Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41943
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪根欉(Ken-Tsung Wong)
dc.contributor.authorSung-Yu Kuen
dc.contributor.author古嵩煜zh_TW
dc.date.accessioned2021-06-15T00:38:35Z-
dc.date.available2009-11-20
dc.date.copyright2008-11-20
dc.date.issued2008
dc.date.submitted2008-10-29
dc.identifier.citation1 K. Bücher and S. Kunzelmann, Proceedings of the 26th Photovoltaic Specialist Conference, 1997, p. 1193.
2 Brabec, C. J.; Saricitfcti, N. S.; Hummelen, J.C. Adv. Funct. Mater. 2001, 11, 15.
3 Photoinduced Electron Transfer (Eds.: M. A. Fox, M. Chanon), Elsevier, Amsterdam, 1988.
4 (a) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Scanchez, L.; Hummele, J. C. Adv. Funct. Mater. 2001, 11, 374; (b) Gadisa, A.; Svensson, M.; Andersson, M. R.; Inganas, O. Appl. Phys. Lett. 2004, 84, 169.
5 Tang, C.W. Appl. Phys. Lett. 1986, 48, 183.
6 (a)Yu, G; Zhang, C.; Heeger, A. J. J. Appl. Phys. Lett. 1994, 64, 1540; (b)Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science, 1992, 258, 1474; (c) Smilowitz, L.; Sariciftci, N. S.; Wu, R.; Gettinger, C.; Heeger, A. J.; Wudl, F. Phys. Rev. B 1993, 47, 13835.
7 Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J. Science, 1995, 270, 1789.
8 (a)Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497; (b) Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. J. Am. Chem. Soc. 2008, 130, 3619.
9 Peumans, P.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 126.
11 (a) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A.J. Adv. Funct. Mater. 2005, 15, 1617; (b) Lg, G.; Shrotriya, V.; Huang, J.; Yao,Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864.
12 Bach, U.; Lupo, D.; Comte, P.; Mose J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel Nature 1998, 395, 583.
13 Uhrich, C.; Schueppel, R.; Petrich, A.; Pfeiffer, M.; Leo, K.; Brier, E. Adv. Funct. Mater. 2007, 17, 2991.
14 Lin, H. W.; Ku, S. Y.; Su, H. C.; Huang, C. W.; Lin, Y. T.; Wong, K. T.; Wu, C. C Adv. Mater. 2005, 17, 2489.
15 Wong, K. T.; Ku, S. Yu, Cheng, Y. M.; Lin, X. Y., Hung, Y. Y.; Pu, S. C.; Chou, P. T.; Lee, G. H.; Peng, S. M. J. Org. Chem. 2006, 71, 456.
16Wu, C. C.; Hung, W. Y.; Liu, T. L.; Zhang, L. Z.; Luh, T. Y. J. Appl. Phys. 2003, 93, 5465.
17 (a) Brabec, C. J.; Shaheen, S. E.; Winder, C.; Sariciftci, N. S.; Denk, P. Appl. Phys. Lett. 2002, 80, 1288; (b) Peumans, P.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 126.
18 Peumans, P.; Forrest, S. R. Chem. Phys. Lett. 2004, 398, 27.
19 Peumans, P.; Yakimov, A.; Forrest, S. R. J. Appl. Phys. 2003, 93, 3693.
CH2
1 Pope, M.; Kalimann, H. P.; Mangante, P. J. Chem. Phys. 1963, 38, 2042.
2 Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
3 Shen, C.; Hill, I. G.; Kahn, A. Adv. Mater. 1999, 11, 1523.
4 Haskal, E. I.; Curioni, A.; Seidler, P. F.; Andreoni, W. Appl. Phys. Lett. 1997, 71, 1151.
5 Ishida, T.; Kobayashi, H.; Nakato, Y. J. Appl. Phys. 1993, 73, 4334.
6 Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489.
7 (a) Chen, B.; Lee, C. S.; Lee, S. T.; Webb, P.; Chan, Y. C.; Gambling, W.; Tian, H.; Zhu. W. Jpn. J. Phys. Part1, 2000, 39, 1190; (b) Fujikawa, H.; Ishii, M.; Tokito, S.; Taga, Y. Mater. Res. Soc. Symp. Proc. 2000, 621, Q3.4.1.
8 (a) Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S.; Wehrmann, R. Synth. Met. 2000, 111, 139; (b) Brown, T. M.; Kim, J. S.; Friend, R. H.; Cacialli, F.; Daik, R.; Feast, W. J. Appl. Phys. Lett. 1999, 75, 1679. 9 Vanslyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160.
10 Blochwitz, J.; Pfeiffer, M.; Fritz, T.; Leo, K. Appl. Phys. Lett. 1998, 73, 729.
11 Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
12 Sudhakar, M.; Djurovich, P. I.; Hogen-Esch, T. E.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7796.
13 Li, Z. H.; Wong, M. S.; Fukutani, H.; Tao, Y. Chem. Mater. 2005, 17, 5032.
14 Zhang, H.; Huo, C.;Zhang, J.; Zang, P.; Tian, W.; Wang, Y. Chem. Comm. 2006, 281.
15 Liao, Y. L.; Lin, C. Y.; Wong, K. T., Hou, T. H.; Hung, W. Y. Org. Lett. 2007, 9, 4511.
16 Huang, T. H.; Lin, J. T.; Chen, L. Y.; Lin, Y. T.; Wu, C. C. Adv. Mater. 2006, 18, 602.
17 Lai, M. Y.; Chen, C. H.; Huang, W. S.; Lin, J. T.; Ke, T. H.; Chen, L. Y.; Tsai, M. H.; Wu, C. C. Angew. Chem. Int. Ed. 2008, 47, 581.
18 Lin, H. W.; Ku, S. Y.; Su, H. C.; Huang, C. W.; Lin, Y. T.; Wong, K. T.; Wu, C. C Adv. Mater. 2005, 17, 2489.
19 Hung, W. Y.; Tsai, T. C.; Wong, K. T.; Ku, S. Y.; Chi, L. C. Phys. Chem. Chem. Phys. 2008, 10, 5822.
20 Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K.; Appl. Phys. Lett. 1994, 65, 807.
21 McGehee, M. D.; Bergstedt, T.; Zhang, C.; Saab, A. P.; O’Regan, M. B.; Bazan, G. C.; Srdanov, V. I.; Heeger, A. J. Adv. Mater. 1999, 11, 1349.
22 Kawamura, Y.; Brooks, J.; Brown, J. J.; Sasabe, H.; Adachi, C. Phys. Rev. Lett. 2006, 96, 017404.
23 Wong, K. T.; Ku, S. Yu, Cheng, Y. M.; Lin, X. Y., Hung, Y. Y.; Pu, S. C.; Chou, P. T.; Lee, G. H.; Peng, S. M. J. Org. Chem. 2006, 71, 456.
24 Wong, K. T.; Chen, H. F.; Fang, F. C. Org. Lett. 2006, 8, 3501
25 Hosseini, S. H.; Entezami, A. A. J. Appl. Polym. Sci. 2003, 90, 63.
26 Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599.
CH3
1 For review of ECL: (a) Bard, A. J. Electrogenerated Chemiluminescence; Marcel Dekker: New York, 2004; (b) Richter, M. M. Chem. Rev. 2004, 104, 3003.
2 (a) Omer, K. M.; Kanibolotosky, A. L.; Skabara, P. J.; Perepichka, I. F.; Brad, A. J. J. Phys. Chem. B 2007, 111, 6612; (b) Lai, R.Y.; Fleming, J. J.; Merner, M. L.; Vermeij, R. J.; Bodwell, G. J.; Bard, A. J. J. Phys. Chem. A 2004, 108, 376.
3 (a) Cruser, S. A., Bard, A. J. Anal. Lett. 1967, 1, 11; (b) Faulkner, L. R., Bard, A. J. J. Am. Chem. Soc. 1968, 90, 6284.
4 Sartin, M. M.; Zhang, H.; Zhang, J.; Zhang, P.; Tian, W.; Wang. Y.; Bard, A. J. J. Phys. Chem. C, 2007, 111, 16350.
5 Desvergne, J. P.; Czarnik, A. W. Chemosensors for Ion and Molecule Recognition; Kluwer:Dlordrecht, 1997.
6 Gilbert, A.; Baggott, J. Essentials of Molecular Photochemistry, Oxford: London, 1991.
7 (a) Chang, M. M.; Saji, T.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 5399; (b) Rubinstein, I.; Bard, A. J. J. Am. Chem. Soc. 1981, 103, 512.
8 (a) Chandross, E.; Sonntag, F. J. Am. Chem. Soc. 1966, 88, 1089; (b) Santacruz, T. D.; Akins, D. L.; Brike, R. L. J. Am. Chem. Soc. 1976, 98, 1677.
9 (a) Hoytin, G. J. Discuss. Faraday Soc.1968, 45, 14; (b) Kinght, A. W.; Greenway, G. M. Analyst, 1994, 119, 879.
10 (a) Wong, K. T.; Chien, Y. Y.; Chen, R. T.; Wang, C. F.; Lin, Y. T.; Chiang, H. H.; Hsieh, P. Y.; Wu, C. C.; Chou, C. H.; Su, Y. O.; Lee, G. H.; Peng, S. M. J. Am. Chem. Soc. 2002, 124, 11576; (b) Wu, F. I.; Dodda, R.; Reddy D. S.; Shu , C. F. J. Mater. Chem. 2002, 12, 2893; (c) Tsolakis, P. K..; Kallitsis, J. K. Chem. Eur. J. 2003, 9, 936; (d) Wu, C. C.; Lin, Y. T.; Wong, K. T.; Chen, R. T.; Chien, Y. Y. Adv. Mater. 2004, 16, 61.
11 (a) Geng, Y.; Katsis, D.; Culligan, S. W.; Ou, J. J.; Chen, S. H.; Rothberg, L. J. Chem. Mater. 2002, 14, 463; (b) Li, Y.; Ding, J.; Day, M.; Tao, Y.; Lu, Jianping .; D’iorio, M. Chem. Mater. 2003, 15, 4936; (c) Culligan, S. W.; Geng, Y.; Chen, S.H.; klubek, K.; Vaeth, K. M.; Tang, C. W. Adv. Mater. 2003, 15, 1176.
12 Choi, J. P.; Wong, K. T.; Chen, Y. M.; Yu, J. K.; Chou, P. T.; Bard, A. J. J. Phys. Chem. B 2003, 107, 14407.
13 Fungo, F.; Wong, K. T.; Ku, S. Y.; Hung, Y. Y.; Bard, A. J. J. Phys. Chem. B 2005, 109, 3984.
14 Rashidnadimi, S.; Hung, T. H.; Wong, K. T.; Bard, A.J. J. Am. Chem. Soc. 2008, 130, 634.
15 Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Kluwer Academic: New York, 1999.
16 Marcus, R. A. J. Phys. Chem. 1989, 93, 3078.
17 Sartin, M. M.; Shu, C.; Bard, A. J. J. Am. Chem. Soc. 2008, 130, 5354.
18 Mann, C. K.; Barnes, K. K. Electrochemical Reaction in Nonaqueous Systems; Marcel Dekker: New York, 1970.
19 (a) Coleman, A. E.; Richtol, H. H.; Aikens, D. A. J. Electro.Chem. 1968, 18,165; (b) Werner, T. C.; Chang, J.; Hercules, D. M. J. Am. Chem. Soc. 1970, 25, 763.
20 Yasuda, T.; Imase, T.; Yamamaoto, T. Macro. 2005, 38,7378.
21 (a) Fleet, B.; Kirkbright, G. F.; Pickford, C. J. Electro. Chem. 1971, 30, 115; (b) Birks, J. B.; Christopherou, L. G. Spectrochim. Acta 1963, 19, 401.
CH4
1 Nicolau, D. V.; Tauguchi, T.; Taniguchi, H.; Yoshikawa S. Langmuir 1998, 14, 1927.
2 Blawas, A. S.; Reichert, W. M. Biomaterials 1998, 19, 595.
3 Rozkiewicz, D. I.; Janczewski, D.; Verboom, W.; Ravoo, B. J.; Reinhoudt, D. N. Angew. Chem. Int. Ed. 2006, 45, 5292.
4 Lee, K.-B.; Park, S.-J; Mirkin, C. A.; Smith, J. C.; Mrksich, M. Science 2002, 295, 1702.
5 Piner, R.D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661
6 Long, D. A.; Unal, K.; Pratt, R. C.; Malkoch, M.; Frommer, J. Adv. Mat. 2007, 19, 4771.
7 Shiku, H.; Uchida, I.; Mastue, T Langmuir 1997, 13, 7329.
8 Lin, C. W.; Fan, F.-R.; Bard, A.J. J. Electrochem. Soc.1987, 134, 1038.
9 Craston, D.H.; Lin, C. W.; Bard, A. J. J. Electrochem. Soc.1988, 135, 785.
10 Wuu, Y.-M.; Fan, F.-R.; Bard, A. J. J. Electrochem. Soc.1989, 136, 885.
11 Kranz, C.; Ludwig, M.; Gaub, H.E. ; Schuhmann, W. Adv. Mater. 1995, 7, 38.
12 Shiku, H.; Uchida, I.; Matsue, T. Langmuir 1997, 13, 7329.
13 Mandeler, D; Bard, A. J. Electrochem. Soc. 1990, 137, 2468.
14 Wuu, Y.-M.; Fan, F.-R.; Bard, A.J. J. Electrochem. Soc. 1989, 136, 885.
15 Kranz, C.; Ludwig, M.; Gaub, H.E.; Schuhmann, W. Adv. Mater. 1995, 7, 38.
16 Borgwarth, K.; Ricken, C.; Ebling, D.G.; Heinze, J. Ber. Bunsenges. Phys. Chem. 1995, 99, 1421.
17 Marck, C.; Borgwarth, K.; Heinze, J. Adv. Mater. 2001, 13, 47.
18 Shiku, H.; Uchida,I.; Matsue, T. Langmuir 1997, 12, 7329.
19 Li, X.; Geng, Q.; Wang, Y.; Si, Z.; Jiang, W.; Zhange, X.; Jin, W. Electrochem. Acta 2007, 53, 2016.
20 Sharpless, K.B.; Fokin, V. V.; Green, L. G.; Rostovtsev, V. V. Angew. Chem. Int. Ed. 2002, 41, 2596.
21 Meldal, M.; Christensen, C.; Tornoe, C. W. J. Org. Chem. 2002, 67, 3057.
22 (a) Collman, J. P.; Devaraj, N. K.; Chidsey, C. E. D. Langmuir 2004, 20, 1051; (b) Lee, J. K.; Chi, Y. S .; Choi, I. S. Langmuir 2004, 20, 3844; (c) Zirbs, R.; Kienberger, F.; Hinterdorfer, P.; Binder, W. H. Langmuir 2005, 21, 8414.
23 Lummerstorfer, T.; Hoffmann, H. J. Phys. Chem. B 2004, 108, 3963.
24 Li, H.; Cheng, F.; Duft, A. M.; Adronov, A. J. Am. Chem. Soc. 2005, 127, 14518.
25 Diaz, D. D.; Punna, S.; Holzer, P.; McPherson, A. K.; Sharpless, K. B.; Fokin, V. V.; Finn, M. G. J. Polym. Sci. A 2004, 42, 4392.
26 Tripp, C. P.; Hair, M. L. Langmuir 1992, 8, 1120.
27 Sindorf, D. W.; Maciel, G. E. J. Am. Chem. Soc. 1981, 103, 4263.
28 Balachander, N.; Sukenik, C. N. Langmuir 1990, 6, 1621.
29 Brandriss, S.; Margel, S. Langmuir 1993, 9, 1232.
30 Fryxell, G. E.; Rieke, P. C.; Wood, L. L.; Engelhard, M. H.; Williford, R. E.; Graff, G. L.; Campbell, A. A.; Wiacek, R. J.; Lee, L.; Halverson, A. Langmuir 1996, 12, 5064.
31 Balachander, N.; Sukenik, C. N. Langmuir 1990, 6, 1621.
32 Devaraj, N. K.; Dinolfo, P. H.; Chidsey, C. E. D.; Collman, J. P. J. Am. Chem. Soc. 2006, 128, 1794.
33 Samide, M. J.; Peters, D. G. J. Electroanal. Chem 1998, 443, 95.
34 Chopard, B.; Luthi, P. Phy. Rev. Lett. 1994, 72, 1384.
35 Bard, A. J. Scanning Electrochemical Microscopy; Bard, A. J., Mirkin, M. V., Eds.; Marcel Dekker: New York, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41943-
dc.description.abstract1. 旋環雙芴分子在光伏元件和有機電致發光元件之應用
予體(D)和受體(A)組成之旋環雙芴分子,具有傳輸電子和電洞的能力。此雙
極性的能力可以由可逆的氧化還原行為觀察並得知其分子是一個很好電子和電
洞傳輸的媒介。在本章節我們將旋環雙芴分子應用在光伏元件和有機電致發光元
件。
D-A 系統中若有激發態電子轉移的現象,將具有高效率之光電轉換率。而
D/A 介面通常是D 和A 雙層的介面、或物理混合的單層介面、甚至也有化學混
合(將D 和A 建構在一分子)。化學混合往往能得到高效率的電荷分離,然而化
學混合的分子其合成相當複雜,因此物理混合也許是另一個得到高效率電荷分離
的簡單方法。在第一章,我們引入噻吩,設計合成新型旋環雙芴之予體;引入
benzothiadiazole,計設合成新型旋環雙芴之受體,並將其製備D:A 物理混合成單
層元件,研究探討予體和受體在光伏元件的作用。
第二章我們討論旋環雙芴雙極性分子在有機電致發光之主體材料的應用。旋
環雙芴雙極性分子為主體材料,搭配Ir 錯合物可以製備簡單的紅光(CIE at x=0.66,
y=0.34)元件結構。在旋環雙芴分子上引入CN 作為受體,另外引入二苯胺作為予
體,其分子在電化學中具有可逆的氧化還原,具有傳輸載子的能力,另外分子的
HOMO/LUMO 能階可以幫助載子由電極注入到發光層元件,主體材料之三重態
能階高,適合摻雜紅光染料。元件的結構如下:ITO/HIL (Hole Injection Layer)/D-A
host:Mpq2Iracac/LiF/Al,相當簡單的元件結構,但具有相當高之量子效率。
2. Benzothiadiazole 衍生物在電化學發光(ECL)和利用掃描電化學顯微鏡
(SECM)做表面圖形技術之應用
Benzothiadiazole 的衍生物具有高效率的綠光放光,是一個很好的放光元件。
在這個研究中,我們將其benzothiadiazole 的衍生物應用在電致化學放光元件和
click chemistry 鍵結螢光分子之SECM 奈米圖形法。
第三章為電致化學放光的研究,這一系列benzothiadiaozle 衍生物(BH0−BH3)
和寡聚芴衍生物(AB2, C01, FAF, FPF, and FDF)具有高量子效率的放光。由電化
學實驗中,我們揭露分子結構和電化學性質的關係。這一系列分子皆有可逆的氧
化還訊號,可以穩定生成自由基陰陽離子,且具有高量子螢光放光,適合作綠光
電致放光元件。
第四章為掃描電化學顯微鏡的應用,SECM 可以製備微米/奈米的圖形化結
構。我們提出一新型SECM 奈米圖形化之技術:透過使用SECM 和click chemistry
將螢光分子連接到基板上。這種方法大概也適用於轉移其他分子或nanoparticles
到基板上。另外我們發現結合SECM 和click chemistry 做的圖形化技術會引起類
似Liesegang ring 的生成。圖形化的大小和幾何位置可以透過探針大小和探針-
基板的相對距離來控制。
zh_TW
dc.description.abstract1. The Applications of Spirobifluorene-configured Bipolar Materials in
Photovoltaics and Electrophosphorescence Devices
Spirobifluorene-configured bipolar materials, consisting of donor (D) and
acceptor (A) moiety, are potentially capable of carrying both holes and electrons.
These bipolar materials, possessing reversible oxidation and reduction behavior, can
be considered as a promising matrix for hole and electron transporting. Here we
demonstrate the applications of spirobifluorene-bridged bipolar derivatives in
photovoltaics and electrophosphorescence devices.
A D-A system with efficient photon-to-electron conversion requires effective
charge separation from optically generated excitons. Such D/A interfaces may be
implemented by putting D/A chromophores in layered structures, in blends (mixtures),
or even in chemically linked structures. The chemical blends can achieve a highly
efficient charge separation, but the chemical syntheses are sophisticated. Hence
physical blends could be another much easier way to achieve such purpose. Therefore
we designed and synthesized novel donor and acceptor molecules incorporated
thiophene and benzothiadiazole moieties with 9,9’-spirobifluorene, respectively, and
investigated them in photovoltaic applications.
On the other hand, a highly efficient electrophosporescent device with a simple
device structure giving saturated red emission (CIE at x=0.66, y=0.34) has been
achieved by doping an iridium complex (Mpq2Iracac) into a novel, ambipolar,
spiro-configured D-A host material. After introducing cyano groups and diarylamine
moieties into different biphenyl branches of 9,9’-spirobifluorene, respectively, it
possesses balanced electron- and hole-transporting ability, suitable HOMO/LUMOlevels for carrier injection from an electrode, and an appropriate triplet energy gap for
a red guest. The device configured as: ITO/HIL (Hole Injection Layer)/D-A
host:Mpq2Iracac/LiF/Al, exhibited a highly efficient electrophosporescent device with
a simple device structure.
2. The Applications of Benzothiadiazole Derivatives in Electrogenerated
ChemiLuminescence (ECL) and Surface Patterning Directed by Scanning
Electrochemical Microscopy (SECM) Promoted Click Chemistry
Benzothiadiazole derivatives, possessing highly efficient green light emission,
are very useful in light-emitting devices. Here we demonstrated the applications of
benzothiadiazole derivatives in electro-generated chemiluminescence (ECL) and
surface patterning directed by scanning electrochemical microscopy (SECM)
promoted click chemistry.
A series of highly fluorescent benzothiadiazole derivatives (BH0−BH3) and
fluorene derivatives (AB2, C01, FAF, FPF, and FDF) were synthesized and
characterized. By cyclic voltammetric study, we unveiled the relationships between
molecular structure and electrochemical properties. These highly fluorescent
benzothiadiazole derivatives with reversible oxidation and reduction waves are
applied for green ECL. The ECL could be seen by the naked eye even in a well lit
room. Such strong ECL emitters are not common in the field of electrogenerated
chemiluminescence, especially for green ECL emitters.
SECM-based surface patterning can be achieved to form useful micro/nano
structures for various kinds of applications. Alkyne functionalized benzothiadiazole
derivatives can be transformed into a triazole ring with a azide-terminated reagent
anchored on a substrate. Here we reported a novel SECM-based surface patterning of
fluorescence molecules on a solid substrate, by proceeding with click chemistry
reaction to form a covalent bond and. The pattern image can be observed from a
fluorescence microscopy.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:38:35Z (GMT). No. of bitstreams: 1
ntu-97-D93223014-1.pdf: 3611448 bytes, checksum: f3bf90b55c31ed70cd78dd6faaa412c8 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents第一章 含旋環雙芴分子在有機薄膜光伏元件之開發與應用 1
1-1 序論 1
1-1.1 太陽能電池簡介 1
1-1.2 有機導電分子在光伏元件之簡介 2
1-1.3 予體-授體之有機小分子在光伏元件之應用 5
1-2 結果與討論 11
1-2.1 新型旋環雙芴分子之設計與合成 11
1-2.2 新型旋環雙芴分子之性質分析 15
1-2.2.a 新型旋環雙芴分子之光物理性質分析 16
1-2.2.b 新型旋環雙芴分子之電化學性質分析 17
1-2.2.c 新型旋環雙芴分子之熱性質分析 21
1-2.3 光伏元件之效率 22
1-2.4 薄膜之PL 量子效率 31
1-3 結論 32
1-4 實驗細節 34
1-5 參考文獻 39
第二章旋環雙芴雙極性分子在有機發光二極體之開發與應用 41
2-1 序論 41
2-1.1 有機發光二極體之原理 41
2-1.2 標準元件結構與各種常見之材料 42
2-1.3 磷光有機發光二極體 46
2-1.4 雙極性分子在有機發光二極體之應用 47
2-2 結果與討論 54
2-2.1 雙極性旋環雙芴D2ACN 在有機發光二極體之開發與應用 54
2-2.2 雙極性旋環雙芴分子之設計與合成 59
2-2.3 雙極性旋環雙芴分子之性質分析 61
2-2.3.a 雙極性旋環雙芴分子之光物理性質分析 61
2-2.3.b 雙極性旋環雙芴分子之電化學性質分析 65
2-2.3.c 雙極性旋環雙芴分子之熱性質分析 68
2-2.3.d 雙極性旋環雙芴分子之載子傳輸性質分析 69
2-2.4 有機發光二極體之效率 73
2-3 結論 78
2-4 實驗細節 79
2-5 參考文獻 83
第三章 寡聚芴和Benzothiadiazole 分子在電致化學放光的應用 85
3-1 序論 85
3-1.1 電致化學發光原理 85
3-1.2 電致化學放光的應用
3-1.3 有機小分子在電致化學放光的應用 89
3-2 結果與討論 90
3-2.1 電致化學發光分子之設計與合成 90
3-2.2 電致化學發光分子之性質與分析 95
3-2.2.a 分子之光物理性質分析 96
3-2.2.b 分子之熱性質分析 99
3-2.2.c 分子之電化學性質分析 100
3-2.3 電致化學發光之實驗測量 109
3-3 結論 113
3-4 實驗細節 114
3-5 參考文獻 124
第四章 Click chemistry 鍵結螢光分子之SECM 奈米圖形法 126
4-1 序論 126
4-1.1 電化學掃描顯微鏡的原理 126
4-1.2 圖形化的方法 131
4-1.3 圖形化螢光分子之實驗設計 141
4-1.3.a Click 化學反應 142
4-1.3.b 自組裝單層薄膜(SAMs) 144
4-1.3.c 染料分子的分子設計 145
4-1.3.d Cu(II)/Cu(I)之電化學性質分析 146
4-2 結果與討論 147
4-2.1 自組裝單層薄膜(SAMs)之製備 148
4-2.2 三鍵螢光分子(BH1)之合成 149
4-2.3 Cu(II)/Cu(I)之電化學性質分析
4-2.4 實驗操作條件 152
4-3 結論 158
4-4 實驗細節 159
4-5 參考文獻 162
附錄. 新型化合物的1H 和13C NMR 光譜 164
dc.language.isozh-TW
dc.subject電化學發光zh_TW
dc.subject光伏元件zh_TW
dc.subject有機電致發光zh_TW
dc.subjectSECMen
dc.subjectPhotovoltaicsen
dc.subjectElectrophosphorescenceen
dc.subjectECLen
dc.title1. 旋環雙芴分子在光伏元件和有機電致發光元件之應用
2. Benzothiadiazole 衍生物在電化學發光(ECL)和由掃描式電
化學顯微鏡(SECM)促進Click Chemistry 鍵結螢光分子之
創新式奈米圖形法研究
zh_TW
dc.title1. The Applications of Spirobifluorene-configured Bipolar Materials
in Photovoltaics and Electrophosphorescence Devices
2. The Applications of Benzothiadiazole Derivatives in Electrogenerated
ChemiLuminescence (ECL) and Surface Patterning Directed by
Scanning Electrochemical Microscopy (SECM)
Promoted Click Chemistry
en
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.oralexamcommittee吳忠幟,薛景中,徐秀福,洪文誼
dc.subject.keyword光伏元件,有機電致發光,電化學發光,zh_TW
dc.subject.keywordPhotovoltaics,Electrophosphorescence,ECL,SECM,en
dc.relation.page164
dc.rights.note有償授權
dc.date.accepted2008-10-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved