Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道
dc.contributor.authorTsung-Yu Tsaien
dc.contributor.author蔡宗昱zh_TW
dc.date.accessioned2021-06-15T00:30:17Z-
dc.date.available2010-02-03
dc.date.copyright2009-02-03
dc.date.issued2009
dc.date.submitted2009-01-18
dc.identifier.citation[1] Ait-Sahalia, Yacine, and Andre W. Lo. “Nonparametric Risk Management and Implied Risk Aversion.” Journal of Econometrics, 94 (2000), pp. 9-51.
[2] Barle, S and N.Cakici. “How to Grow A Smiling Tree.” The Journal of Financial Engineering, 7 (1996), pp. 127-146.
[3] Barndorff-Nielsen, O.E. and N. Shepherd. “Incorporation of a Leverage Effect in a Stochastic Volatility model.” Working Paper (1999), The Centre for
Mathematical Physics and Stochastics, University of Aarhus.
[4] Bates, D. “Post-87 Crash Fears in the S&P500 Futures Option Market.” Journal of Econometrics, 94 (2000), pp. 181-238.
[5] Black, F. and M.J. Scholes. “The Pricing of Options on Corporate Liabilities.”Journal of Political Economy, 81(1973), pp. 637-654.
[6] Bollen, N. and R. Whaley. “Does the Net Buying Pressure Affect the Shape of Implied Volatility Functions?” Journal of Finance, 59 (2004), pp. 711-753
[7] Brown, G. and Toft, K. B. “Constructing Binomial Trees from Multiplied Implied Probability Distributions,” Journal of Derivatives 7 (1999), pp. 83-100.
[8] Campbell, J. Y. and A. S. Kyle. “Smart Money, Noise Trading and Stock Price Behavior,” Review of Economic Studies, 60 (1999), pp. 1-34.
[9] Corrado, C.J. and Su, T. “Implied Volatility Skews and Stock Index Skewness and Kurtosis Implied by S&P 500 Index Option Prices,” The European Journal
of Finance, 3 (1997), pp. 73-85.
[10] Cox, J., S. Ross, and M. Rubinstein. “Option Pricing: A Simplified Approach,”Journal of Financial Economics, 7 (1979), pp. 229-263.
[11] Derman, E., Kani, I. “The Volatility Smile and Its Implied Tree,” Quantitative Strategies Research Notes (1994). New York: Goldman Sachs.
[12] Derman, E., Kani, I. & Chriss, N. “Implied Trinomial Trees of the Volatility Smile,” Journal of Derivatives, 4 (1996), pp. 7-12.
[13] Dupire, B. “Arbitrage Pricing with Stochastic olatility,” Proceedings of AFFI Conference in Paris, June 1992.
[14] Dupire, B. “Pricing with A Smile,” Risk, 8 (1994), pp. 76-81.
[15] Heston. “A Closed-Form Solution for Options with Stochastic Volatilities with Applications to Bond and Currency Options,” The Review of Financial Studies, 6
(1993), pp. 327-343
[16] Hull, J. and A. White. “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance, 42 (1987), pp. 281-300.
[17] Hull, J.C., Options, Futures, and Other Derivative Securities, Sixth edition (2007), Prentice Hall, New Jersey.
[18] Jackwerth, J. C. and M. Rubinstein, “Recovering Probability Distributions from Option Prices,” Journal of Finance, 51 (1996), pp. 1611-1631.
[19] Jackwerth, J. “Generalized Binomial Trees,” Journal of Derivatives, 5 (1997), pp.7-17.
[20] Jackwerth, J. “Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review,” Journal of Derivatives, 7 (1999), pp. 66-82.
[21] Jackwerth. “Recovering Risk Aversion from Option Prices and Realized Returns,” The Review of Financial Studies, 13 (2000), pp. 433-451.
[22] Jarrow, R. and Rudd, A. “Approximate Option Valuation for Arbitrary Stochastic Processes,” Journal of Financial Economics, 10 (1982), pp. 347-369.
[23] Li, Yanmin. “A New Algorithm for Constructing Implied Binomial Trees: Does the Implied Model Fit Any Volatility Smile,” Journal of Financial Engineering,
4 (2000), pp. 69-95.
[24] Lim, K. and D. Zhi, 2002. “Pricing Options Using Implied Trees: Evidence from FTSE-100 Options,” Journal of Futures Markets, 22, pp. 601-626.
[25] London, J. Modeling Derivatives in C++ (2004), John Wiley & Sons, pp. 274-323.
[26] Mahieu and Schotman. “An Empirical Application of Stochastic Volatility Models,” Journal of Applied Economy, 13 (1998), pp. 330-360.
[27] Melick, W. R. and Thomas, C. P. “Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis,” The Journal of Financial and Quantitative Analysis, 32 (1997), pp. 91-115.
[28] Nelson, D. “Conditional Heteroskedasticity in Asset Returns: A new Approach,”Econometrica, 59 (1991), pp. 347-370.
[29] Nicolato, E. and E. Venardos. “Option Pricing in Stochastic Volatility Models of the Ornstein-Uhlenbeck Type,” Mathematical Finance, 13 (2003), pp. 445-466.
[30] Pena, I. & G. Rubio & G. Serna. “Why Do We Smile? On the Determinants of the Implied Volatility Function,' Journal of Banking and Finance, 23 (1999), pp.
1151-1179.
[31] Platen, E., Schweitzer, M. “On Feedback Effects form Hedging Derivatives,”Mathematical Finance, 8 (1998), pp. 67-84.
[32] Pritsker, M. “Evaluating Value at Risk Methodologies: Accuracy versus Computational Time,” Journal of Financial Services Research, 12 (1997), pp.201-242.
[33] Rubinstein, M. “Implied Binomial Trees,” Journal of Finance, 49 (1997), pp.771-818.
[34] Stein, E. M., and J. C. Stein. “Stock Price Distributions with Stochastic Volatility: An Analytic Approach,” Review of Financial Studies, 4 (1991), pp. 727-752.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41760-
dc.description.abstract本文提出了一個固定機率-隨機波動度的隱含波動二元樹的建構方法。此方法改善了先前其他學者曾提出方法的缺點。相較於Derman-Kani 隱含波動二元樹與Li 隱含波動二元樹,以此方法建構隱含波動樹時,具有相當的穩定性。在Derman-Kani 隱含波動二元樹中有不良機率的問題,亦即在二元樹建構的同時,會出現機率大於1 或小於0 的狀況;在Li 隱含波動二元樹中,雖改良了不良機率發生的情形,但當隱含波動微笑曲線陡峭時,在建構樹的過程中,股價仍會發生違反無套利原則的狀況。然而,本文所提出的新方法,不僅改善了上述二者的缺點,在二元樹的建構概念上相當的簡單易懂,選擇權評價的結果也相當穩定。zh_TW
dc.description.abstractThis thesis proposes a constant probability-stochastic volatility implied binomial tree. Our method improves upon some weaknesses of previous works. Compared with the Derman-Kani tree (1994) and the Li tree (2000), our method is considerably more stable. In our method, neither the nvalid transition probability problem occurs, like in the Derman-Kani tree, nor the results of option pricing diverge when the slope of volatility with respect to the strike price is steep, as in the Li tree. Incorporating the
known local volatility function, our method constructs the implied binomial tree directly by forward induction. The option value is calculated from the stock prices in the terminal nodes of the tree backward. As a whole, for the proposed constant probability-stochastic volatility implied binomial tree, its construction is direct, and its
implementation is straightforward.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:30:17Z (GMT). No. of bitstreams: 1
ntu-98-R95723027-1.pdf: 2351446 bytes, checksum: df6d5c4a407086132116ca5f1a40266d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction ...................... 1
1.1 Introduction............................. 1
1.2 Motivations and Contributions ........... 2
1.3 Organization of this Thesis ............. 3
Chapter 2 Literature Review.................. 4
2.1 Implied Volatility Surface .............. 4
2.2 Local Volatility Surface ................ 4
2.3 Causes of Strike Structure of Volatility. 5
2.4 Volatility Modeling ..................... 6
2.5 Implied Trees ........................... 7
Chapter 3 The Derman-Kani Tree ...............9
3.1 The Derman-Kani Algorithm................ 9
3.2 Invalid Transition Probabilities........ 12
3.3 Replacement of Nodes that Violate the No-Arbitrage Principle... 14
Chapter 4 Problems with the Li Tree......... 15
4.1 The Li Algorithm ....................... 15
4.2 Problem of Stock Prices which Violate the No-Arbitrage Principle............. 18
Chapter 5 An Alternative Method in Constructing Implied Tree .....23
5.1 Building a Recombining Binomial Tree ... 23
5.2 Assumptions and Settings ............... 25
5.3 Building a Constant Probability-Stochastic Volatility Recombining Tree.......... 25
5.4 Numerical Illustration ................. 28
Chapter 6 Conclusions ...................... 32
Appendix A.................................. 33
Appendix B.................................. 37
References.................................. 39
dc.language.isoen
dc.subject二元樹zh_TW
dc.subject波動度微笑曲線zh_TW
dc.subject波動度面zh_TW
dc.subject隱含波動度樹zh_TW
dc.subjectvolatility smileen
dc.subjectbinomial treeen
dc.subjectimplied treeen
dc.subjectvolatility surfaceen
dc.title以隱含波動樹評價選擇權之另一方法zh_TW
dc.titleAn Alternative Method of Options Pricing by Implied Treesen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee戴天時,金國興
dc.subject.keyword波動度微笑曲線,波動度面,隱含波動度樹,二元樹,zh_TW
dc.subject.keywordvolatility smile,volatility surface,implied tree,binomial tree,en
dc.relation.page41
dc.rights.note有償授權
dc.date.accepted2009-01-19
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved