Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鎮華
dc.contributor.authorChun-Hung Liuen
dc.contributor.author劉俊宏zh_TW
dc.date.accessioned2021-06-15T00:33:07Z-
dc.date.available2009-01-20
dc.date.copyright2009-01-20
dc.date.issued2009
dc.date.submitted2009-01-13
dc.identifier.citation[1] N. Alon, J.H. Spencer, The Probabilistic Method, Wiley, New York, 1992.
[2] A. P. Burger, E. J. Cockayne, W. R. Grundlingh, C. M. Mynhardt, J. H. van Vuuren, W. Winterbach, Finite order domination in graphs, J. Combin. Math. Combin. Comput. 49 (2004) 159–175.
[3] E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22.
[4] E. J. Cockayne, O. Favaron and C. M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl. 39 (2003) 87-100.
[5] E. J. Cockayne, P. J. P. Grobler, W. Grundlingh, J. Munganga and J. H. van Vuuren, Protection of a graph, Utilitas Math. 67 (2005) 19-32.
[6] E. W. Chambers, B. Kinnersley, N. Prince and D. B. West, Extremal problems for Roman domination, submitted.
[7] G. Chen and A. Saito, Graphs with a cycle of length divisible by three, J. Combin. Theory, Ser. B 60 (1994) 277-292.
[8] G. A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967) 204-216.
[9] M. Farber. Independent domination in chordal graphs, Oper. Res. Lett. 1 (1982) 134-138.
[10] M. Farber. Domination, independent domination and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984) 115-130.
[11] H. Fernau, Roman domination: a parameterized perspective, Int. J. Comput. Math. 85 (1) (2008) 25–38.
[12] S. T. Hedetniemi and M. A. Henning, Defending the Roman Empire—A new strategy, Discrete Math. 266 (2003) 239-251.
[13] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1997.
[14] M. A. Henning. A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2) (2002) 325-334.
[15] M. A. Henning. Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101-115.
[16] M. Liedloff, T. Kloks, J. Liu and S.-L. Peng, Roman domination over some graph classes, Graph-Theoretic Concepts in Computer Science, 103-114, Lecture Notes in Comput. Sci., 3787, Springer, Berlin, 2005.
[17] M. D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85-94.
[18] N. Prince, Thresholds for Roman domination, Manuscript.
[19] G. Ramalingam and C. Pandu Rangan, A unified approach to domination problems on interval graphs, Information Processing Letters 27 (1988) 271-274.
[20] C. S. ReVelle, Can you protect the Roman Empire? Johns Hopkins Magazine 49 (2) (1997) 40.
[21] C. S. ReVelle, Test your solution to 'Can you protect the Roman Empire', Johns Hopkins Magazine 49 (3) (1997) 70.
[22] C. S. ReVelle and K. E. Rosing, Defendens Imperium Romanum: a classical problem in minitary, Amer. Math. Monthly 107 (7) (2000) 585-594.
[23] I. Stewart, Defend the Roman Empire! Sci. Amer. 281 (6) (1999) 136-139.
[24] X.-X. Song, X. -F, Wang, Roman domination number and domination number of a tree, Chin. Quart. J. of Math. 21 (3) (2006) 358–367.
[25] H.-M. Xing, X. Chen, and X.-G. Chen, A note on Roman domination in graphs, Discrete Math. 306 (2006) 3338-3340.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41822-
dc.description.abstractA Roman dominating function of a graph G is a function f : V (G) → {0, 1, 2} such that whenever f(v) = 0 there xists a vertex u adjacent to v such that f(u) = 2. The weight of f is w(f) = Pv∈V (G) f(v). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function of G. In this thesis, we give linear time algorithms for finding Roman domination numbers of interval
graphs and strongly chordal graphs. We also give sharp upper bounds of Roman domination numbers for some classes of graphs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:33:07Z (GMT). No. of bitstreams: 1
ntu-98-R96221001-1.pdf: 467018 bytes, checksum: b9686a861f7912ee393ca5477daeaeaa (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents1 Introduction 5
2 Roman Domination on Interval Graphs 8
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Roman domination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Independent Roman domination . . . . . . . . . . . . . . . . . . . . . 14
2.4 Total Roman domination . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Connected Roman domination . . . . . . . . . . . . . . . . . . . . . . 19
3 (a, b)-Roman Domination on Strongly Chordal Graphs 22
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Weighted (a, b)-Roman domination on strongly chordal graphs . . . 25
3.3 Independent (a, b)-Roman domination on strongly chordal graphs . . 29
3.4 Results about NP-completeness . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Chordal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Positive weighted independent (a, b)-Roman domination on
chordal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Roman Domination on Connectivity and Minimum Degree As-
pects 40
4.1 Roman domination on special graphs . . . . . . . . . . . . . . . . . . 41
4.2 Roman domination on 2-connected graphs . . . . . . . . . . . . . . . 49
4.3 Roman domination on graphs with minimum degree at least 3 . . . . 57
4.4 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5 Roman Domination on Forbidden Subgraph Aspect 64
5.1 Prelimilaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Big-claw-free and big-net-free graphs . . . . . . . . . . . . . . . . . . 67
Bibliography 74
dc.language.isoen
dc.subject避免子圖zh_TW
dc.subject控制zh_TW
dc.subject羅馬型控制zh_TW
dc.subject區間圖zh_TW
dc.subject強正弦圖zh_TW
dc.subject2-連通zh_TW
dc.subject3-連通zh_TW
dc.subject最小度zh_TW
dc.title圖的羅馬型控制zh_TW
dc.titleRoman domination on graphsen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee葉鴻國,廖勝強
dc.subject.keyword控制,羅馬型控制,區間圖,強正弦圖,2-連通,3-連通,最小度,避免子圖,zh_TW
dc.subject.keywordDomination,Roman domination,interval graph,strongly chordal graph,2-connected,3-connected,minimum degree,forbidden subgraph,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2009-01-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
456.07 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved