Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許大山(Da-Shan Shiu)
dc.contributor.authorMeng-Lin Wuen
dc.contributor.author吳孟霖zh_TW
dc.date.accessioned2021-06-15T00:34:25Z-
dc.date.available2011-01-20
dc.date.copyright2009-01-20
dc.date.issued2009
dc.date.submitted2009-01-07
dc.identifier.citation[1] Mustafa Erozn, Feng-Wen Sun and Lin-Nan Lee, 'DVB-S2 low density parity check codes with near Shannon limit performance,' Int. J. Satell. Commun. Network., 22:269V279 2004.
[2] R. G. Gallager, 'Low-density parity-check codes,' IRE Trans. Inform. Theory, vol. IT-8, pp. 21-28, Jan. 1962.
[3] D.J.C. Mackay and R.M. Neal, 'Near Shannon limit performance of low density parity check codes,' Electronics Letters, 32(18):1645-1646, Aug. 1996.
[4] D. J. C. MacKay and R. M. Neal, 'Good codes based on very sparse matrices,' Cryptography and Coding, 5th IMA Conference, in Lecture Notes in Computer Science, C. Boyd, Ed., vol. 1025, pp. 100V111, 1995.
[5] T. J. Richardson, A. Shokrollahi, and R. Urbamke, 'Design of capacity-approaching irregular low-density parity check codes,' IEEE Trans. Inform. Theory, vol. 47, pp.619- 637, Feb. 2001.
[6] Gadi Miller and David Burshtein, 'Bounds on the Maximum-Likelihood Decoding Error Probability of Low-Density Parity-Check Codes,' IEEE Trans. Inform. Theory, vol. 47, no. 7, Nov. 2001.
[7] M. Luby, M. Mitzenmacher, A. Shokrollahi and D. Spielman, 'Analysis of low density codes and improved designs using irregular graphs,' Proc. 30th Annu.
ACM Symp. Theory of Computing, pp.249-258, 1998.
[8] K. Shih and D. Shiu, 'Perturbed Decoding Algorithm for Concatenated Error Correcting and Detecting Codes System,' 17th IEEE Intl. Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'06), Sept. 2006.
[9] T. Hsueh and D. Shiu, 'Theory and Performance of ML Decoding for Turbo Codes using Genetic Algorithm,' 18th IEEE International Symposium on Information Theory, June 2007.
[10] K. Chen and D.Shiu, 'Theory and Performance of ML Decoding for Turbo Codes Using Ant Colony Optimization,' 2008.
[11] Shu Lin and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and applications, Second Edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2004.
[12] R. M. Tanner, 'A recursive approach to low complexity codes,' IEEE Trans., Information Theory, pp. 533-547, Sept. 1981.
[13] D. Mackay, 'Good error correcting codes based on very sparse matrices,'IEEE Trans. Information Theory, pp.399-431, March 1999.
[14] Krishna R. Narayanan, Gordon L. Stuber, 'List Decoding of Turbo Codes ,' IEEE Transactions on Comunications. vol. 56, no.6, June 1998.
[15] Carl Fredrik Leanderson and Carl-Erik W. Sundberg, 'The Max-Log List Algorithm (MLLA)XA List-Sequence Decoding Algorithm That Provides Soft-Symbol Output,' IEEE Transactions on Comunications. vol. 53, no.3, March 2005.
[16] Carl Fredrik Leanderson and Carl-Erik W. Sundberg, 'On List Sequence Turbo Decoding,' IEEE Transactions on Comunications. vol. 53, no.5, May 2005.
[17] J. S. Sadowsky, 'A Maximum Likelihood Decoding Algorithm for Turbo Codes,' in Proc. IEEE Global Telecommun. Conf., vol. 2, Dallas, TX, Nov 1997.
[18] H. Holland, 'Adaptation in Natural and Arti cial Systems,' Ann Arbor, The University of Michigan Press, 1975.
[19] D.E. Goldberg, 'Genetic Algorithms in Search, Optimization, and Machine Learning,' Addision Wesley Publishing Company, 1989.
[20] S. W. Mahfoud, 'Niching Methods for Genetic Algorithms,' PhD thesis, University of Illinois, Urbana, Illinois, 1995.
[21] Heinz Muhlenbein, 'Evolution in Time and Space - The Parallel Genetic Algorithm,' Foundations of Genetic Algorithms, G. Rawlins, ed. Morgan-Kaufmann. pp 316-337.
[22] C. E. Shannon, 'Probability of error for optimal codes in a Gaussian channel,' Bell. Syst. Tech. J., vol. 38, pp. 611-656, May 1959.
[23] S. J. MacMullan and O. M. Collins, 'A Comparison of Known Codes, Random Codes, and the Best Codes,' IEEE Trans. Inform. Theory. vol. 44, no.7, pp. 3009-3022, Nov. 1998.
[24] D. Owen, 'A survey of properties and applications of the concentral t-distribution,' Technometrics, vol. 10, pp. 445-478, 1968.
[25] N. Johnson and B. Welch, 'Applications of the nonconcentral t-distribution,' Biometrika, vol. 31, p. 362, 1939.
[26] N. Seshadri and C-E. W. Sundberg, 'List Viterbi Decoding Algorithms with Applications,' IEEE Trans. Commun., 42, no. 2/3/4 Feb./Mar./Apr. 1994.
[27] H. Chen, 'The random gift channel and its applications,' preliminary work, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41852-
dc.description.abstract低密度奇偶校驗碼近幾年來吸引廣大研究者的關注,許多人先後投入這個領域,其中,最主要的原因在於優越的解碼能力。傳統的解碼器主要運用訊息傳遞的原理,藉由眾人的力量更正因雜訊干擾而錯誤的資訊。最大概度解碼則是編碼理論中公認最佳的解碼器。雖然前者的方法有不錯的更正效果,但是始終無法達到最大概度解碼的能力,而後者卻又因為複雜度太高無法實行。因此,如何求出低密度奇偶校驗碼中最佳解碼器的更錯效果就是本篇論文研究的重點。
相關研究指出,此種編碼方法整體效果可能達到通道容量,但我們還是想知道某些特定編碼的極限值。此外,渦輪碼的最大概度解碼研究也在某些論文中提出,他們成功找出錯誤率1.5*10^(-4)以下的解碼表現,這些成就也成為本篇論文參考及學習方向。
我們發現在錯誤率10^(-5)以下的地方,干擾解碼演算法可以有效達到出最大概度解碼的能力,但是當錯誤率較高時,這樣的方法就不太有效,因此我們提出加入額外資訊的概念及可行性研究。這些資訊稱做gift,主要協助解碼器產生其他高度可能的答案。為了更有效率找到這些額外資訊,本篇論文根據基因演算法的概念,設計出兩種新的解碼演算法。
基因解碼演算法中的染色體由一群已知的0、1或未知的基因組成,傳統的遞迴解碼器用來評斷這些染色體的好壞,運用「物競天擇、適者生存」的原理,留下最優良的基因,多代演化後,能夠幫忙解出真正傳送編碼的染色體就會出現。同時我們也提出平行基因解碼演算法,每個初始染色體獨自演化,最終解回真正的傳送資訊。
對我們而言,基因解碼演算法最重要的地方是任何人用模擬的方式求出特定低密度奇偶校驗碼的最大概度解碼能力。根據我們的模擬結果,此種解碼方法比傳統方法好上0.1dB以上,並且成功在錯誤率10^(-5)以下的地方找到解碼能力的極限值。此外,此法也比先前提到的干擾解碼演算法好上0.02~0.03dB,並擁有和球體裝填極限一樣的型式。只要複雜度允許,本文提出的方法就可以用來改善傳統解碼方法的能力。
zh_TW
dc.description.abstractLow-density parity-check (LDPC) codes drawn large attention lately due to their exceptional performance. Typical decoders operate based on the belief-propagation principle. Although these decoding algorithms work remarkably well, it is generally suspected that they do not achieve the performance of ML decoding. The ML performance of LDPC codes
remains unknown because efficient ML decoders have not been discovered.
Although it has been proved that for various appropriately chosen ensembles of LDPC codes, low error probability and reliable communication is possible up to channel capacity, we still want to know the actual limit for one specific
code. Thus, in this thesis, our goal is to establish the ML performance.
At a word error probability (WEP) of 10^{-5} or lower, we find that perturbed decoding can effectively achieve the ML performance at reasonable complexity. In higher error probability regime, the complexity of PD becomes prohibitive. In light of this, we propose the use of gifts. Proper gifts can induce high likelihood decoded codewords.
We investigate the feasibility of using gifts in detail and discover that the complexity is dominated by the effort to identify small gifts that can pass the trigger criterion. A greedy concept is proposed to maximize the probability for a receiver to produce such a gift. Here we also apply the concept of gift into the genetic algorithm to find the ML bounds of LDPC codes.
In genetic decoding algorithm (GDA), chromosomes are amount of gift sequence with some known gift bits. A conventional SPA decoder is used to assign fitness values for the chromosomes in the population. After evolution in many
generations, chromosomes that correspond to decoded codewords of very high likelihood emerge. We also propose a
parallel genetic decoding algorithm (P-GDA) based on the greedy concept and feasibility research of gifts. The most important aspect of GDA, in our opinion, is that one can utilize the ML bounding technique and GDA to empirically determine an effective lower bound on the error probability with ML decoding.
Our results show that GDA and P-GDA outperform conventional decoder by 0.1 ~ 0.13 dB and the two bounds converge at a WEP of $10^{-5}$. Our results also indicate that, for a practical block size of thousands of bits, the SNR-error probability relationship of LDPC codes trends smoothly in the same fashion as the sphere packing bound. The abrupt cliff-like error probability curve is actually an artifact due to the ineffectiveness of iterative decoding. If additional complexity is allowed, our methods can be applied to improve on the typical decoders.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:34:25Z (GMT). No. of bitstreams: 1
ntu-98-R95942050-1.pdf: 904009 bytes, checksum: d7a92f8816d18eb5972c85971bd086cf (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contribution and organization . . . . . . . . . . . . . . . . . . . . . . 5
2 Background 7
2.1 Low-density parity-check code . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Sparse parity matrix . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Regular LDPC codes . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Irregular LDPC Codes . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Tanner graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Decoding of LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Concept of belief propagation . . . . . . . . . . . . . . . . . . 10
2.3.3 Sum-product algorithm . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Iterative decoding . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 ML bounding technique . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Bounding ML WEP through simulation . . . . . . . . . . . . 16
2.4.2 Multiple-output decoding . . . . . . . . . . . . . . . . . . . . 18
2.5 Genetic decoding algorithm . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Sphere packing bound(SPB) . . . . . . . . . . . . . . . . . . . . . . . 22
3 Bounding ML performance using perturbation noises 25
3.1 Perturbed decoding for LDPC codes . . . . . . . . . . . . . . . . . . 25
3.2 Genetic decoding with additive noise as chromosomes . . . . . . . . . 29
4 Feasibility of gifts in facilitating ML performance bounding 33
4.1 Gift-assisted decoding for LDPC codes . . . . . . . . . . . . . . . . . 34
4.2 Complexity analysis of randomly selected gifts . . . . . . . . . . . . . 37
4.3 Gift selection based on a priori bit probability . . . . . . . . . . . . . 39
4.4 Feasibility of evolutionary algorithm . . . . . . . . . . . . . . . . . . . 42
4.5 Concentration of useful gift bits . . . . . . . . . . . . . . . . . . . . . 44
5 Genetic decoding algorithm 49
5.1 Gift-assisted genetic decoding algorithm for LDPC codes . . . . . . . 49
5.2 ML bound using genetic decoding algorithm . . . . . . . . . . . . . . 52
5.3 Parameters and procedures for genetic decoding algorithm . . . . . . 53
5.4 Simulation results of genetic decoding algorithm . . . . . . . . . . . . 54
6 Parallel genetic decoding algorithm 57
6.1 Parallel genetic decoding algorithm for LDPC codes . . . . . . . . . . 57
6.2 Parameter and procedure for parallel genetic decoding algorithm . . . 60
6.3 Simulation results of parallel genetic decoding algorithm . . . . . . . 63
7 Summary 65
8 Conclusions and future works 67
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Bibliography 70
dc.language.isoen
dc.subject基因解碼演算法zh_TW
dc.subject遞迴解碼zh_TW
dc.subject最大概度解碼zh_TW
dc.subject干擾解碼演算法zh_TW
dc.subject低密度奇偶校驗碼zh_TW
dc.subjectgift-assisted decoding algorithm.en
dc.subjectLow-density parity-check codesen
dc.subjectiterative decodingen
dc.subjectmaximum likelihood decodingen
dc.subjectperturbed decodingen
dc.subjectgenetic decoding algorithmen
dc.title使用基因演算法之低密度奇偶校驗碼最大概度解碼的理論與效能分析zh_TW
dc.titleTheory and Performance of ML Decoding for LDPC Codes Using Genetic Algorithmen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李大嵩(Ta-Sung Lee),蘇炫榮(Hsuan-Jung Su),于天立(Tian-Li Yu)
dc.subject.keyword低密度奇偶校驗碼,遞迴解碼,最大概度解碼,干擾解碼演算法,基因解碼演算法,zh_TW
dc.subject.keywordLow-density parity-check codes,,iterative decoding,maximum likelihood decoding,perturbed decoding,genetic decoding algorithm,gift-assisted decoding algorithm.,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2009-01-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
882.82 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved