Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41872Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 賴飛羆 | |
| dc.contributor.author | Yi-Shen Hsieh | en |
| dc.contributor.author | 謝乙伸 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:35:17Z | - |
| dc.date.available | 2009-01-20 | |
| dc.date.copyright | 2009-01-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-01-05 | |
| dc.identifier.citation | [1] T.-B. Pei and C. Zukowski, “Putting routing tables in silicon,” IEEE Network Mag., vol. 6, Jan, 1992.
[2] L. Chisvin and R. J. Duckworth, “Content-addressable and associative memory: Alternatives to the ubiquitous RAM,” IEEE Computer, vol. 22, July 1989. [3] T.-B. Pei and C. Zukowski, “VLSI implementation of routing tables; tries and CAMs,; in Proc. IEEE INFOCOM, vol. 2, 1991. [4] “Putting routing tables in silicon,” IEEE network Mag., vol. 6, no.1, Jan. 1992. [5] A. J. McAuley and P. Francis, “Fast routing table lookup using CAMs,” in Proc. IEEE IFOCOM, vol. 3, 1993. [6] N.-F. Huang, W.-E. Chen, J.-Y Luo and J.-M Chen, “Design of multi-field IPv6 packet classifiers using terary CAMs,” in Proc. IEEE GLOBECOM, vol. 3, 2001. [7] G. Qin, S. Ata, I. Oka, and C. Fujiwara, “Effective bit selection methods for improving performance of packet classifications on IP routers,” in Proc. IEEE GLOBECOMM, vol. 2, 2002. [8] H. J. Chao, “Next generation routers,” Proc. IEEE, vol. 90, no. 9, Sep. 2002. [9] Kostas Pagiamtzis, and Ali Sheikholesami, “Content-Addressable Memory (CAM) Circuits and Architectures; A Tutorial and Survey,” IEEE JSSC, vol. 41, no. 3, Mar. 2006. [10] H. Kadota et al., “An 8-kbit content-addressable and reetrat memory,” IEEE JSSC, vol. SC-20, no. 5, Oct. 1985. [11] Bart Van Zeghbroeck, “Principes of Semiconductor Devices,” http://ece-www.colorado.edu/~bart/book/book/append/quickhtm,2006-bart@colorado.edu. [12] Hsiang-Huang Wu; Jin-Fu Li; Chi-Feng Wu; Cheng-Wen Wu, “CAMEL: An Efficient Fault Simulator with Coupling Fault Simulation Enhancement for CAMs,” IEEE Asian Test Symposium, vol.27, 2007. [13] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw Hill Higher Education, 2003. [14] Simon M. Sze, “Physics of Semiconductor Devices,” Prentice Hall, first edition, 1990. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41872 | - |
| dc.description.abstract | 低功率超大型積體電路是現在最重要的課題之一;在晶片實作上,因為製程的演進使得晶片面積越來越小以及技術的增進使得操作頻率越來越高且電晶體數量越來越多,因此在單位面積上的熱與功率消耗就越來越高,直接影響晶片的效能,因此設計技術的演進越來越朝低功率前進。
內容定址記憶體主要是應用在晶片網路架構上,像是交換器、路由器及網路介面等等硬體;因此對內容定址記憶體的改良便是在網路設備的效能上有最直接的影響。一直以來,內容定址記憶體的改進從NAND-Type CAM這種省電但耗時的架構以及NOR-Type CAM這種省時但耗電的架構一直在做架構演進,使其能兼具兩者優點。 在本論文中,我們提出了一個藉由匹配與不匹配之間的寄生電容差異所導致對固定的脈衝放電產生不同電壓差異的技術來設計出一個低擺幅(low swing)的反或邏輯閘型態的內容定址記憶體。根據實驗結果,可以將功率消耗節省約88%以及所需延遲減少78%。 | zh_TW |
| dc.description.abstract | The design of the low power VLSI is one of the most important issue; in chip design, because the development of the process causes smaller and smaller chip area and the development of the technology makes higher and higher frequency and the huge increase of the number of transistors. Therefore, the unit area of the chip produces high power consumption and heat, and the heat directly affects the performance. Therefore, the development of the design technology goes on low power technology.
Content Addressable Memories (CAM) is mainly applied in network architecture hardware on chip such as switch, router and network interface; therefore, the improvement of CAMs directly affects the performance of the network application. In the history of CAMs, the improvement of CAMs begins from the NAND-Type CAM which has the characteristic of saving power but spending much time and the NOR-Type CAM which has the characteristic of saving time but spending much power, and the new architecture is traded off from these two architectures to save power and time. In this master thesis, we design a low swing NOR-Type CAM by the pulse discharge technology. The approach is to produce different voltage drop by different capacitances through charge sharing characteristic in the condition of providing the same discharge at calculation state. According to the simulation result, we save 88% power consumption and 78% delay. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:35:17Z (GMT). No. of bitstreams: 1 ntu-98-R93943101-1.pdf: 1031511 bytes, checksum: c365e9b8bc3514bebcf9cf5733e94264 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝…………………………………………………………………………………II
中文摘要……………………………………………………………………………III Abstract……………………………………………………………………………..IV Contents……………………………………………………………………………..VI List of Figures……………………………………………………….……………VIII List of Tables…………………………………………………………………………X Chapter 1. Introduction………………………………………..……..……………1 1.1. Development………………………………………………..……...……..1 1.2. About The CMOS…….………………………………………..…..……..2 1.3. MOS Device Capacitances……………………………………..…..……3 1.4. MOSFET Circuits and Technology....….………………………..….……5 1.5. Power Consumption of CMOS Circuit……………….…………...……..7 1.5.1. Static Power Consumption……………………….………..….…..7 1.5.2. Dynamic Power Consumption………….…………………...…...11 Chapter 2. Background……………………………………………….………......13 2.1. Application of CAM…………...……..……………………...…..……..13 2.2. Content Addressable Memory (CAM)…………………..……..…...….14 2.2.1. XNOR-Cell…………………….…………………………..…...15 2.2.2. XOR-Cell…………….……………………………………..…..16 2.3. Matchline Sensing...………………………………………………..….17 2.3.1. Power Consumption…………………………………………….17 2.3.2. Matchline Delay………………………………………………..18 2.3.3. Charge Sharing……………………………………………...….19 2.4. The Basic Structure of CAM……………………………………..……20 2.4.1 NOR-Type....……………………………………………………21 2.4.2. NAND-Type……………………………………………....……22 Chapter 3. Proposed CAM………………………………………………...…….25 3.1 A typical CAM Architecture…………………………………………………25 3.2 Basic Precharge NOR-Type CAM……………………………..……....26 3.3. Pulse-Discharge NOR-Type CAM…………………………..…………28 3.3.1. The XNOR-Type CAM Cell……………………………………28 3.3.2. The Pulse Discharge NOR-Type CAM…………………………29 3.3.3. The Special Level Inverter……………………………………...31 3.4. The Detail Circuit Operation………………………………...…………32 3.4.1 Match Condition………………………………………..………..32 3.4.2 Mismatch Condition……………………………………………..34 3.5 Circuit Theorems………………………………………………………..36 3.5.1. The Equation of VML……………………………………………37 3.5.2. Match Condition………………………………………………..38 3.5.3. Mismatch Condition……………………………………………38 3.5.4. The Range of The Pulse Time………………………………………39 Chapter 4 Simulation Results……………………………………………………41 4.1. ML in Match and Mismatch Condition………………………………..41 4.2. The Simulation Result of Output………………………………………42 4.3. The Delay of Conventional and Proposed Architectures………………42 4.4. The Simulation Result of Inverters…………………………………….44 4.5. Comparable Table………………………………………………………46 Chapter 5. Conclusion…………………………………………………………….49 Bibliography………………………………………………………………………50 | |
| dc.language.iso | en | |
| dc.subject | 低擺幅 | zh_TW |
| dc.subject | 內容定址記憶體 | zh_TW |
| dc.subject | 匹配線 | zh_TW |
| dc.subject | 低功率 | zh_TW |
| dc.subject | Low Power | en |
| dc.subject | Content Addressable Memory | en |
| dc.subject | Low Swing | en |
| dc.subject | Match Line | en |
| dc.title | 以脈衝放電方式之反或邏輯閘型態內容定址記憶體 | zh_TW |
| dc.title | Nor-Type Content Addressable Memories Based on Pulse Discharge | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李鴻璋,許孟超 | |
| dc.subject.keyword | 內容定址記憶體,匹配線,低功率,低擺幅, | zh_TW |
| dc.subject.keyword | Content Addressable Memory,Match Line,Low Power,Low Swing, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-01-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| Appears in Collections: | 電機工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-98-1.pdf Restricted Access | 1.01 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
