Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41925
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor卡艾瑋(Hervé Capart)
dc.contributor.authorYing-Chieh Linen
dc.contributor.author林英傑zh_TW
dc.date.accessioned2021-06-15T00:37:44Z-
dc.date.available2010-11-25
dc.date.copyright2008-11-25
dc.date.issued2008
dc.date.submitted2008-11-18
dc.identifier.citation[1.1] J. Mohd-Yusof, 1997. Combined Immersed-Boundary/B-Splines Methods for Simulations of Flow in Complex Geometries. CTR Annual Research Briefs. Center for Turbulence Research, NASA Ames/Stanford University.
[1.2] E.A. Fadlun, R. Verzicco, P. Orlandi and J. Mohd-Yusof, 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics 161, 35-60.
[1.3] C.W. Hirt, A.A. Amsden and J.L. Cook, 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics 14, 227-253.
[1.4] V.D. Kupradze, M.A. Aleksidze, 1964. The method of fundamental equations for the approximate solution of certain boundary value problem. USSR Computational Mathematics and Mathematical Physics 4, 82-126.
[1.5] A.J. Chorin, 1968. Numerical solution of the Navier-Stokes equations. Mathematics of Computation 22, 745-762.
[1.6] M.A. Golberg, 1995. The method of fundamental solutions for Poisson’s equations. Engineering Analysis with Boundary Elements 16, 205-213.
[2.1] G. Fairweather, A. Karageorghis, 1998. The method of fundamental solutions for elliptic value problems. Advances in Computational Mathematics 9, 69-95.
[2.2] M.A. Golberg, C.S. Chen, 1998. The method of fundamental solutions for potential, Helmholtz and diffusion problems, In Boundary Integral Methods: Numerical and Mathematical Aspects, M.A. Golberg (Ed.), Computational Mechanics Publications, Boston, 103-176.
[2.3] V.D. Kupradze, M.A. Aleksidze, 1964. The method of fundamental equations for the approximate solution of certain boundary value problem. USSR Computational Mathematics and Mathematical Physics 4(4), 82-126.
[2.4] R. Mathon, R.L. Johnston, 1977. The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM Journal on Numerical Analysis 14, 638-650.
[2.5] A. Bogomolny, 1985. Fundamental solutions method for elliptic boundary value problems. SIAM Journal on Numerical Analysis 22, 644-669.
[2.6] A. Karageorghis, 2001. The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation. Applied Mathematics Lettters 14, 837-842.
[2.7] A. Karageorghis, G. Fairweather, 1987. The mehod of fundamental solutions for the numerical solution of the biharmonic equation. Journal of Computational Physics 69, 434-459.
[2.8] D.L. Young, S.J. Jane, C.M. Fan, K. Murugesan and C.C. Tsai, 2006. The method of fundamental solutions for 2D and 3D Stokes problems. Journal of Computational Physics 211, 1-8.
[2.9] M.A. Golberg, 1995. The method of fundamental solutions for Poisson’s equations. Engineering Analysis with Boundary Elements 16, 205-213.
[2.10] M.A. Golberg, A.S. Muleshkov, C.S. Chen and A.H.-D. Cheng, 2002. Polynomial particular solutions for certain partial differential operators. Numerical Methods for Partial Differerential Equations 19, 112-133.
[2.11] D.L. Young, C.C. Tsai, K. Murugesan, C.M. Fan and C.W. Chen, 2004. Time-dependent fundamental solutions for homogeneous diffusion problems. Engineering Analysis with Boundary Elements 29, 1463-1473.
[2.12] D.L. Young, C.M. Fan, C.C. Tsai, C.W. Chen and K. Murugesan, 2006. Solution of advection-diffusion equation using the Eulerian-Lagrangian method of fundamental solutions. International Mathematical Forum 1, 687-706.
[2.13] D.L. Young, C.M. Fan, S.P. Hu and S.N. Atluri, 2008. The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations. Engineering Analysis with Boundary Elements 32, 395-412.
[2.14] C.C. Tsai, D.L. Young, C.M. Fan and C.W. Chen, 2006. MFS with time-dependent fundamental solutions for unsteady Stokes equations. Engineering Analysis with Boundary Elements 30, 897-908.
[2.15] D.L. Young, C.W. Chen and C.M. Fan, The method of fundamental solutions for low Reynolds number flows with moving rigid body. In the Proceedings of the MFS 2007 (Edited by C.S. Chen, A. Karageorphis and Y.S. Smyrlis), Tech Science Press, Forsyth, GA, USA, (in press).
[2.16] A.J. Chorin, 1968. Numerical solution of the Navier-Stokes equations. Mathematics of Computation 22, 745-762.
[2.17] R. Temam, 1968. Une méthode d ́approximation de la solution des équations de Navier-Stokes. Bulletin de la Société mathématique de France 98, 115-152.
[2.18] S.V. Patankar, D.B. Spalding, 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International journal of heat and mass transfer 15, 1787-1806.
[2.19] D. Goldberg, V. Ruas, 1999. A numerical study of projection algorithms in the finite element simulation of three-dimensional viscous incompressible flow. International Journal for Numerical Methods in Fluids 30, 233-256.
[2.20] D. Brown, R. Cortez and M. Minion, 2001. Accurate projection method for incompressible Navier-Stokes equations. Journal of Computational Physics 168, 464-499.
[2.21] W. Chang, F. Giraldo and B. Perot, 2002. Analysis of an exact fractional step method. Journal of Computational Physics 180, 183-199.
[2.22] J. Duchon, 1977. Splines minimizing rotation invariant seminorms in Sobolev spaces. In Constructive Theory of Functions of Several Variables, Berlin: Springer-Verlag, 85-110.
[2.23] M.A. Golberg, C.S. Chen, 1997. Discrete projection methods for integral equations. Southamption: Computational Mechanics Publication.
[2.24] O.R. Burggraf, 1966. Analytical and numerical studies of the structure of steady separated flow. Journal of Fluid Mechanics 24, 113-151.
[2.25] U. Ghia, K.N. Ghia and C.T. Shin, 1982. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 48, 387-411.
[2.26] B.N. Jiang, T.L. Lin and L.A. Provinelli, 1994. Large-scale computation of incompressible viscous flow by least-square finite element method. Computer Methods in Applied Mechanics and Engineering 114, 213-231.
[2.27] C.C. Tsai, Y.C. Lin, D.L. Young and S.N. Atluri, 2006. Investigations on the accuracy and condition number for the method of fundamental solutions. CMES: Computer Modeling in Engineering and Sciences 16, 103-114.
[3.1] J.R. Berger, A. Karageorghis, 1999. The method of fundamental solutions for heat conduction in layered material. International Journal for Numerical Methods in Engineering 45, 1681-1694.
[3.2] Y.C. Hon, T. Wei, 2004. A fundamental solution method for inverse heat conduction problem. Engineering Analysis with Boundary Elements 28, 489-495.
[3.3] A.J. Chorin, 1968 Numerical solution of the Navier-Stokes equations. Mathematics of Computation 22, 745-762.
[3.4] R. Temam, 1968. Une méthode d ́ approximation de la solution des équation de Navier-Stokes. Bulletin de la Société Mathématique de France 98, 115-152.
[3.5] P. Singh, L.G. Leal, 1996. Computational studies of the FENE dumbbell model with conformation-dependent friction in a corotating two-roll mill. Journal of non-Newtonian Fluid Mechanics 67, 137-178.
[3.6] S.C. Jana, G. Metcalfe and J.M. Ottino, 1994. Experimental and computational studies of mixing in complex Stokes flows: The vortex mixing flow and multicellular cavity flows. Journal of Fluid Mechanics 269, 199-246.
[3.7] H.A. Stone, 1994. Dynamics of drop deformation and breakup in viscous fluids, Annular Review of Fluid Mechanics 26, 64-102.
[3.8] M.A.H. Reyes, E. Geffroy, 2000. A corotating two-roll mill for studies of two-dimensional elongational flows with vorticity. Physics of Fluids 12, 2372-2376.
[3.9] T.J. Price, T. Mullin and J.J. Kobine, 2003. Numerical and experimental characterization of a family of two-roll-mill flows. Proceedings of the Royal Society of London A 459, 117-135.
[3.10] C.P. Hills, 2002. Flow patterns in a two-roll mill. The Quarterly Journal of Mechanics and Applied Mathematics 55, 273-296.
[3.11] D.L. Young, C.L. Chiu and C.M. Fan, 2007. A hybrid Cartesian/immersed- boundary finite-element method for simulating heat and flow patterns in a two-roll mill. Numerical Heat Transfer Part B-Fundamentals 51, 251-274.
[3.12] D. Goldberg, V. Ruas, 1999. A numerical study of projection algorithms in the finite element simulation of three-dimensional viscous incompressible flow. International Journal for Numerical Methods in Fluids 30, 233-256.
[3.13] A. Bogomolny, 1985. Fundamental solutions method for elliptic boundary value problems. SIAM Journal on Numerical Analysis 22, 644-669.
[3.14] C.C. Tsai, Y.C. Lin, D.L. Young and S.N. Atluri, 2006. Investigations on the accuracy and condition number for the method of fundamental solutions. CMES: Computer Modeling in Engineering and Sciences 16, 103-114.
[4.1] T. Ye, R. Mittal, H.S. Udaykumar and W. Shyy, 1999. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics 156, 209-240.
[4.2] H.S. Udaykumar, R. Mittal, P. Rampunggoon and A. Khanna, 2001. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. Journal of Computational Physics 174, 345-380.
[4.3] C.S. Peskin, 1972. Flow pattern around heart valves: A numerical method. Journal of Computational Physics 10, 252-271.
[4.4] C.S. Perskin, 1977. Numerical analysis of blood flow in the heart. Journal of Computational Physics 25, 220-252.
[4.5] D. Goldstein, R. Handler and L. Sirovich, 1993. Modeling a no-slip flow boundary with an external force field. Journal of Computational Physics 105, 354-366.
[4.6] E.M. Saiki and S. Biringen, 1996. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. Journal of Computational Physics 123, 450-465.
[4.7] J. Mohd-Yusof, 1997. Combined immersed-boundary/B-splines method for simulations of flow in complex geometries. CTR Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University.
[4.8] E.A. Fadlun, R. Verzicco, P. Orlandi and J.Mohd-Yusof, 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics 207, 35-60.
[4.9] A. Gilmanov and F. Sotiropoulos, 2005. A hybrid Cartesian/immersed boundary method for simulating flow with 3D, geometrically complex, moving boundary. Journal of Computational Physics 207, 457-492.
[4.10] S. Marella, S. Krishnan, H. Liu and H.S. Udaykumar, 2005. Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. Journal of Computational Physics 210, 1-31.
[4.11] R. Verzicco, J. Mohd-Yusof, P. Orlandi and D. Haworth, 2000. Large-eddy simulation in complex geometric configurations using body forces. AIAA Journal 38, 427-433.
[4.12] J. Yang and E. Balaras, 2006. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. Journal of Computational Physics 215, 12-40.
[4.13] R. Verzicco, G. Iaccarino, M. Fatica and P. Orlandi, 2000. Flow in an impeller stirred tank using immersed boundary method. CTR Annual Research Briefs, NASA Ames/Stanford University.
[4.14] H.C. Hsu and H. Capart, 2007. Enhanced upswing in immersed collisions of tethered spheres. Physics of Fluids 19, 101701.
[4.15] B.N. Jiang, T.L. Lin and L.A. Provinelli, 1994. Large-scale computation of incompressible viscous flow by least-square finite element method. Computer Methods in Applied Mechanics and Engineering 114, 213-231.
[4.16] D.L. Young, C.L. Chiu and C.M. Fan, 2007. A hybrid Cartesian/immersed- boundary finite-element method for simulating heat and flow patterns in a two-roll mill. Numerical Heat Transfer Part B-Fundamentals 51, 251-274.
[4.17] A.J. Chorin, 1968 Numerical solution of the Navier-Stokes equations. Mathematics of Computation 22, 745-762.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41925-
dc.description.abstract本論文主旨在於利用無網格數值方法以及沉浸邊界法來發展一套數值模式,並用來模擬研究複雜幾何以及移動邊界問題。通常這類型的模式必須具備著能夠有效地處理複雜幾何以及移動邊界的能力。首先在我們計算核心之中,我們提出一套無網格數值模式結合運算子拆解法來求解原始變數型態的奈維爾-史托克斯方程式,此無網格數值模式是結合尤拉-拉格朗日基本解法以及特解法所組成。接著將此模式應用在熱傳導以及移動物體問題上,藉此來驗證此模式的正確性和可靠性,同時在數值處理過程之中我們並不需要引用特殊的處理技巧來針對複雜幾何以及移動邊界。相對於無網格數值模式,最後本論文提出了另外一套數值模式用來準確的模擬移動邊界問題,此模式是利用有限差分法結合一套混合卡式沉浸邊界模式,而此模式的可靠性以及適用性可以經由一連串的數值實驗加以驗證,因此所提出的有限差分法結合混合卡式沉浸邊界模式在處理移動邊界問題上,可以視為一種有效率之數值方法。zh_TW
dc.description.abstractIn this dissertation, the major concern is developing the numerical models based on the meshless method and immersed boundary techniques to apply to the irregular geometry and moving obstacles. The developed model must be able to handle the complex geometry and moving boundary in an efficient procedure. In the core of the numerical simulations, first of all, a novel meshless procedure based on the Eulerian-Lagrangian method of fundamental solutions (ELMFS) and method of particular solutions (MPS) is presented for solving the primitive variable form of the Navier-Stokes equations by using operator splitting scheme. Then, the two-roll mill flow and closed cavity flow around a harmonic oscillating cylinder at moderate Reynolds number (Re=100~400 ) are solved to demonstrate the accuracy and the robustness of this meshless procedure. During the solution procedure, there are no any unusual techniques or restrictions need to be considered in order to deal with the irregular geometry and moving boundary. Finally, in contrast with the meshless procedure, the finite-difference method (FDM) with hybrid Cartesian/immersed- boundary (HCIB) technique is proposed as another solution to provide the accurate predictions for moving boundary problem. The flexibility and robustness of the proposed HCIB FDM are examined by 3D driven cavity flow with a stationary sphere and the flow fields due to motions and collisions of immersed spheres at high Reynolds number (Re>10,000 ), which demonstrate that the HCIB FDM can be considered as an efficient numerical method in solving the moving boundary problem.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:37:44Z (GMT). No. of bitstreams: 1
ntu-97-D93521010-1.pdf: 11520407 bytes, checksum: 0ae5ae10bb5f5e9407513fb2092246f4 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of Contents
摘要 I
Abstract II
Table of Contents III
Figure List V

Chapter 1. Introduction
1.1 Moving boundary simulation 2
1.2 Method of fundamental solutions 3
1.3 Content of this thesis 4
References 5
Chapter 2. The Method of Fundamental Solutions for Solving Incompressible Navier-Stokes Problems
2.1 Introduction 8
2.2 Mathematical model 12
2.3 Meshless numerical modeling 16
2.4 Numerical results 23
2.5 Conclusions 28
References 29
Chapter 3. The Method of Fundamental Solutions for Irregular Geometry and Moving Boundary Problems
3.1 Introduction 48
3.2 Governing equations and operator-splitting formulations 50
3.3 Numerical experiments 52
3.4 Conclusions 58
References 59
Chapter 4. A Hybrid Cartesian/Immersed-Boundary Finite-Difference Method for Incompressible Viscous Flow and Moving Boundary Problems
4.1 Introduction 80
4.2 Numerical method 84
4.3 Numerical validations 88
4.4 Application for flow fields due to motions and collisions of immersed spheres 91
4.5 Conclusions 97
References 99
Chapter 5. Conclusions and Suggestions for Future Works
5.1 Conclusions 124
5.2 Scope for further research 127
dc.language.isoen
dc.subject有線差分法zh_TW
dc.subject沉浸邊界zh_TW
dc.subject尤拉-拉格朗日基本解法zh_TW
dc.subject特解法zh_TW
dc.subject奈維爾-史托克斯方程式zh_TW
dc.subjectEulerian-Lagrangian method of fundamental solutionsen
dc.subjectimmersed boundaryen
dc.subjectfinite-difference methoden
dc.subjectNavier-Stokes equationsen
dc.subjectmethod of particular solutionsen
dc.title高雷諾數奈維爾-史托克斯計算於靜止與加速物體流場之應用zh_TW
dc.titleNavier-Stokes Computations for High Reynolds Number Flows with Immersed Stationary and Accelerating Bodiesen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.coadvisor楊德良(Der-Liang Young)
dc.contributor.oralexamcommittee許泰文,陳正宗,廖清標,陳俊杉
dc.subject.keyword沉浸邊界,尤拉-拉格朗日基本解法,特解法,奈維爾-史托克斯方程式,有線差分法,zh_TW
dc.subject.keywordimmersed boundary,Eulerian-Lagrangian method of fundamental solutions,method of particular solutions,Navier-Stokes equations,finite-difference method,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2008-11-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
11.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved