Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann Lin)
dc.contributor.authorSzu-Yuan Leeen
dc.contributor.author李思元zh_TW
dc.date.accessioned2021-06-15T00:37:58Z-
dc.date.available2010-01-01
dc.date.copyright2008-11-25
dc.date.issued2008
dc.date.submitted2008-11-13
dc.identifier.citation1. Gerstein, M.B., C. Bruce, J.S. Rozowsky, D. Zheng, J. Du, J.O. Korbel, O. Emanuelsson, Z.D. Zhang, S. Weissman, and M. Snyder, What is a gene, post-ENCODE? History and updated definition. Genome Res, 2007. 17(6): p. 669-81.
2. 經濟部工業局, 第五次生物技術產業策略(SRB)會議報告. 2001.
3. 工業技術研究院化學工業研究所, 生物晶片商機與策略. 1999.
4. 陳健尉, 生物晶片:技術發展及在生命科學上之應用. 2004.
5. 工研院機械工業研究所, 微機電系統之技術現況與發展. 2003.
6. McDonald, J.C. and G.M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res, 2002. 35(7): p. 491-9.
7. Heirwegh, K.P., J.A. Meuwissen, and R. Lontie, Selective absorption and scattering of light by solutions of macromolecules and by particulate suspensions. J Biochem Biophys Methods, 1987. 14(6): p. 303-22.
8. Lagally, E.T., P.C. Simpson, and R.A. Mathies, Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sensors and Actuators B: Chemical, 2000. 63(3): p. 138-146.
9. Lagally, E.T., I. Medintz, and R.A. Mathies, Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem, 2001. 73(3): p. 565-70.
10. Lagally, E.T., J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley, and R.A. Mathies, Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem, 2004. 76(11): p. 3162-70.
11. Yu, X., D. Zhang, T. Li, L. Hao, and X. Li, 3-D microarrays biochip for DNA amplification in polydimethylsiloxane (PDMS) elastomer. Sensors and Actuators A: Physical, 2003. 108(1-3): p. 103-107.
12. White, T.J., N. Arnheim, and H.A. Erlich, The polymerase chain reaction. Trends Genet, 1989. 5(6): p. 185-9.
13. Saiki, R.K., S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, and N. Arnheim, Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985. 230(4732): p. 1350-4.
14. Lizardi, P.M., X. Huang, Z. Zhu, P. Bray-Ward, D.C. Thomas, and D.C. Ward, Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet, 1998. 19(3): p. 225-32.
15. Walker, G.T., M.S. Fraiser, J.L. Schram, M.C. Little, J.G. Nadeau, and D.P. Malinowski, Strand displacement amplification--an isothermal, in vitro DNA amplification technique. Nucleic Acids Res, 1992. 20(7): p. 1691-6.
16. Compton, J., Nucleic acid sequence-based amplification. Nature, 1991. 350(6313): p. 91-2.
17. Notomi, T., H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 2000. 28(12): p. E63.
18. Nagamine, K., T. Hase, and T. Notomi, Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes, 2002. 16(3): p. 223-9.
19. Chavali, S., A. Mahajan, R. Tabassum, S. Maiti, and D. Bharadwaj, Oligonucleotide properties determination and primer designing: a critical examination of predictions. Bioinformatics, 2005. 21(20): p. 3918-25.
20. Marmur, J. and P. Doty, Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol, 1962. 5: p. 109-18.
21. Wallace, R.B., J. Shaffer, R.F. Murphy, J. Bonner, T. Hirose, and K. Itakura, Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res, 1979. 6(11): p. 3543-57.
22. Howley, P.M., M.A. Israel, M.F. Law, and M.A. Martin, A rapid method for detecting and mapping homology between heterologous DNAs. Evaluation of polyomavirus genomes. J Biol Chem, 1979. 254(11): p. 4876-83.
23. Rychlik, W. and R.E. Rhoads, A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res, 1989. 17(21): p. 8543-51.
24. Breslauer, K.J., R. Frank, H. Blocker, and L.A. Marky, Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A, 1986. 83(11): p. 3746-50.
25. SantaLucia, J., Jr. and D. Hicks, The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct, 2004. 33: p. 415-40.
26. SantaLucia, J., Jr., H.T. Allawi, and P.A. Seneviratne, Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry, 1996. 35(11): p. 3555-62.
27. Sugimoto, N., S. Nakano, M. Yoneyama, and K. Honda, Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res, 1996. 24(22): p. 4501-5.
28. SantaLucia, J., Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A, 1998. 95(4): p. 1460-5.
29. Mori, Y., K. Nagamine, N. Tomita, and T. Notomi, Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun, 2001. 289(1): p. 150-4.
30. Iwamoto, T., T. Sonobe, and K. Hayashi, Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol, 2003. 41(6): p. 2616-22.
31. Minami, M., M. Ohta, T. Ohkura, T. Ando, K. Torii, T. Hasegawa, and H. Goto, Use of a combination of brushing technique and the loop-mediated isothermal amplification method as a novel, rapid, and safe system for detection of Helicobacter pylori. J Clin Microbiol, 2006. 44(11): p. 4032-7.
32. Hong, T.C., Q.L. Mai, D.V. Cuong, M. Parida, H. Minekawa, T. Notomi, F. Hasebe, and K. Morita, Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J Clin Microbiol, 2004. 42(5): p. 1956-61.
33. Ito, M., M. Watanabe, N. Nakagawa, T. Ihara, and Y. Okuno, Rapid detection and typing of influenza A and B by loop-mediated isothermal amplification: comparison with immunochromatography and virus isolation. J Virol Methods, 2006. 135(2): p. 272-5.
34. Poon, L.L., C.S. Leung, K.H. Chan, J.H. Lee, K.Y. Yuen, Y. Guan, and J.S. Peiris, Detection of human influenza A viruses by loop-mediated isothermal amplification. J Clin Microbiol, 2005. 43(1): p. 427-30.
35. Imai, M., A. Ninomiya, H. Minekawa, T. Notomi, T. Ishizaki, M. Tashiro, and T. Odagiri, Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection. Vaccine, 2006. 24((44-46)): p. 6679-82.
36. Kaneko, H., T. Iida, K. Aoki, S. Ohno, and T. Suzutani, Sensitive and rapid detection of herpes simplex virus and varicella-zoster virus DNA by loop-mediated isothermal amplification. J Clin Microbiol, 2005. 43(7): p. 3290-6.
37. Hagiwara, M., H. Sasaki, K. Matsuo, M. Honda, M. Kawase, and H. Nakagawa, Loop-mediated isothermal amplification method for detection of human papillomavirus type 6, 11, 16, and 18. J Med Virol, 2007. 79(5): p. 605-15.
38. Goto, M., H. Hayashidani, K. Takatori, and Y. Hara-Kudo, Rapid detection of enterotoxigenic Staphylococcus aureus harbouring genes for four classical enterotoxins, SEA, SEB, SEC and SED, by loop-mediated isothermal amplification assay. Lett Appl Microbiol, 2007. 45(1): p. 100-7.
39. 行政院衛生署統計資料 2005 [cited; Available from: http://www.doh.gov.tw/statistic/index.htm.
40. 謝靜惠, 實施「全民健保加強慢性B、C型肝炎治療試辦計畫」對慢性B、C型肝炎患者門診利用與醫療支出之影響, in 醫務管理研究所. 2006, 國立中山大學.
41. Locarnini, S., Molecular virology of hepatitis B virus. Semin Liver Dis, 2004. 24 Suppl 1: p. 3-10.
42. Bartholomeusz, A. and S. Schaefer, Hepatitis B virus genotypes: comparison of genotyping methods. Rev Med Virol, 2004. 14(1): p. 3-16.
43. 肝病知識. [cited; Available from: http://www.liver.org.tw/.
44. Sablon, E. and F. Shapiro, Advances in Molecular Diagnosis of HBV Infection and Drug Resistance. Int J Med Sci, 2005. 2(1): p. 8-16.
45. Aliyu, S.H., M.H. Aliyu, H.M. Salihu, S. Parmar, H. Jalal, and M.D. Curran, Rapid detection and quantitation of hepatitis B virus DNA by real-time PCR using a new fluorescent (FRET) detection system. J Clin Virol, 2004. 30(2): p. 191-5.
46. Weiss, J., H. Wu, B. Farrenkopf, T. Schultz, G. Song, S. Shah, and J. Siegel, Real time TaqMan PCR detection and quantitation of HBV genotypes A-G with the use of an internal quantitation standard. J Clin Virol, 2004. 30(1): p. 86-93.
47. Chen, C.J., H.I. Yang, J. Su, C.L. Jen, S.L. You, S.N. Lu, G.T. Huang, and U.H. Iloeje, Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. Jama, 2006. 295(1): p. 65-73.
48. Iloeje, U.H., H.I. Yang, J. Su, C.L. Jen, S.L. You, and C.J. Chen, Predicting cirrhosis risk based on the level of circulating hepatitis B viral load. Gastroenterology, 2006. 130(3): p. 678-86.
49. Perrillo, R.P., Overview of treatment of hepatitis B: key approaches and clinical challenges. Semin Liver Dis, 2004. 24 Suppl 1: p. 23-9.
50. Liu, Y., M. Hussain, S. Wong, S.K. Fung, H.J. Yim, and A.S. Lok, A genotype-independent real-time PCR assay for quantification of hepatitis B virus DNA. J Clin Microbiol, 2007. 45(2): p. 553-8.
51. Lee, S.Y., C.N. Lee, H. Mark, D.R. Meldrum, C.K. Lee, and C.W. Lin, Optimal Hepatitis B Virus Primer Sequence Design for Isothermal Amplification. Biomedical Engineering: Applications, Basis and Communications., 2007. 19: p. 137-144.
52. Lee, S.Y., L.J. Yang, D.R. Meldrum, C.N. Lee, and C.W. Lin, Miniature isothermal amplification reactor with an integrated optical detection unit, World Congress on Medical Physics and Biomedical Engineering 2006 (WC2006). 2006: COEX conventional center, Seoul, Republic of Korea.
53. Henke, W., K. Herdel, K. Jung, D. Schnorr, and S.A. Loening, Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res, 1997. 25(19): p. 3957-8.
54. Rees, W.A., T.D. Yager, J. Korte, and P.H. von Hippel, Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry, 1993. 32(1): p. 137-44.
55. Lee, S.Y., C.N. Lee, H. Mark, D.R. Meldrum, and C.W. Lin, Efficient, specific, compact hepatitis B diagnostic device: Optical detection of the hepatitis B virus by isothermal amplification. Sens. Actuators B: Chem., 2007. 127(2): p. 598-605.
56. Lee, S.Y., J.G. Huang, T.L. Chuang, J.C. Sheu, Y.K. Chuang, H. Mark, D.R. Meldrum, C.N. Lee, and C.W. Lin, Compact optical diagnostic device for isothermal nucleic acids amplification. Sens. Actuators B: Chem., 2008. 133: p. 493-501.
57. Yanagida, T., M. Ueda, T. Murata, S. Esaki, and Y. Ishii, Brownian motion, fluctuation and life. Biosystems, 2007. 88(3): p. 228-42.
58. Lin, C.W., K.P. Chen, M.C. Su, T.C. Hsiao, S.S. Lee, S.M. Lin, X.J. Shi, and C.K. Lee, Admittance loci design method for multilayer surface plasmon resonance devices. Sensors and Actuators B-Chemical, 2006. 117(1): p. 219-229.
59. Lin, C.W., K.P. Chen, S.M. Lin, and C.K. Lee, Design and Fabrication of an Alternating Dielectric Multi-layer device for Surface Plasmon Resonance Sensor. Sensors and Actuators B-Chemical, 2006. 113: p. 169-176.
60. Huang, J.G., C.L. Lee, H.M. Lin, T.L. Chuang, W.S. Wang, R.H. Juang, C.H. Wang, C.K. Lee, S.M. Lin, and C.W. Lin, A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection. Biosens Bioelectron, 2006. 22(4): p. 519-25.
61. Lin, C.W., K.P. Chen, M.C. Su, C.K. Lee, and C.C. Yang, Bio-Plasmonics: Nano/micro Structure of Surface Plasmon Resonance Devices for Biomedicine Optical and Quantum Electronics 2005, 2005. 37: p. 1423-1437.
62. Jenison, R., S. Yang, A. Haeberli, and B. Polisky, Interference-based detection of nucleic acid targets on optically coated silicon. Nat Biotechnol, 2001. 19(1): p. 62-5.
63. Zhong, X.B., R. Reynolds, J.R. Kidd, K.K. Kidd, R. Jenison, R.A. Marlar, and D.C. Ward, Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11559-64.
64. Jenison, R., M. Rihanek, and B. Polisky, Use of a thin film biosensor for rapid visual detection of PCR products in a multiplex format. Biosens Bioelectron, 2001. 16(9-12): p. 757-63.
65. Qiao, Y.M., Y.C. Guo, X.E. Zhang, Y.F. Zhou, Z.P. Zhang, H.P. Wei, R.F. Yang, and D.B. Wang, Loop-mediated isothermal amplification for rapid detection of Bacillus anthracis spores. Biotechnol Lett, 2007.
66. Osawa, R., A. Yoshida, Y. Masakiyo, S. Nagashima, T. Ansai, H. Watari, T. Notomi, and T. Takehara, Rapid detection of Actinobacillus actinomycetemcomitans using a loop-mediated isothermal amplification method. Oral Microbiol Immunol, 2007. 22(4): p. 252-9.
67. Ikeda, S., K. Takabe, M. Inagaki, N. Funakoshi, and K. Suzuki, Detection of gene point mutation in paraffin sections using in situ loop-mediated isothermal amplification. Pathol Int, 2007. 57(9): p. 594-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41930-
dc.description.abstract著眼於後基因體時代的來臨,人類積極追求於基因體的功能研究,且在經歷SARS風暴之後,對於快速篩檢病原體,亦有著更為迫切的需求;生物晶片的發展於是刻不容緩。
本論文研究著手開發之「恆溫核酸增幅之光學檢測器」,為整合微型化工程製作技術與恆溫核酸增幅生物化學反應之基因檢測平台。在核酸增幅生化反應部份,採用loop-mediated amplification method (LAMP) 核酸增幅反應,針對B型肝炎病毒之聚合酶酵素基因設計引子,一小時內於單一溫度 (65℃) 下,快速連續增幅目標序列。在檢測系統部份,包含微反應晶片與控制、量測系統兩部份,前者為拋棄式設計,由聚甲基丙烯酸甲酯 (PMMA) 與蓋玻片組成,可提供核酸增幅反應之進行與量測所需之光通徑;後者由溫度控制器、加熱與光偵測系統組成,提供適當之反應與偵測環境,以量測核酸增幅反應之副產物-焦磷酸鎂所造成之混濁變化。實驗結果呈現,透過對引子設計理論之探究,所建立之HBV LAMP反應,具有良好之特異性與敏感性 (50 copies/25μl)。此外,採用化學合成方式模擬焦磷酸鎂沈澱,有效協助檢測系統之確效。爾後,建立了標準曲線 (R2 = 0.9605),以利進行定量分析,再以7個臨床血清檢體,進行先導性測試,取反應後30分鐘量測值為基準,區分病毒量是否超過10,000 copies/ml。
結果顯示透過整合新型之恆溫增幅核酸LAMP反應,可以在1小時內順利增幅HBV DNA。此微型化裝置結合LAMP反應,可在單一反應溫度下,高敏感度、高特異性地放大HBV DNA量;它也提供適當的反應條件與連續的光學偵測系統,不需使用螢光染劑,就可偵測因焦磷酸鎂形成而致的混濁度改變。故此恆溫增幅核酸之光學檢測器對於慢性B型肝炎的早期診斷與病程監控有很大的助益;它不僅可因此改善病人的預後,也可節省龐大的醫療費用。未來將朝向研發多通道、可攜帶式、不須標定、可即時監測的個人化醫療檢測儀器,能快速鑑別病原體並進行定量,亦更能貼近未來重點照護與個人化醫療的使用需求。
zh_TW
dc.description.abstractIn the post-genomic era, the field of genomics now faces the challenge of cataloging gene function. After prevalence of SARS, the demands of fast screening of pathogens grow dramatically. Therefore, it is urgent that develop the biochip for such requirement.
As a gene testing platform, the integrated isothermal device which is combined microfabricated technology and isothermal amplification. We adapt loop-mediated amplification method to amplify Hepatitis B Virus (HBV) polymerase gene under 65℃ within one hour. Our device can be partitioned into two components, one is the disposable micro-reactor chip (part A component) and the other one is the control and measurement system (part B component). To provide a reaction chamber with optical path, our design of the part A is made with polymethyl methacrylate (PMMA) and a cover glass slide. To create an appropriate condition for the LAMP reaction, part B includes an external temperature controller and an optical detection unit that yields real time output of by-product, magnesium pyrophosphate, turbidity signal. In results, we summarize the optimal rule of primer design for LAMP reaction and use LAMP reaction to amplify HBV DNA efficiently (in 60 minutes) with high specificity (12 different viral DNA and RNA) and sensitivity (50 copies/25μl). In addition, we adapt simulated reaction to mimic the precipitate of magnesium pyrophosphate. For quantitative analysis, the standard curve (R2 = 0.9605) is established and seven clinical serum specimens with different amounts of HBV DNA can be successfully detected by using this integrated isothermal device in 30 minutes with threshold level of 10,000 copies/ml.
We have successfully demonstrated the feasibility of the LAMP reaction for HBV DNA amplification and detection in this novel integrated isothermal device within one hour. The compact device can amplify HBV DNA with high specificity and efficiency under isothermal conditions by using LAMP reaction. It also provides appropriate reaction conditions and a steady optical detection system for detecting turbidity derived from magnesium pyrophosphate formation without fluorescence labeling. Thus, using this integrated isothermal device has great assistance for early diagnosing and monitoring the progress of chronic hepatitis B. It can improve the prognosis of patients and save medical expense enormously. In the future, we hope to provide a multi-channel, portable, label-free, real-time monitoring personalized medical device for rapid identification and quantification of pathogenic organisms and point-of-care applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:37:58Z (GMT). No. of bitstreams: 1
ntu-97-D92548007-1.pdf: 2055949 bytes, checksum: c398a84f342f762cd802f679d52e199c (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書…………………………………………………… i
致謝…………………………………………………………………… ii
中文摘要……………………………………………………………… iii
英文摘要……………………………………………………………… iv
第一章 緒論………………………………………………………… 1
1.1 生物科技的發展………………………………………………… 1
1.2 生物晶片………………………………………………………… 1
1.3 核酸增幅反應………………………………………………… 10
1.4 肝炎的成因與醫療支出……………………………………… 13
1.5 B型肝炎專論…………………………………………………… 15
1.6 研究動機與目的……………………………………………… 19
第二章 生化反應之設計、材料與方法…………………………… 20
2.1 B型肝炎病毒核酸之取得……………………………………… 20
2.2 製備B型肝炎病毒聚合酶部分基因片段之標準品…………… 20
2.3 基因選殖與標準品之製備…………………………………… 23
2.4 HBV LAMP反應之建立與特性瞭解…………………………… 29
2.5 模擬焦磷酸鎂之沈澱實驗…………………………………… 31
第三章 恆溫核酸增幅量測系統之設計、材料與方法………… 33
3.1 微反應晶片之設計、製作…………………………………… 33
3.2 量測系統之設計、組裝與製作……………………………… 33
3.3 恆溫核酸增幅量測系統之確效……………………………… 35
3.4 HBV LAMP反應於恆溫核酸增幅量測系統之檢測…………… 36
第四章 研究結果…………………………………………………… 37
4.1 HBV標準品之建立…………………………………………… 37
4.2 LAMP反應之引子設計………………………………………… 37
4.3 HBV LAMP反應之建立………………………………………… 39
4.4 確認核酸增幅產量與光密度檢測之相關性………………… 40
4.5 恆溫核酸增幅量測系統之建立與應用……………………… 40
第五章 討論與展望………………………………………………… 44
圖……………………………………………………………………… 49
表……………………………………………………………………… 74
參考文獻……………………………………………………………… 80
dc.language.isozh-TW
dc.subject微反應器zh_TW
dc.subject生物晶片zh_TW
dc.subject核酸增幅反應zh_TW
dc.subject恆溫聚合&#37238zh_TW
dc.subjectB型肝炎病毒zh_TW
dc.subjectLoop-mediated amplification methoden
dc.subjectMicroreactoren
dc.subjectHepatitis B virusen
dc.subjectBiochipen
dc.title微型化、恆溫增幅核酸之光學檢測器-應用於B型肝炎病毒核酸之快速偵測zh_TW
dc.titleCompact, Isothermal, Optical Diagnostic Device: For Rapid Detection of Hepatitis B Virus DNAen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.coadvisor李君男(Chun-Nan Lee)
dc.contributor.oralexamcommittee李世光(Chih-Kung Lee),賴信志(Hsin-Chih Lai),楊龍杰(Lung-Jieh Yang),林玉娟(Yuh-Jiuan Lin)
dc.subject.keyword生物晶片,微反應器,恆溫聚合&#37238,核酸增幅反應,B型肝炎病毒,zh_TW
dc.subject.keywordBiochip,Microreactor,Loop-mediated amplification method,Hepatitis B virus,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2008-11-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved