Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41751
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor田光復(Kuang-Fu Tien)
dc.contributor.authorChain-Hau Huangen
dc.contributor.author黃千豪zh_TW
dc.date.accessioned2021-06-15T00:29:58Z-
dc.date.available2011-02-03
dc.date.copyright2009-02-03
dc.date.issued2009
dc.date.submitted2009-01-19
dc.identifier.citationReferences.
[1] J. Guckenheimer, A strange, strange attractor, in: The Hopf Bifurcation and its Applications (J. E. Marsden and M. McCracken, eds.), Springer-Verlag, New York, 1976.
[2] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, New York, 1983.
[3] D. Gulick, Encounters with Chaos, McGraw-Hill, New York, 1992.
[4] E. N. Lorenz, Deterministic non-periodic flow, J. Atmospheric Sci. 20 (1963), 130–141.
[5] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[6] R. E. Moore, Methods and Applications of Interval Analysis, Studies in Applied Mathematics, SIAM, Philadelphia, 1979.
[7] J. Murdock, Normal forms and unfoldings for local dynamical systems, Springer-Verlag, New York, 2003.
[8] C. Robinson, Dynamical Systems, 2nd ed., CRC Press, New York, 1995.
[9] S. Smale, Mathematical problems for the next century, Math. Intelligencer 20, 2 (1998), 7–15.
[10] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer-Verlag, New York, 1982.
[11] M. Viana, What's New on Lorenz Strange Attractors? Math. Intell. 22, 6-19.
[12] W. Tucker, The Lorenz attractor exists, C.R. Acad. Sci. Paris, Part 328, Sér. I (1999) 1197–1202.
[13] W. Tucker, A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math. 2 (1) (2002) 53–117.
[14] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41751-
dc.description.abstractThe basis of this thesis is to study intensively what is Tucker’s idea, mathematical theoretical basis, rigorous computation in his article and prove to myself what is not very clearly proved, and hopefully apply this new method to establish answers to the existence of attractors of other system.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:29:58Z (GMT). No. of bitstreams: 1
ntu-98-R94221029-1.pdf: 1131643 bytes, checksum: ee19b447394ec01a57bfdeb60b274f6e (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
Chapter 1. Basics of Lorenz equation 1
1.1 What is Lorenz equation and their properties 1
1.2 Dynamics of Lorenz equation 6
1.3 Does Lorenz attractor exist? 9
Chapter 2. Interval arithmetic and its application 11
2.1 Linear change of variables of the Lorenz equations 11
2.2 Good Pick for return plane 13
2.3 Directed rounding 13
2.4 Interval arithmetic 14
2.5 Local Euler Poincare ́ box and local Euler Poincare ́ map 17
2.6 Search for global Poincare ́ map 24
2.7 Bisection process 28
Chapter 3. A typical one-dimensional chaotic map 30
3.1 One-dimensional map with topological transitivity 30
3.2 Estimation for evolution of cone 31
3.3 Estimation for evolution of Expansion 33
3.4 Existence for forward invariant cone field 36
3.5 Information for expansions of tangent vectors in cone 38
Chapter 4. Dynamics near the origin 40
4.1 Local change of coordinates 40
4.2 Estimation of normal form flow 42
References 47
dc.language.isoen
dc.subject吸子zh_TW
dc.subjectLorenzzh_TW
dc.subject區間算法zh_TW
dc.subjectattractoren
dc.subjectLorenzen
dc.subjectinterval arithmeticen
dc.title研究區間算法如何解決勞倫茲吸子存在性之問題zh_TW
dc.titleStudy of interval arithmetic
The problem of existence of Lorenz attractor
en
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee彭?堅,陳怡全,夏俊雄,陳琴韻
dc.subject.keywordLorenz,吸子,區間算法,zh_TW
dc.subject.keywordLorenz,attractor,interval arithmetic,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2009-01-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved