請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41898完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | Ling-Yi cheng | en |
| dc.contributor.author | 鄭令宜 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:36:25Z | - |
| dc.date.available | 2013-09-01 | |
| dc.date.copyright | 2011-09-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-15 | |
| dc.identifier.citation | 1. Patrick CW, Jr. Tissue engineering strategies for adipose tissue repair. Anat Rec 2001; 263(4): 361-366.
2. Tanzi MC, Fare S. Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices 2009; 6(5): 533-551. 3. Langer R, Vacanti JP. Tissue engineering. Science 1993 May 14; 260(5110): 920-926. 4. Bauer-Kreisel P, Goepferich A, Blunk T. Cell-delivery therapeutics for adipose tissue regeneration. Adv Drug Deliv Rev 2010; 62(7-8): 798-813. 5. Gomillion CT, Burg KJ. Stem cells and adipose tissue engineering. Biomaterials 2006; 27(36): 6052-6063. 6. Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, et al. Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B Rev 2010; 16(4): 413-426. 7. Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr 2000; 130(12): 3122S-3126S. 8. Kang JH, Gimble JM, Kaplan DL. In vitro 3D model for human vascularized adipose tissue. Tissue Eng Part A 2009; 15(8): 2227-2236. 9. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998; 78(3): 783-809. 10. Green H KO. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J Cell Physio; 1101: 169-171. 11. Chung HJ, Kim IK, Kim TG, Park TG. Highly open porous biodegradable microcarriers: in vitro cultivation of chondrocytes for injectable delivery. Tissue Eng Part A; 14(5): 607-615. 12. Chung HJ, Park TG. Injectable cellular aggregates prepared from biodegradable porous microspheres for adipose tissue engineering. Tissue Eng Part A 2009; 15(6): 1391-1400. 13. Patrick CW, Jr., Zheng B, Johnston C, Reece GP. Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng 2002; 8(2): 283-293. 14. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials 2003; 24(3): 401-416. 15. Numata K, Kaplan DL. Silk-based delivery systems of bioactive molecules. Adv Drug Deliv Rev 2010; 62(15): 1497-1508. 16. Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 2007; 28(35): 5280-5290. 17. Marra KG, Defail AJ, Clavijo-Alvarez JA, Badylak SF, Taieb A, Schipper B, et al. FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg 2008; 121(4): 1153-1164. 18. Tsuji W, Inamoto T, Yamashiro H, Ueno T, Kato H, Kimura Y, et al. Adipogenesis induced by human adipose tissue-derived stem cells. Tissue Eng Part A 2009; 15(1): 83-93. 19. Cho SW, Kim I, Kim SH, Rhie JW, Choi CY, Kim BS. Enhancement of adipose tissue formation by implantation of adipogenic-differentiated preadipocytes. Biochem Biophys Res Commun 2006; 345(2): 588-594. 20. Kimura Y, Ozeki M, Inamoto T, Tabata Y. Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials 2003; 24(14): 2513-2521. 21. Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol 2006; 24(7): 299-304. 22. McGinity JW, O'Donnell PB. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 1997; 28(1): 25-42. 23. Breslauer DN, Muller SJ, Lee LP. Generation of monodisperse silk microspheres prepared with microfluidics. Biomacromolecules 2010; 11(3): 643-647. 24. Edlund U AA. Degradable polymer microspheres for controlled frug delivery. Advances in Polymer Science 2002; 157: 68-112. 25. Young S WM, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J of Controlled Release 2005; 109: 256-274. 26. Ikada Y, Tabata Y. Protein release from gelatin matrices. Adv Drug Deliv Rev 1998; 31(3): 287-301. 27. Vashi AV, Abberton KM, Thomas GP, Morrison WA, O'Connor AJ, Cooper-White JJ, et al. Adipose tissue engineering based on the controlled release of fibroblast growth factor-2 in a collagen matrix. Tissue Eng 2006; 12(11): 3035-3043. 28. Wang X, Hu X, Daley A, Rabotyagova O, Cebe P, Kaplan DL. Nanolayer biomaterial coatings of silk fibroin for controlled release. J Control Release 2007; 121(3): 190-199. 29. Wenk E, Murphy AR, Kaplan DL, Meinel L, Merkle HP, Uebersax L. The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials 2010; 31(6): 1403-1413. 30. Kaplan DL KM. Protein-Based materials. Birkhäuser 1996: 103-124. 31. Kim ED, Bayaraa T, Shin EJ, Hyun CK. Fibroin-derived peptides stimulate glucose transport in normal and insulin-resistant 3T3-L1 adipocytes. Biol Pharm Bull 2009; 32(3): 427-433. 32. Gao J, Bai J, Man Q, Liu G. Mechanism of silk hydrates on modulating the blood glucose metabolism in rats with experimental diabetes. Wei Sheng Yan Jiu 2000; 29(6): 379-382. 33. Hyun CK, Kim IY, Frost SC. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J Nutr 2004; 134(12): 3257-3263. 34. Huang G, Li G, Chen H, He Y, Yao Q, Chen K. Proteomic analysis of 3T3-L1 preadipocytes having a higher cell proliferation rate after treatment with low-molecular-weight silk fibroin peptides. Cell Prolif 2010; 43(5): 515-527. 35. Hino T, Tanimoto M, Shimabayashi S. Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere. J Colloid Interface Sci 2003; 266(1): 68-73. 36. Wang X, Wenk E, Matsumoto A, Meinel L, Li C, Kaplan DL. Silk microspheres for encapsulation and controlled release. J Control Release 2007; 117(3): 360-370. 37. Wang X, Yucel T, Lu Q, Hu X, Kaplan DL. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 2010; 31(6): 1025-1035. 38. Wenk E, Wandrey AJ, Merkle HP, Meinel L. Silk fibroin spheres as a platform for controlled drug delivery. J Control Release 2008; 132(1): 26-34. 39. Thanonchat Imsombut YS, Prasong Srihanam, Yodthong Baimark. Genipin-cross-linked silk fibroin microspheres prepared by the simple water-in-oil emulsion solvent diffusion method. Powder Technology 2010; 203: 603-608. 40. Wu IC, Huang YY. Application of Two-Step Drug Release System in adipose Tissue Engineering. National Taiwan University Master Thesis 2009. 41. Kazushi Yamada YT, Akira Itaya. AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures Thin Solid Films 2003; 440: 208-216. 42. Chirgadze YN SB, Venyaminov SY. Intensities and other spectral parameters of infrared amide bands of polypeptides in the beta- and random form. Biopolymers 1973; 12(6): 1337-1351. 43. 劉秉勳, 丁詩同. 豬脂肪前身細胞與脂肪細胞的初代培養. 脂肪細胞學研究技術專輯 2003; 32-38. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41898 | - |
| dc.description.abstract | 外傷、腫瘤移除或先天性缺陷所造成的軟組織缺陷,是起因於皮下脂肪組織的喪失,而脂肪組織工程現今面臨的重要課題為無法持久的維持移植後的脂肪體積,因此結合細胞、支架、生長因子組織工程三大要素於脂肪組織工程重建極為重要。脂肪前驅細胞(preadipocyte)為最常被應用於組織工程的細胞,因為當細胞分化為脂肪細胞後就將不會再增生,所以欲得到大量的成熟脂肪細胞,必需在脂肪前驅細胞階段促使增生。
脂肪再生需長時間的支架支撐,因此我們選用FDA認可的生醫材料:蠶絲蛋白(silk fibroin) ,其具有長期降解性的特色,並可用於長時間維持脂肪組織結構形成,利用組織工程之概念,並結合脂肪前驅細胞及適當的生長因子,將有助於脂肪組織的重建。此外,為了減少手術植入支架所造成的傷害,我們製備蠶絲蛋白微球體,以利於使用注射進注入體內,成為可注射式支架。我們使用W/O方式製備蠶絲微球體,水相為蠶絲蛋白水溶液,油相為油酸和甲醇混合液,並調控不同製備溫度和蠶絲水溶液濃度製備,來選擇最好的微球體條件,我們發現在25℃、8%蠶絲蛋白水溶液製備有最好的微球體外觀,因此我們選用此條件製備的微球體作為可注射式細胞支架。 生長因子bFGF已被廣泛應用於脂肪重建,因此我們選用bFGF吸附於我們製備成功的蠶絲微球體,並證實具有藥物釋放的效果,且發現控制bFGF釋放具有良好促使脂肪前驅細胞增生的能力;若與吸附bFGF明膠微球體比較,可發現吸附bFGF蠶絲微球體於後期有較好的脂肪前驅細胞增生能力。另外,在實驗過程中,我們也發現不含bFGF蠶絲微球體可能具有促使脂肪前驅細胞增生的功能。而動物實驗中,證實吸附bFGF微球體在活體內具有使脂肪再生的能力。 總結,我們成功製備長時間降解性蠶絲微球體,並於微球體上控制bFGF釋放促使脂肪前驅細胞增生,將此架構應用於軟組織再生具有其發展潛力存在。 | zh_TW |
| dc.description.abstract | The soft tissue defect caused by trauma, tumor removal, and congenital deformations that resulting from losing subcutaneous adipose tissue. Current challenge of adipose tissue engineering failed to maintain volume of adipose tissue after transplantation. Therefore, adipose regeneration requires combination of cells, scaffold, and growth factors. Most commonly used cells for tissue engineering are precursor cells, preadipocytes. While preadipocytes differentiate, cells are not capable of proliferation. For this reason, it is important to proliferate preadipocyte before differentiation.
Because adipose regeneration requires long time support by scaffold for cell growth, we choose the material approving by FDA and is long-term biodegradation. It can use to maintain the formation of adipose tissue. The addition of combination with appreciate growth factor can promote adipogenesis. Moreover, we manufactured injectable silk microspheres as scaffold of transplantation for reducing damage from surgical operation. We prepared microspheres by water in oil method. Water phase is silk fibroin solution, and oil phase is the mix solution of oleic acid and methanol. We changed the temperature and the concentration of silk solution to prepare microspheres. The result showed that the condition of 25℃ and 8% silk solution for preparing had the better appearance of microspheres. Therefore, we used these microspheres as injectable scaffold for cells. Because bFGF commonly used to regenerate adipose tissue, we had chosen it absorbing on silk microspheres. The silk microspheres with bFGF can achieve controlled release and it had the proliferated ability of preadipocyte. The results that compare with gelatin microspheres with bFGF showed higher proliferation in the late period. It might cause by the delay of drug release in silk microspheres. Particularly, the silk microspheres without bFGF might promote preadipocyte proliferation. In animal study, it proved that microspheres with bFGF can promote adipose regeneration. In conclusion, we had accomplished manufacture of silk microspheres for a long-term degradation and controlled release bFGF upon silk microspheres. Application of the conception in soft tissue regeneration has the potential of development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:36:25Z (GMT). No. of bitstreams: 1 ntu-100-R98548050-1.pdf: 3095693 bytes, checksum: 5954a17322636b5b0a81ecf3e6729796 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 軟組織缺陷與脂肪組織 3 1.2 脂肪組織工程 3 1.2.1 細胞 4 1.2.1.1 3T3-L1 5 1.2.2 支架 6 1.2.3 生長因子 7 1.2.3.1鹼性纖維細胞生長素 8 1.3 細胞載體 8 1.4 乳化法 9 1.5 藥物釋放與在組織工程上的應用 11 1.6 膠原蛋白 12 1.7 蠶絲蛋白 14 1.7.1組成成份與特性 14 1.7.2 研究發展現況 16 第二章 研究動機與目的 18 第三章 實驗材料與方法 20 3.1 實驗藥品 20 3.2 實驗儀器 22 3.3 蠶絲蛋白水溶液製備 23 3.4 以不同濃度製備蠶絲蛋白微球體 24 3.5 以不同溫度製備蠶絲蛋白微球體 24 3.6 掃描式電子顯微鏡觀測 25 3.7 傅立葉轉換紅外線光譜儀 25 3.8 細胞活性測試 26 3.9 脂肪前驅細胞初代培養 28 3.10 界面電位測量儀 33 3.11 利用電子顯微鏡觀察細胞於蠶絲微球體貼附 33 3.12 利用Hochest 33342 染色細胞核觀察細胞於蠶絲微球體貼附 34 3.13 微球體吸附bFGF反應時間與吸附量之關係 35 3.14 蠶絲蛋白微球體吸附bFGF 35 3.15 bFGF於蠶絲微球體之藥物釋放 36 3.16 bFGF 酵素免疫微量定量分析法 ELISA test 37 3.17 蠶絲蛋白微球體吸附bFGF對脂肪前驅細胞活性之影響 38 3.18 觀察吸附bFGF蠶絲蛋白微球體對脂肪前驅細胞的生長 40 3.19 蠶絲微球體對細胞生長之影響 40 3.20 製備明膠微球體 41 3.21 蠶絲微球體與明膠微球體吸附bFGF對脂肪前驅細胞生長之比較 42 3.22 動物實驗 42 3.23 統計分析 44 第四章 研究結果與討論 45 4.1 不同溫度製備蠶絲蛋白微球體 45 4.1.1 以不同濃度蠶絲蛋白水溶液製備 45 4.1.2 以不同溫度製備 48 4.2 蠶絲蛋白微球體製備後對傅立葉轉換紅外線光譜儀之變化 51 4.3 細胞活性測試 52 4.4 表面電位 53 4.5 脂肪前驅細胞培養於微球體上之觀察 54 4.6 微球體吸附bFGF反應時間與吸附量之關係 56 4.7 bFGF於蠶絲微球體之藥物釋放 57 4.8 bFGF蠶絲微球體對脂肪前驅細胞生長情況 59 4.9 蠶絲微球體對細胞生長之影響 63 4.10 蠶絲微球體與明膠微球體吸附bFGF對脂肪前驅細胞生長之比較 64 4.11動物實驗 66 4.11.1 分化與未分化脂肪前驅細胞對細胞生長影響 66 4.11.2 組織切片染色 67 第五章 結論 70 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | microspheres | en |
| dc.subject | silk fibroin | en |
| dc.subject | soft tissue defects | en |
| dc.subject | adipose tissue engineering | en |
| dc.subject | basic fibroblast growth factor | en |
| dc.title | 蠶絲蛋白微球體吸附生長因子於脂肪組織工程上的應用 | zh_TW |
| dc.title | Application of Silkworm Silk Fibroin Microspheres adsorbing Growth Factor in Adipose Tissue Engineering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾次文,劉得任,許馨云,黃意真 | |
| dc.subject.keyword | 軟組織缺陷,脂肪組織工程,蠶絲蛋白,微球體,鹼性纖維母細胞生長素, | zh_TW |
| dc.subject.keyword | soft tissue defects,adipose tissue engineering,silk fibroin,microspheres,basic fibroblast growth factor, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
