behrends, G. and G. Schneider, 1995: Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel Bight (western Baltic Sea). Mar Ecol Prog Ser, 127: 39-45.
Chihara and Murano (1997) An illustrated Guide to Marine Plankton In Japan. Tokai Uni, p649-1004.
Chou CH, Bi CC (1990) Dynamic distribution of nutrients and variation of environmental factors in Tanshui estuary ecosystem. Proc National Sci Council Rep of China, 14: 131-141.
Chung CL, Shiah FK, Gong GC, Chiang KP (2008) Trophic cascading of medusae on the relationships between copepods and diatoms in a subtrophic coastal ecosystem. Terr Atmos Ocean Sci, (Accepted).
Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr, 67: 345-366.
Duggan S, McKinnon AD, Carleton JH (2008) Zooplankton in an Australian tropical Estuary. Estu coasts, 31: 455-467.
Hsieh CH, Chiu TS (1997) Copepod abundance and species composition of Tanshui River Estuary and adjacent waters. Zool Stud, 9: 3-9.
Hsieh CH, Chiu TS (2002) Summer spatial distribution of copepods and fish larvae in relation to hydrograpgy in the morthern Taiwan Strait. Zool Stud, 41: 58-98.
Hsieh CH, Chiu TS, Shih CT (2004) Copepod diversity and composition as indicators of the Kuroshio branch current into the northern Taiwan Strait in Spring 2000. Zool Stud, 43: 393-403.
Hwang, JS, Souissi S, Tseng LC, Seuront L, and 11 others (2006) A 5-year study of the influence of the northeast and southwest monsoons of copepod assemblages in the boundary coastal waters between the East China Sea and the Taiwan Strait. J. plankton Res, 28:943-958.
Jan S, Chern CS, Wang J (1995) A numerical study on currents in Taiwan Strait during summertime. La Mer, 33: 23–40.
Jan S, Wang J, Chern CS, Chao SY (2002) Seasonal variation of the circulation in the Taiwan Strait. J Mar Syst, 35: 249–268.
Lee SC (1992) Fish fauna and abundance of some dominant species in the estuary of Tanshui, northwast Taiwan. J fish Soc Taiwan, 19: 263-271.
Lee HJ, Chao SY (2003) A climatological description of circulation in and around the East China Sea. Deep Sea Res II, 50: 1065–1084.
Liang D, Uye S (1996) population dynamics and production of planktonic copepods in a eutrophic inlet of the Inland Sea of Japan. III. Paracalanus sp. Mar Biol, 127: 219-227.
Liang WD, Tang TY, Yang YJ. Ko MT, Chuang WS (2003) Upper-ocean currents around Taiwan. Deep Sea Res II, 50: 1085–1106.
Lo WT, Chung CL, Shih CT (2004) Seasonal distribution of copepods in Tapong Bay, southwestern Taiwan. Zool Stud, 43:464-474
Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean condition? Hydrobiologia, 451: 55-68
Nielsen TG, Møller EF, Satapoomin S, Ringuette M, Hopcroft RR (2002) Egg hatching rate of the cyclopoid copepod Oithona similis in arctic and temperate waters. Mar Ecol Prog Ser, 236: 301-306.
Schneider G, Behrends G (1998) Top-down control in a neritic plankton system by Aurelia aurita medusae—a summary. Ophelia, 48:71-82
Stibor H, Vadstein O, Diehl S, Gelzleichter A and 11 others (2004) Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecol Lett, 7:321–328
Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoo stud, 43: 255-266
Tseng RS, Shen YT (2003) Lagrangian observations of surface flow patterns in the vicinity of Taiwan. Deep Sea Res II, 50: 1107–1116.
Tzeng WN, Wang YT (1992) Structure, composition and seasonal dynamic og the larval and juvenile fish community in the mangrove estuary of Tanshui River, Taiwan. Mar Biol, 113:481-490.
Tzeng WN and Wang YT(1993) Hydrography and distribution dynamics of larval and juvenile fishes in the coastal waters of the Tanshui River estuary, Taiwan, with reference to estuarine larval transport. Mar Biol, 116: 205-217.
Uye S, Kuwata S (1986) Standing stock and production rates of phytoplankton and planktonic copepods in the Inland Sea of Japan. J Oceanogr Soc Jpn, 42: 421-434.
Wang SB, Hwang PP (1992) Occerrence of fish larvae and juvenile in Tan-Shui estuary northern Taiwan. J Fish Soc Taiwan, 19: 173-182.
Wang YT, Tzeng WN (1997) Temporal succession and spatial segregation of clupeoid larvae in the coastal waters off the Taishui River Estuary, Northern Taiwan. Mar Biol, 129: 23-32.
Webber MK, Roff JC (1995) Annual structure of the copepod community and its associated pelagic environment off Discovery—Bay, Jamaica. Mar Biol, 123: 467-479.
Williams JA, Muxagata E (2006) The seasonal abundance and production of Oithona nana (Copepoda:Cyclopoida) in Southampton Water. J plankton Res, 28: 1055-1065.
Wu JT, Sheu MK, Tsun OY (1993) Periodic changes of the phytoplankton assembages in the estuary of Tansui River, Taiwan. Bot Bull Acad Sin, 34: 235-242.
Wu NY (1993) Studies on the microbial ecology of the Tanshui estuary. Bot Bull Acad Sin, 34: 13-30.
葉曉菁 (2000) 台南七股潟湖區及附近海域浮游橈足類的種類組成、分布及其攝食研究。國立中山大學海洋資源研究所碩士論文。87頁。
陳定鼎 (2001) 高雄港浮游橈足類之種類組成及時空分布。國立中山大學海洋資源研究所碩士論文。109頁。
謝智偉 (2002) 淡水河口浮游動物群聚與橈足類攝食效應之研究。國立海洋大學海洋生物研究所碩士論文。67頁。
余人堯 (2005) 淡水河與高屏溪河口域橈足類季節分布及其與環境因子之相關性研究。國立中山大學海洋資源研究所碩士論文。106頁。
王國丞 (2008) 淡水河河口沿岸海域少毛類纖毛蟲數量之時空分布及其控制機制研究。國立海洋大學環境生物與漁業科學研究所碩士論文。42頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42034-
dc.description.abstract沿岸區及河口區都是營養鹽充足的海域;而河口區有河流持續帶入營養鹽及有機顆粒,因此河口區的浮游植物及其他有機物顆粒,都較沿岸地區為多。對橈足類而言,此兩海域意味了兩種不同食物補充率的狀態。因此本研究要探討的主軸為:在亞熱帶海域,溫度都較高的情形下,橈足類在兩種不同食物量的環境中,種類及豐度變化是否也受到食物供給量的影響。沿岸及河口區的捕食者數量也很多,包括水母及仔稚魚等。因此除了食物供應外,也將針對捕食者對橈足類的影響進行討論。
橈足類族群中,小體型橈足類佔了將近90%的數量,但常因採樣以較大網目的拖網(200~330 um)而忽略。臺灣附近海域小體型橈足類的種類及數量的研究是很缺乏的。因此本研究將以較細的網目(100 um)捕捉小體型的橈足類,不漏過橈足類族群的數量。除了研究橈足類種類組成外,探討橈足類族群在此兩海域的種類及豐度變化與攝食的偏好,並探討影響豐度變化的因子。本研究以核二廠入水口為沿岸海域,淡水河口為河口區。本研究提出幾點假說:
1. 河口區橈足類的豐度及種類較沿岸區多。
2. 河口區橈足類對浮游植物的攝食率及攝食衝擊較沿岸海域高。
3. 河口區橈足類不受食物供應的限制,而沿岸區則可能因食物短缺而受限。
如何評估豐度有無受到食物影響,筆者以豐度與溫度相關做為基準,若橈足類食物充足,個體有足夠的能量反應在成長及生殖,而溫度的增加會加速其成長及繁殖速率,因此族群數量的累計會與反應在溫度的變化上。因此當兩者呈正相關,表示橈足類食物並不缺乏。橈足類與食物間的關係,筆者以浮游植物為目標,以14C標定浮游植物,藉由橈足類攝食的量,推算橈足類的攝食率及族群攝食衝擊。而在食物不缺乏的狀況下,才能討論溫度及捕食者的影響,筆者以捕食者與橈足類族群的相關性做為判定,當橈足類豐度與捕食者豐度呈負相關,表示捕食者效應造成橈足類豐度的改變。
核二廠結果顯示,2002年11月至2004年5月期間,溫度(平均值23.7 ± 3.6 ^oC, 17.8~29.9 ^oC)有明顯的季節性變化,營養鹽濃度(3.8 ± 3.6 uM, >0.01~19.0 uM)與溫度趨勢相反,葉綠素濃度(0.55 ± 0.40 mg Chl-a m^-3, 0.03~2.02 mg Chl-a m^-3)在2002年僅有三次高峰值,而2003年4~6月則是緩緩增加的。橈足類種類發現11種,多以小體型的沿岸種類為主,Paracalanus parvus、Acrocalanus gibber及Temora turbinata是主要的優勢種類。橈足類豐度變化(5103 ± 6304 ind. m^-3, 42~29902 ind. m-3),2002年的5月至10月都維持在高值(>10,000 ind. m^-3),而2003年5至10月則是在6月有高值後(29902 ind. m^-3),就急速減少(4254 ind. ^m-3)。橈足類豐度與溫度呈正相關,表示橈足類的成長不受食物的限制。個體攝食率(0.02~0.60 ugC ind. d^-1)及攝食衝擊(2.68 ± 11.0% Chl-a d^-1)都偏低的,表示其他食物來源是會影響橈足類成長的。在核二廠發現高濃度的溶解性有機碳(DOC),此經由微生物環提供的碳,應是讓2002年橈足類可以維持高豐度的原因。而捕食者數量與橈足類豐度呈正相關,橈足類豐度仍隨著溫度累積,因此對於橈足類豐度並無顯著影響。
淡水河溫度及營養鹽濃度變化與核二廠類似,但河口持續帶入營養鹽,因此葉綠素濃度(1.6±2.0 mg Chl-a m^-3, 0.3~8.5 mg Chl-a m^-3)較核二廠為高。橈足類豐度(1665 ± 1754 ind. m^-3, 275~7088 ind. m^-3)有明顯的季節性變化,且與溫度呈正相關,表示沒有受到食物的限制。淡水河發現的種類也多是沿岸種類,優勢種類包括Parvocalanus crassirostris、Acrocalanus indicus、Oithona attenuata及O. nana,種類組成有明顯的季節性不同。個體攝食率(0.12 ugC ind. d^-1)及攝食衝擊(~2% Chl-a d^-1)都是偏低的,說明橈足類不完全以浮游植物為食,其他食物來源,包括纖毛蟲等都可以供給橈足類食物。而水母平均值在春夏季間大量增加(9->4525 ind. 1000m^-3),使得大體型橈足類平均豐度(254 ->47 ind. m^-3)減少,另外大體型橈足類與水母空間分布呈顯著負相關(r= -0.63, p<0.01),但小體型橈足類並未因此受到影響。推測是因為小體型橈足類成長率大過水母的捕食率所致。
比較兩地之橈足類豐度顯示,核二廠的豐度明顯較淡水河為高(ANOVA, p<0.05),兩地都不受到食物的影響下,水母在淡水河的捕食效應是造成兩地豐度差異的原因。而淡水河小體型橈足類豐度,在水母的攝食效應強烈下,支持橈足類數量及族群的重要角色。而核二廠2003年DOC濃度銳減後,是否影響來年的橈足類豐度,及是否橈足類對浮游植物的攝食因食物缺乏而增加,則有待進一步的研究。
zh_TW
dc.description.abstractThe estuary and coastal water have sufficient nutrients that support high phytoplankton biomass and primary production. Higher nutrients and organic particle by river input indicate that the estuaries supply more food to copepods than the coastal water. One would easily predict copepods would not limited by food supply in estuary. On the other hand, verity of copepod abundance would control by temperature and predator in estuary. Fish larvae, Chaetognatha and jellyfish are common predators in estuary and coastal water, and also affect the variety of copepod abundance. Our hypotheses are as followed: first, copepod abundance was higher in estuary than in coastal water, because the differences of food supply conditions. Second, the copepod grazing rate and grazing impact in estuary are higher than in coastal water. Finally, copepod abundance is not controlled by food supply in estuary.
Sampling sites are in Tan-Shui River estuarine (as estuary site, TSR) and the inlet of Taiwan Nuclear Power Plant II (as coastal site, TPII). A 100 um mesh size of plankton net were employed to collect the smaller copepods and other zooplankton. A 330 um size net were collected the larger plankton and compare the abundance to smaller copepods. Temperature, salinity, nutrients, Chl-a concentrations and predator abundance were also measured. The linear regression was used to the relation between measurements. Copepod abundance is positive correlation with temperature indicating copepods are not in food limited condition. Under this condition, we could discuss the predation effect by negative correlation between copepods and predators abundance.
We sampled weekly or bi-weekly during November 2001 to May 2004 in TPII. Temperature (17.9 to 29.9 ^oC), nitrate concentration (0.01 to 19.0 uM) showed strong seasonal fluctuation. Chl-a concentration (0.03~2.02 mg Chl-a m^-3) were positive correlation with temperature and negative correlation with nitrate. Paracalanus parvus, Acrocalanus gibber and Temora turbinata were most dominant species. Copepod abundance (42~29902 ind. m^-3) were positive correlation with temperature, indicating food is sufficient. Copepod specific grazing rate (SGR, 0.02 to 0.66 ugC Chl-a d^-1) and mean copepod grazing impact (2.68 ±11.0 Chl-a d^-1) were lower than others study, indicating phytoplankton was not the major food to copepods. The higher dissolve organic carbon concentration was obtained in TPII, which may support another carbon source from microbial loop. The jellyfish and Chaetognatha abundance were showed positive correlation with copepods, showed predators were not affected to copepod abundance.
The large copepods were collected using 330 um mesh size net in 19 sampling stations, while small copepods were also collected by using 100 um mesh size net in 5 stations. During four seasons in 2006 in TSR, temperature (18.4~29.9 ^oC) varied seasonally with lowest and highest values recorded in winter and summer, respectively. Nitrate concentrations (0.3~8.8 uM) showed a significant seasonal trend with higher values in winter and lower values in summer. Chl-a concentration (0.3~8.5 mg Chl-a m^-3) varied with temperature, and recorded higher values near the river mouth. The neritic species were dominant in TSR, that including Parvocalanus crassirostris, Acrocalanus indicus, Oithona attenuata and O. nana. The species composition showed significant different by Cluster Analysis. Small copepods abundance (275~7088 ind. m^-3) varied with temperature, but large copepods (2~3272 ind. m^-3) were decreased from spring to summer. Medusae abundance (0~32584 ind. 1000m^-3) were significant decreased from winter to spring, and increased almost 444-folds of abundance in summer. The significant negative correlation between large copepod and medusa abundance indicated the strong predation appeared during spring to summer. The significant decouple of spatial pattern also support large copepods were under the strong predation effect by medusae. But small copepod abundance did not affect by medusae. It suggested that small copepods have higher growth rate and reproductive rate.
Small copepod abundance in TPII were significant high than in TSR. According to the similar temperature variation and the sufficient foods in both areas, it is suggested that predator effect by medusae played the key factor that explain the difference of copepod abundance. The medusa bloom is occurred in many of estuary, small copepods may play more important role in secondary production when in a medusa bloom. It is also obtained the decreasing DOC in TPII in 2003, indicating it may be in food limited condition in 2004 or following years. The role of small copepods in microbial loop and secondary production may be important in study trophodymanics and carbon cycling.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:43:06Z (GMT). No. of bitstreams: 1
ntu-97-D90241008-1.pdf: 1443076 bytes, checksum: c7f5e590972cc0151fd5438e5929f955 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 i
英文摘要 iv
第一章 緒論 1
圖1-1上層水體食物鏈與能量傳遞圖 9
第二章 亞熱帶沿岸地區橈足類之豐度、種類季節性變化與攝食速率之研究 10
表2-1 核能電廠二廠溫度、硝酸鹽濃度、葉綠素濃度及橈足類豐度之平均值及參數間之相關係數 27
表2-2 2003年4月至2004年5月核能電廠二廠主要優勢小型橈足類平均豐度、相對豐度及出現頻度 27
表2-3 2003年6月至8月核能電廠二廠兩種網目採集之橈足類平均豐度、相對豐度表及出現頻度 28
表2-4 核能電廠二廠葉綠素濃度、個體攝食率、群體攝食率及攝食衝擊之平均值與數據範圍 29
表2-5 溫控攝食溫控實驗之溫度、葉綠素濃度及個體攝食率 29
表2-6 核能電場二廠之個體攝食率與攝食衝擊與其它研究之比較 30
圖2-1 核能電廠二廠入水口採樣位置圖 31
圖2-2 核能電廠二廠入水口A)水溫與硝酸鹽濃度、B)葉綠素濃度與橈足類豐度之年間季節性變化圖 32
圖2-3 2003年4月至2004年5月核能電廠二廠入水口之Temora turbinata、Paracalanus parvus及Acrocalanus gibber之豐度季節性分布 33
圖2-4 2003年4月至2004年5月核能電廠二廠入水口之Corycaeus affinis、及Oncaea venusta之豐度季節性分布 33
圖2-5 2003年4月至2004年5月核能電廠二廠入水口Paracalanidae、 Temoridae及Oithonidae相對豐度之季節性變化 34
圖2-6 2003年4月至2004年5月核能電廠二廠入水口種歧異度指數(SDI)之季節性變化 34
圖2-7 核能電廠二廠橈足類之個體攝食率,群體攝食率及攝食衝擊 35
圖2-8 核能電廠二廠葉綠素濃度與個體攝食率之相關圖 35
圖2-9 核能電廠二廠入水口水母與毛顎類之豐度年間季節性變化圖 36
第三章 亞熱帶河口地區橈足類之豐度、種類季節性變化與攝食速率之研究 37
表3-1 2005年11月至2006年10月淡水河各因子與小型橈足類之平均值、變動範圍與相關係數 52
表3-2 100 um網目採得之優勢橈足類豐度、相對豐度及出現頻度 52
表3-3 330 um 網目採樣之主要優勢橈足類平均豐度、相對豐度及出現頻度 53
表3-4 群聚分析中五個群聚之指標種類及其指標值 54
表3-5 淡水河四季橈足類之指標種類及其指標值 55
表3-6 其他淡水河橈足類研究之種類組成及季節性變化 56
表3-7 淡水河橈足類個體攝食率及攝食衝擊與其他研究比較表 58
圖3-1 淡水河橈足類之採樣測站圖 59
圖3-2 100 um 網目採樣之A)溫度及硝酸鹽濃度,B)鹽度與葉綠素濃度及C)橈足類及水母豐度之季節性變化 60
圖3-3 100 um 網目採樣之4種優勢橈足類Parvocalanus crassirostris、Acrocalanus indicus、Oithona attenuata及O nana平均豐度之季節性變化 61
圖3-4 100 um 網目採樣橈足類Paracalanidae copepodites及Oithonidae copepodites平均豐度之季節性變化 61
圖3-5 100 um 網目採樣橈足類Acartiidae copepodites、Temoridae copepodites及Corycaeidae copepodites平均豐度之季節性變化 62
圖3-6 2005年11月至2006年10月葉綠素濃度空間分步。(A)2005/11,(B)2006/4,(C)2006/7,(D) 2006/10 63
圖3-7 100 um網目採樣之橈足類空間分布圖。(A)2005/11,(B)2006/4,(C)2006/7,(D)2006/10 64
圖3-8 100 um網目採樣之水母空間分布圖。(A)2005/11,(B)2006/4,(C)2006/7,(D)2006/10 65
圖3-9 100 um網目採樣之橈足類Parvocalanus crassirostris空間分布圖。(A)2005/11,(B)2006/4,(C)2006/7,(D) 2006/10 66
圖3-10 100 um網目採樣之橈足類Acrocalanus indicus空間分布圖。(A)2005/11,(B)2006/4,(C)2006/7, (D) 2006/10 67
圖3-11 100 um網目採樣之橈足類Oithona attenuate空間分布圖。(A)2005/11,(B)2006/4,(C)2006/7, (D) 2006/10 68
圖3-12 100 um網目採樣之橈足類Oithona nana空間分布圖。(A)2005/11,(B)2006/4,(C)2006/7,(D) 2006/10 69
圖3-13 100 um橈足類種類之季節測站群聚圖 70
圖3-14 330 um 網目採樣之A)溫度及硝酸鹽濃度,B)鹽度與葉綠素濃度及C)橈足類及水母豐度之季節性變化 71
圖3-15 330 um網目採樣橈足類之Temoridae空間分布圖。(A)2006/01,(B)2006/4,(C)2006/7,(D) 2006/10 72
圖3-16 330 um網目採樣橈足類之Paracalanidae空間分布圖。(A)2006/01,(B)2006/4,(C)2006/7,(D) 2006/10 73
圖3-17 330 um網目採樣之橈足類Calanidae空間分布圖。(A)2006/01,(B)2006/4,(C)2006/7,(D) 2006/10 74
圖3-18 330 um網目採樣之橈足類Temora turbinata空間分布圖。(A)2006/01,(B)2006/4,(C)2006/7,(D) 2006/10 75
圖3-19 330 um網目採樣之橈足類Paracalanus parvus空間分布圖。(A)2006/01,(B)2006/4,(C)2006/7,(D)2006/10 76
圖3-20 330 um網目採樣之橈足類Acrocalanus gibber空間分布圖。(A)2006/01,(B)2006/4,(C)2006/7,(D)2006/10 77
圖3-21 330 um網目採樣之橈足類Undiluna vulgaris空間分布圖。(A)2006/01,(B)2006/4,(C)2006/7, (D) 2006/10 78
圖3-22 330 um網目採樣之橈足類Cosmocalanus darwini空間分布圖。(A)2006/01,(B)2006/4,(C)2006/7,(D)2006/10 79
圖3-23 330 um網目採樣之水母空間分布圖。(A)2006/01,(B)2006/4,(C)2006/7,(D)2006/10 80
第四章 亞熱帶沿岸海域與河口地區橈足類種類、豐度及攝食研究之比較 81
表4-1 核能電廠二廠及淡水河各參數之平均值及變動範圍 85
表4-2 核二廠以100 um網目採集之橈足類種類之四季平均值 86
表4-3 淡水河以100 um網目採集之橈足類種類之四季平均值 87
附錄
發表紀錄 88
dc.language.isozh-TW
dc.title比較微型浮游動物於沿岸海域及河口區時空分布之研究zh_TW
dc.titleA Comparative study on the temporal and spatial variation of micro-zooplankton in the coastal and estuarine ecosystemsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee龔國慶(Gwo-Chin Gong),蔣國平(Kwo-Ping Chiang),陳仲吉(Chung-Chi Chen),謝志豪(Chih-Hao Hsieh)
dc.subject.keyword橈足類,豐度季節性變化,100,橈足類,季節性變化,攝食率及攝食衝擊,食物限制,捕食者效應,zh_TW
dc.subject.keywordestuary,coastal water,100,copepods,seasonal variation,food limited,predator effect,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2008-08-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved