請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41953
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林和(Ho Lin) | |
dc.contributor.author | I-Kuan Hu | en |
dc.contributor.author | 胡亦寬 | zh_TW |
dc.date.accessioned | 2021-06-15T00:39:03Z | - |
dc.date.available | 2011-09-01 | |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-14 | |
dc.identifier.citation | Annamalai, H., P. Liu, and S.-P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18, 4150–4167
Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541–560. Carton, J. A., B. S. Giese, and S. A. Grodsky, 2005: Sea level rise and the warming of the oceans in the SODA ocean reanalysis. J. Geophys. Res., 110, C09006, doi:10.1029/2004JC002817. Chiang, J. C. H., A. H. Sobel, 2002: Tropical Tropospheric Temperature Variations Caused by ENSO and Their Influence on the Remote Tropical Climate*. J. Climate, 15, 2616–2631. ——, B. R. Lintner, 2005: Mechanisms of Remote Tropical Surface Warming during El Niño. J. Climate, 18, 4130–4149. Chou, C., and M.-H. Lo, 2007: Asymmetric responses of tropical precipitation during ENSO. J. Climate, 20, 3411–3433. ——, and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 2688–2701. ——, and J.‐Y. Tu, 2008: Hemispherical asymmetry of tropical precipitation in ECHAM5/MPI‐OMduring ElNiño and under global warming, J. Climate, 21, 1309–1332. Du, Y., S.-P. Xie, G. Huang, and K.-M. Hu, 2009: Role of air–sea interaction in the long persistence of El Nin ̃o–induced North Indian Ocean warming. J. Climate, 22, 2023-2038 Emanuel, K. A., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324-2340. ——, J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111–1143. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462. Goswami, B. N., and P. K. Xavier, 2005: ENSO control on the south Asian monsoon through the length of the rainy season. Geophysical Research Letters, 32, 18717, doi:10.1029/2005GL023216 Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699. Houze, R. A. J., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179–2196. Joseph, P. V., J. K. Eischeid, and R. J. Pyle, 1994: Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J. Climate, 7, 81–105. Kawamura, R., T. Matsumura, and S. Iizuka, 2001: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Nin ̃o–Southern Oscillation coupling. J. Geophys. Res., 106, 4681–4693. Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932. Lau, N.-C., and M. J. Nath, 1996: The role of the atmospheric bridge in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 2036–2057. Neelin, J. D., C. Chou, and H. Su, 2003: Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30, 2275, doi:10.1029/2003GL018625. ——, and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12. ——, I. M. Held, and K. H. Cook, 1987: Evaporation-Wind feedback and low frequency variability in the tropical atmosphere. J.Atmos.Sci., 44, 2341-2348. Park, H. S., J. C. Chiang, B. R. Lintner, and G. J. Zhang (2010), The delayed effect of major El Niño events on Indian monsoon rainfall, J. Climate, 23, 932–946, doi:10.1175/2009JCLI2916.1. Rayner, N. A., E. B. Horton, D. E. Parker, C. K. Folland, and R. B. Hackett, 1996: Version 2.2 of the global sea-ice and sea surface temperature data set, 1903–1994. Climate Research Tech. Note 74, Met Office Hadley Centre, 14 pp. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363. Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012. Wang, B. R. Wu, and T. Li, 2003: Atmosphere-warm ocean interaction and its impact on Asian-Australian monsoon variation. J. Climate., 16, 1195-1211. Webster, P. J., A. W. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360. Wu, R., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring, J. Geophys. Res., 113, D05104, doi:10.1029/2007JD009316. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558. Xie, S.-P., H. Annamalai, F. A. Schott, J. P. McCreary, 2002: Structure and Mechanisms of South Indian Ocean Climate Variability. J. Climate, 15, 864–878. Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 1354–1372. Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7, 1719–1736. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41953 | - |
dc.description.abstract | 在聖嬰(ENSO)達到巔峰的隔年春季,印度洋上最顯著的反應就是印度洋海盆模(IOBM)。本研究利用觀測資料發現,在IOBM中存在南北海溫梯度與降水的不對稱性分量,與過去研究認知的IOBM單一均勻模態全然不同。此非均勻分量承自IOBM的特徵,並對此時期印度洋之後的發展扮演相當重要的角色。
本研究延伸Neelin和Chou首先提出在全球暖化或ENSO隔年由於整層熱帶對流層溫度(Tropospheric Temperature,TT)增暖的影響下 ,降水藉由對流調整,其中氣候場對流區(ITCZ)內的對流會更增強的「富者愈富」理論(Rich-get-richer Mechanism,RR),稱之為TT-RR機制,並發現此為造成南北降水不對稱最主要的原因。在ENSO發展隔年的二三月(FM(1) ),ITCZ的中心遷移到南緯12°,同時整個印度洋都在增暖的TT籠罩下,藉由TT-RR機制,ITCZ內的降水及對應赤道以北的沉降都會增強,使Hadley環流型態更加強。 TT-RR機制同時也與ENSO發展年秋季印度洋不對稱模(IOD)所激發的downwelling Rossby wave(DRW)產生交互作用。在ENSO發展隔年IOD結束後,本來預期DRW會在兩三個月內很快的衰減;但經TT-RR機制改變的Hadley環流加強的跨越赤道流,由於南北半球科氏力不同的影響,在南半球藉由慣性不穩定激發出一反氣旋式、負風應力旋度的環流場距平,提供DRW自我增強的來源,也呼應了赤道至南緯6°的區域內,降水減少與表層的反氣旋高壓距平。當ITCZ在AM(1)往赤道遷移時,TT-RR機制的反應開始衰減且隨ITCZ往北移動,此時再次增強的DRW會將儲存於次表面溫度的熱含量釋放到表面,使暖海溫距平得以維持。 在ITCZ中心的南邊,由於絕對風速減弱引發的局地風-蒸發反應(wind-evaporation effect),造成以南緯20°為主區域的暖海溫距平,使此區可支持深對流發展門檻的26.5°C總海溫邊界得以更向南推展。透過暖海局地的影響,深對流與淺對流(層雲)混合的降水型態提供了此區域正降水距平的來源。到了AM(1),局地風-蒸發反應消散,不再支持此區域的暖海溫,進而使得深對流在此無法發展。 在AM(1)時期,隨著ITCZ北移,海洋動力與表面熱通量對於南印度洋海溫的影響轉變為阻力,因此繼承自FM(1)以來的不對稱海溫與降水距平在此時期達到巔峰。同時,由於長驅直入的短波輻射與絕對風速減弱引發的局地-蒸發反應皆提供利於加熱的條件,北印度洋海溫迅速增暖。過了五月以後,此不對稱性很快地消散。 | zh_TW |
dc.description.abstract | Contrary to conventional wisdom, the Indian Ocean Basin Mode (IOBM), the most notable response over the Indian Ocean after ENSO peak year, has nothing similar to a uniform monopole. Observational evidences show an uneven structure that SST gradient and asymmetric precipitation pattern stand out despite embedded in basin-wide warming. This inhomogeneous component is found to be an inherited feature of the IOBM and plays a vital role to shape up subsequent events over the Indian Ocean.
The major cause for such meridional precipitation asymmetry can be attributed to the TT-RR mechanism, an enhancement of climatological convective zones under the warming of tropical tropospheric temperature (TT) , called the rich-get-richer (RR) effect by Neelin and Chou. In February-March [FM(1)] the climatological convective zones (ITCZ) over the Indian Ocean migrates to 12°S. At the time of the Nino(1) year, the whole Indian Ocean basin is loomed under the invading warm TT which intensifies both climatological ITCZ and its northern subsidence lag, thus strengthens the Hadley Cell. The TT-RR mechanism will be further interacted with the downwelling Rossby wave (DRW) originated from the Indian Ocean dipole mode in previous autumn. This DRW was supposed to be waning after termination of the dipole mode two or three months ago. Instead, the charged ITCZ induces powerful cross-equatorial winds which, by Coriolis toque, tends to veer in anti-cyclonic curve thus the negative wind stress curl re-enforces the DRW. Within the narrow belt from 6°S to equator marks a dry zone occupied by surface anti-cyclonic pattern and the associated sea level high pressure. The anomalous heat stored in subsurface temperature will resurface when the ITCZ moves back to the equator, maintain warm SST since the effects of the TT-RR mechanism shift northward with declined influence. The warm SST then sustain northward convection zones in April-May [AM(1)]. South of the ITCZ, positive wind-evaporation effect caused by the reduction of scalar winds in the southern Indian Ocean accounts for warm SST up to 20°S. The rainfall, under local SST control, comes from a mix of deep convection and stratiform type clouds since SST has been dropped to close to deep convection threshold around 26.5°C. The convection in the south of 20°S will be soon damped when large-scale wind-evaporation support no longer available and SST becomes too cold to sustain deep convection in AM(1). In AM(1), following the northward shift of the climatological convection zones, ocean dynamics and surface heat flux both act as the damping effects for SST in the southern Indian Ocean. With the effects inherited from FM(1), asymmetric SST and precipitation anomalies both reach to the peak states in this period. Meanwhile SST in the northern Indian Ocean is warmed up quickly by increase of downward solar radiation and decrease of upward latent heat flux. After May, the asymmetric pattern dissipates very rapidly. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:39:03Z (GMT). No. of bitstreams: 1 ntu-100-R98229022-1.pdf: 5368414 bytes, checksum: dda25cef2c8e91f9123794490ba491bc (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Contents
Abstract..................................................ii Abstract (Chinese).........................................v Acknowledgement..........................................vii Contents..................................................ix Figure Captions............................................x Chapter 1 Introduction.....................................1 Chapter 2 Data and Methods.................................4 2.1 Data...................................................4 2.2 Extend SVD (ESVD)......................................4 2.3 Composite Analysis.....................................5 Chapter 3 Temporal and Spatial Structures of Asymmetric SST and Rainfall Patterns......................................6 Chapter 4 Variation of Moisture and Moist Energy...........9 4.1 The TT (Tropical Tropospheric Temperature) Mechanism...9 4.2 The TT-RR Mechanism...................................11 4.3 Moisture and MSE Budget...............................13 4.4 Precipitation Pattern of the Tropical Indian Ocean....15 Chapter 5 Ocean Dynamics and Surface Heat Flux............19 5.1 Recharge and Discharge of the DRW.....................19 5.2 Wind-evaporation Effect and Hybrid Type of Rainfall in FM(1).....................................................21 5.3 The Peak State of the Asymmetric Patterns in AM(1)....24 Chapter 6 Conclusions and Discussions.....................26 6.1 Conclusions...........................................26 6.2 Discussions...........................................29 Bibliography..............................................31 Figures...................................................36 | |
dc.language.iso | en | |
dc.title | 印度洋海盆模之非均勻分量 | zh_TW |
dc.title | The Inhomogeneous Component of the Indian Ocean Basin Mode | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 隋中興(Chung-Hsiung Sui),許晃雄(Huang-Hsiung Hsu),余嘉裕(Jia-Yuh Yu),周佳(Chia Chou) | |
dc.subject.keyword | 印度洋海盆模,不對稱性,聖嬰現象, | zh_TW |
dc.subject.keyword | Indian Ocean Basin Mode,asymmetry,ENSO, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 5.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。