請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41724完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃麗華 | |
| dc.contributor.author | Ya-Hui Tsai | en |
| dc.contributor.author | 蔡雅慧 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:29:01Z | - |
| dc.date.available | 2014-02-17 | |
| dc.date.copyright | 2009-02-17 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-01-20 | |
| dc.identifier.citation | Amoroso, P., M. Rapicetta, M. E. Tosti, A. Mele, E. Spada, S. Buonocore, G. Lettieri, P. Pierri, P. Chionne, A. R. Ciccaglione and L. Sagliocca (1998). Correlation between virus genotype and chronicity rate in acute hepatitis C. J Hepatol 28(6): 939-44.
Appel, N., T. Pietschmann and R. Bartenschlager (2005). Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol 79(5): 3187-94. Appel, N., M. Zayas, S. Miller, J. Krijnse-Locker, T. Schaller, P. Friebe, S. Kallis, U. Engel and R. Bartenschlager (2008). Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 4(3): e1000035. Bartenschlager, R., A. Kaul and S. Sparacio (2003). Replication of the hepatitis C virus in cell culture. Antiviral Res 60(2): 91-102. Bartenschlager, R. and V. Lohmann (2000). Replication of hepatitis C virus. J Gen Virol 81(Pt 7): 1631-48. Bivik, C., I. Rosdahl and K. Ollinger (2007). Hsp70 protects against UVB induced apoptosis by preventing release of cathepsins and cytochrome c in human melanocytes. Carcinogenesis 28(3): 537-44. Blight, K. J., A. A. Kolykhalov and C. M. Rice (2000). Efficient initiation of HCV RNA replication in cell culture. Science 290(5498): 1972-4. Bode, J. G., S. Ludwig, C. Ehrhardt, U. Albrecht, A. Erhardt, F. Schaper, P. C. Heinrich and D. Haussinger (2003). IFN-alpha antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. Faseb J 17(3): 488-90. Bonjardim, C. A. (2005). Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses--and viruses counteract IFN action. Microbes Infect 7(3): 569-78. Bonte, D., C. Francois, S. Castelain, C. Wychowski, J. Dubuisson, E. F. Meurs and G. Duverlie (2004). Positive effect of the hepatitis C virus nonstructural 5A protein on viral multiplication. Arch Virol 149(7): 1353-71. Boulestin, A., K. Sandres-Saune, J. L. Payen, L. Rostaing, C. Pasquier and J. Izopet (2003). Genetic heterogeneity of the NS5A gene of hepatitis C virus and early response to interferon-alpha. J Infect Dis 188(9): 1367-70. Bowie, A. G. and K. A. Fitzgerald (2007). RIG-I: tri-ing to discriminate between self and non-self RNA. Trends Immunol 28(4): 147-50. Brass, V., E. Bieck, R. Montserret, B. Wolk, J. A. Hellings, H. E. Blum, F. Penin and D. Moradpour (2002). An amino-terminal amphipathic alpha-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J Biol Chem 277(10): 8130-9. Brass, V., D. Moradpour and H. E. Blum (2006). Molecular virology of hepatitis C virus (HCV): 2006 update. Int J Med Sci 3(2): 29-34. Buzzard, K. A., A. J. Giaccia, M. Killender and R. L. Anderson (1998). Heat shock protein 72 modulates pathways of stress-induced apoptosis. J Biol Chem 273(27): 17147-53. Capobianchi, M. R., I. Abbate, G. Cappiello and M. Solmone (2003). HCV and interferon: viral strategies for evading innate defence mechanisms in the virus-host battle. Cell Death Differ 10 Suppl 1: S22-4. Cappiello, G., I. Abbate, O. Lo Iacono, R. Longo, M. Solmone, D. Ferraro, G. Antonucci, V. Di Marco, R. Di Stefano, A. Craxi, G. Ippolito and M. R. Capobianchi (2003). ISDR pattern and evolution in patients with chronic hepatitis C treated with standard or PEG-IFN plus ribavirin. Antivir Ther 8(2): 105-10. Caraglia, M., M. Marra, G. Pelaia, R. Maselli, M. Caputi, S. A. Marsico and A. Abbruzzese (2005). Alpha-interferon and its effects on signal transduction pathways. J Cell Physiol 202(2): 323-35. Chambers, T. J., X. Fan, D. A. Droll, E. Hembrador, T. Slater, M. W. Nickells, L. B. Dustin and A. M. Dibisceglie (2005). Quasispecies heterogeneity within the E1/E2 region as a pretreatment variable during pegylated interferon therapy of chronic hepatitis C virus infection. J Virol 79(5): 3071-83. Chan, C. Y., S. D. Lee, S. J. Hwang, R. H. Lu, C. L. Lu and K. J. Lo (1995). Quantitative branched DNA assay and genotyping for hepatitis C virus RNA in Chinese patients with acute and chronic hepatitis C. J Infect Dis 171(2): 443-6. Chen, C. H., J. C. Sheu, J. T. Wang, G. T. Huang, P. M. Yang, H. S. Lee, C. Z. Lee and D. S. Chen (1994). Genotypes of hepatitis C virus in chronic liver disease in Taiwan. J Med Virol 44(3): 234-6. Chisari, F. V. (2005). Unscrambling hepatitis C virus-host interactions. Nature 436(7053): 930-2. Dalpke, A. H., S. Eckerle, M. Frey and K. Heeg (2003). Triggering of Toll-like receptors modulates IFN-gamma signaling: involvement of serine 727 STAT1 phosphorylation and suppressors of cytokine signaling. Eur J Immunol 33(7): 1776-87. Daugaard, M., M. Rohde and M. Jaattela (2007). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581(19): 3702-10. de Lucas, S., J. Bartolome and V. Carreno (2005). Hepatitis C virus core protein down-regulates transcription of interferon-induced antiviral genes. J Infect Dis 191(1): 93-9. Decker, T., M. Muller and S. Stockinger (2005). The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol 5(9): 675-87. Di Bisceglie, A. M. and J. H. Hoofnagle (2002). Optimal therapy of hepatitis C. Hepatology 36(5 Suppl 1): S121-7. Doulias, P. T., P. Kotoglou, M. Tenopoulou, D. Keramisanou, T. Tzavaras, U. Brunk, D. Galaris and C. Angelidis (2007). Involvement of heat shock protein-70 in the mechanism of hydrogen peroxide-induced DNA damage: the role of lysosomes and iron. Free Radic Biol Med 42(4): 567-77. Dubois, M. F., J. Galabru, P. Lebon, B. Safer and A. G. Hovanessian (1989). Reduced activity of the interferon-induced double-stranded RNA-dependent protein kinase during a heat shock stress. J Biol Chem 264(21): 12165-71. Dubuisson, J. (2007). Hepatitis C virus proteins. World J Gastroenterol 13(17): 2406-15. Durbin, R. K., S. E. Mertz, A. E. Koromilas and J. E. Durbin (2002). PKR protection against intranasal vesicular stomatitis virus infection is mouse strain dependent. Viral Immunol 15(1): 41-51. Duverlie, G., H. Khorsi, S. Castelain, O. Jaillon, J. Izopet, F. Lunel, F. Eb, F. Penin and C. Wychowski (1998). Sequence analysis of the NS5A protein of European hepatitis C virus 1b isolates and relation to interferon sensitivity. J Gen Virol 79 (Pt 6): 1373-81. Elazar, M., K. H. Cheong, P. Liu, H. B. Greenberg, C. M. Rice and J. S. Glenn (2003). Amphipathic helix-dependent localization of NS5A mediates hepatitis C virus RNA replication. J Virol 77(10): 6055-61. Enomoto, N., I. Sakuma, Y. Asahina, M. Kurosaki, T. Murakami, C. Yamamoto, N. Izumi, F. Marumo and C. Sato (1995). Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region. J Clin Invest 96(1): 224-30. Enomoto, N., I. Sakuma, Y. Asahina, M. Kurosaki, T. Murakami, C. Yamamoto, Y. Ogura, N. Izumi, F. Marumo and C. Sato (1996). Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 334(2): 77-81. Espert, L., G. Degols, C. Gongora, D. Blondel, B. R. Williams, R. H. Silverman and N. Mechti (2003). ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J Biol Chem 278(18): 16151-8. Evans, M. J., C. M. Rice and S. P. Goff (2004). Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc Natl Acad Sci U S A 101(35): 13038-43. Feld, J. J. and J. H. Hoofnagle (2005). Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436(7053): 967-72. Foy, E., K. Li, C. Wang, R. Sumpter, Jr., M. Ikeda, S. M. Lemon and M. Gale, Jr. (2003). Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300(5622): 1145-8. Frese, M., T. Pietschmann, D. Moradpour, O. Haller and R. Bartenschlager (2001). Interferon-alpha inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J Gen Virol 82(Pt 4): 723-33. Fried, M. W., M. L. Shiffman, K. R. Reddy, C. Smith, G. Marinos, F. L. Goncales, Jr., D. Haussinger, M. Diago, G. Carosi, D. Dhumeaux, A. Craxi, A. Lin, J. Hoffman and J. Yu (2002). Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347(13): 975-82. Gale, M., Jr., C. M. Blakely, B. Kwieciszewski, S. L. Tan, M. Dossett, N. M. Tang, M. J. Korth, S. J. Polyak, D. R. Gretch and M. G. Katze (1998). Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol 18(9): 5208-18. Gale, M., Jr. and E. M. Foy (2005). Evasion of intracellular host defence by hepatitis C virus. Nature 436(7053): 939-45. Gale, M. J., Jr., M. J. Korth, N. M. Tang, S. L. Tan, D. A. Hopkins, T. E. Dever, S. J. Polyak, D. R. Gretch and M. G. Katze (1997). Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 230(2): 217-27. Geiss, G. K., V. S. Carter, Y. He, B. K. Kwieciszewski, T. Holzman, M. J. Korth, C. A. Lazaro, N. Fausto, R. E. Bumgarner and M. G. Katze (2003). Gene expression profiling of the cellular transcriptional network regulated by alpha/beta interferon and its partial attenuation by the hepatitis C virus nonstructural 5A protein. J Virol 77(11): 6367-75. Girard, S., P. Shalhoub, P. Lescure, A. Sabile, D. E. Misek, S. Hanash, C. Brechot and L. Beretta (2002). An altered cellular response to interferon and up-regulation of interleukin-8 induced by the hepatitis C viral protein NS5A uncovered by microarray analysis. Virology 295(2): 272-83. Goh, K. C., S. J. Haque and B. R. Williams (1999). p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons. Embo J 18(20): 5601-8. Gong, G. Z., J. Cao, Y. F. Jiang, Y. Zhou and B. Liu (2007). Hepatitis C virus non-structural 5A abrogates signal transducer and activator of transcription-1 nuclear translocation induced by IFN-alpha through dephosphorylation. World J Gastroenterol 13(30): 4080-4. Grandvaux, N., B. R. tenOever, M. J. Servant and J. Hiscott (2002). The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis 15(3): 259-67. Guo, J. T., V. V. Bichko and C. Seeger (2001). Effect of alpha interferon on the hepatitis C virus replicon. J Virol 75(18): 8516-23. Guo, J. T., J. A. Sohn, Q. Zhu and C. Seeger (2004). Mechanism of the interferon alpha response against hepatitis C virus replicons. Virology 325(1): 71-81. Guo, J. T., Q. Zhu and C. Seeger (2003). Cytopathic and noncytopathic interferon responses in cells expressing hepatitis C virus subgenomic replicons. J Virol 77(20): 10769-79. Gyrd-Hansen, M., J. Nylandsted and M. Jaattela (2004). Heat shock protein 70 promotes cancer cell viability by safeguarding lysosomal integrity. Cell Cycle 3(12): 1484-5. He, Y., S. L. Tan, S. U. Tareen, S. Vijaysri, J. O. Langland, B. L. Jacobs and M. G. Katze (2001). Regulation of mRNA translation and cellular signaling by hepatitis C virus nonstructural protein NS5A. J Virol 75(11): 5090-8. Hengel, H., U. H. Koszinowski and K. K. Conzelmann (2005). Viruses know it all: new insights into IFN networks. Trends Immunol 26(7): 396-401. Hiscott, J. (2007). Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 282(21): 15325-9. Huang, L., J. Hwang, S. D. Sharma, M. R. Hargittai, Y. Chen, J. J. Arnold, K. D. Raney and C. E. Cameron (2005). Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA-binding protein. J Biol Chem 280(43): 36417-28. Huang, L., N. F. Mivechi and D. Moskophidis (2001). Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene. Mol Cell Biol 21(24): 8575-91. Hui, D. J., C. R. Bhasker, W. C. Merrick and G. C. Sen (2003). Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP.Met-tRNAi. J Biol Chem 278(41): 39477-82. Hunt, C. R., D. J. Dix, G. G. Sharma, R. K. Pandita, A. Gupta, M. Funk and T. K. Pandita (2004). Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol 24(2): 899-911. Inchauspe, G., S. Zebedee, D. H. Lee, M. Sugitani, M. Nasoff and A. M. Prince (1991). Genomic structure of the human prototype strain H of hepatitis C virus: comparison with American and Japanese isolates. Proc Natl Acad Sci U S A 88(22): 10292-6. Iwamura, T., M. Yoneyama, K. Yamaguchi, W. Suhara, W. Mori, K. Shiota, Y. Okabe, H. Namiki and T. Fujita (2001). Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6(4): 375-88. Kao, J. H., P. J. Chen, M. Y. Lai, P. M. Yang, J. C. Sheu, T. H. Wang and D. S. Chen (1995). Genotypes of hepatitis C virus in Taiwan and the progression of liver disease. J Clin Gastroenterol 21(3): 233-7. Khabar, K. S., F. Al-Zoghaibi, M. N. Al-Ahdal, T. Murayama, M. Dhalla, N. Mukaida, M. Taha, S. T. Al-Sedairy, Y. Siddiqui, G. Kessie and K. Matsushima (1997a). The alpha chemokine, interleukin 8, inhibits the antiviral action of interferon alpha. J Exp Med 186(7): 1077-85. Khabar, K. S., F. Al-Zoghaibi, T. Murayama, K. Matsushima, N. Mukaida, Y. Siddiqui, M. Dhalla and M. N. Al-Ahdal (1997b). Interleukin-8 selectively enhances cytopathic effect (CPE) induced by positive-strand RNA viruses in the human WISH cell line. Biochem Biophys Res Commun 235(3): 774-8. Krieger, N., V. Lohmann and R. Bartenschlager (2001). Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol 75(10): 4614-24. Kumar, A., Y. L. Yang, V. Flati, S. Der, S. Kadereit, A. Deb, J. Haque, L. Reis, C. Weissmann and B. R. Williams (1997). Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. Embo J 16(2): 406-16. Kumar, R., D. Choubey, P. Lengyel and G. C. Sen (1988). Studies on the role of the 2'-5'-oligoadenylate synthetase-RNase L pathway in beta interferon-mediated inhibition of encephalomyocarditis virus replication. J Virol 62(9): 3175-81. Kwon, S. B., C. Young, D. S. Kim, H. O. Choi, K. H. Kim, J. H. Chung, H. C. Eun, K. C. Park, C. K. Oh and J. S. Seo (2002). Impaired repair ability of hsp70.1 KO mouse after UVB irradiation. J Dermatol Sci 28(2): 144-51. Lai, M. Y. (2006). Combined interferon and ribavirin therapy for chronic hepatitis C in Taiwan. Intervirology 49(1-2): 91-5. Lan, K. H., K. L. Lan, W. P. Lee, M. L. Sheu, M. Y. Chen, Y. L. Lee, S. H. Yen, F. Y. Chang and S. D. Lee (2007). HCV NS5A inhibits interferon-alpha signaling through suppression of STAT1 phosphorylation in hepatocyte-derived cell lines. J Hepatol 46(5): 759-67. Lauer, G. M. and B. D. Walker (2001). Hepatitis C virus infection. N Engl J Med 345(1): 41-52. Laufen, T., M. P. Mayer, C. Beisel, D. Klostermeier, A. Mogk, J. Reinstein and B. Bukau (1999). Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci U S A 96(10): 5452-7. Le Guillou-Guillemette, H., S. Vallet, C. Gaudy-Graffin, C. Payan, A. Pivert, A. Goudeau and F. Lunel-Fabiani (2007). Genetic diversity of the hepatitis C virus: impact and issues in the antiviral therapy. World J Gastroenterol 13(17): 2416-26. Lee, C. M., C. H. Hung, S. N. Lu, J. H. Wang, H. D. Tung, W. S. Huang, C. L. Chen, W. J. Chen and C. S. Changchien (2006). Viral etiology of hepatocellular carcinoma and HCV genotypes in Taiwan. Intervirology 49(1-2): 76-81. Li, X. D., L. Sun, R. B. Seth, G. Pineda and Z. J. Chen (2005). Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A 102(49): 17717-22. Li, Y., A. Sassano, B. Majchrzak, D. K. Deb, D. E. Levy, M. Gaestel, A. R. Nebreda, E. N. Fish and L. C. Platanias (2004). Role of p38alpha Map kinase in Type I interferon signaling. J Biol Chem 279(2): 970-9. Lindenbach, B. D. and C. M. Rice (2005). Unravelling hepatitis C virus replication from genome to function. Nature 436(7053): 933-8. Lohmann, V., S. Hoffmann, U. Herian, F. Penin and R. Bartenschlager (2003). Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J Virol 77(5): 3007-19. Lohmann, V., F. Korner, A. Dobierzewska and R. Bartenschlager (2001). Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75(3): 1437-49. Macdonald, A. and M. Harris (2004). Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 85(Pt 9): 2485-502. Makarova, O., E. Kamberov and B. Margolis (2000). Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29(5): 970-2. Manns, M. P., J. G. McHutchison, S. C. Gordon, V. K. Rustgi, M. Shiffman, R. Reindollar, Z. D. Goodman, K. Koury, M. Ling and J. K. Albrecht (2001). Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358(9286): 958-65. Mayer, M. P. (2005). Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 153: 1-46. Mayer, M. P. and B. Bukau (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6): 670-84. Mayer, M. P., H. Schroder, S. Rudiger, K. Paal, T. Laufen and B. Bukau (2000). Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7(7): 586-93. Milner, C. M. and R. D. Campbell (1990). Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32(4): 242-51. Moradpour, D., V. Brass and F. Penin (2005). Function follows form: the structure of the N-terminal domain of HCV NS5A. Hepatology 42(3): 732-5. Moradpour, D., M. J. Evans, R. Gosert, Z. Yuan, H. E. Blum, S. P. Goff, B. D. Lindenbach and C. M. Rice (2004). Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J Virol 78(14): 7400-9. Neumann, A. U., N. P. Lam, H. Dahari, M. Davidian, T. E. Wiley, B. P. Mika, A. S. Perelson and T. J. Layden (2000). Differences in viral dynamics between genotypes 1 and 2 of hepatitis C virus. J Infect Dis 182(1): 28-35. Nousbaum, J., S. J. Polyak, S. C. Ray, D. G. Sullivan, A. M. Larson, R. L. Carithers, Jr. and D. R. Gretch (2000). Prospective characterization of full-length hepatitis C virus NS5A quasispecies during induction and combination antiviral therapy. J Virol 74(19): 9028-38. Nylandsted, J., M. Gyrd-Hansen, A. Danielewicz, N. Fehrenbacher, U. Lademann, M. Hoyer-Hansen, E. Weber, G. Multhoff, M. Rohde and M. Jaattela (2004). Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200(4): 425-35. O'Brien, M. C., K. M. Flaherty and D. B. McKay (1996). Lysine 71 of the chaperone protein Hsc70 Is essential for ATP hydrolysis. J Biol Chem 271(27): 15874-8. Okamoto, H., Y. Sugiyama, S. Okada, K. Kurai, Y. Akahane, Y. Sugai, T. Tanaka, K. Sato, F. Tsuda, Y. Miyakawa and et al. (1992). Typing hepatitis C virus by polymerase chain reaction with type-specific primers: application to clinical surveys and tracing infectious sources. J Gen Virol 73 (Pt 3): 673-9. Pascu, M., P. Martus, M. Hohne, B. Wiedenmann, U. Hopf, E. Schreier and T. Berg (2004). Sustained virological response in hepatitis C virus type 1b infected patients is predicted by the number of mutations within the NS5A-ISDR: a meta-analysis focused on geographical differences. Gut 53(9): 1345-51. Paterson, M., C. D. Laxton, H. C. Thomas, A. M. Ackrill and G. R. Foster (1999). Hepatitis C virus NS5A protein inhibits interferon antiviral activity, but the effects do not correlate with clinical response. Gastroenterology 117(5): 1187-97. Pawlotsky, J. M. (2003a). Mechanisms of antiviral treatment efficacy and failure in chronic hepatitis C. Antiviral Res 59(1): 1-11. Pawlotsky, J. M. (2003b). The nature of interferon-alpha resistance in hepatitis C virus infection. Curr Opin Infect Dis 16(6): 587-92. Pawlotsky, J. M. (2004). Pathophysiology of hepatitis C virus infection and related liver disease. Trends Microbiol 12(2): 96-102. Pawlotsky, J. M. and G. Germanidis (1999). The non-structural 5A protein of hepatitis C virus. J Viral Hepat 6(5): 343-56. Pflugheber, J., B. Fredericksen, R. Sumpter, Jr., C. Wang, F. Ware, D. L. Sodora and M. Gale, Jr. (2002). Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proc Natl Acad Sci U S A 99(7): 4650-5. Platanias, L. C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5): 375-86. Podevin, P., A. Sabile, R. Gajardo, N. Delhem, A. Abadie, P. Y. Lozach, L. Beretta and C. Brechot (2001). Expression of hepatitis C virus NS5A natural mutants in a hepatocytic cell line inhibits the antiviral effect of interferon in a PKR-independent manner. Hepatology 33(6): 1503-11. Polyak, S. J., K. S. Khabar, D. M. Paschal, H. J. Ezelle, G. Duverlie, G. N. Barber, D. E. Levy, N. Mukaida and D. R. Gretch (2001a). Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J Virol 75(13): 6095-106. Polyak, S. J., K. S. Khabar, M. Rezeiq and D. R. Gretch (2001b). Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J Virol 75(13): 6209-11. Polyak, S. J., D. M. Paschal, S. McArdle, M. J. Gale, Jr., D. Moradpour and D. R. Gretch (1999). Characterization of the effects of hepatitis C virus nonstructural 5A protein expression in human cell lines and on interferon-sensitive virus replication. Hepatology 29(4): 1262-71. Poynard, T., M. F. Yuen, V. Ratziu and C. L. Lai (2003). Viral hepatitis C. Lancet 362(9401): 2095-100. Puig-Basagoiti, F., X. Forns, I. Furcic, S. Ampurdanes, M. Gimenez-Barcons, S. Franco, J. M. Sanchez-Tapias and J. C. Saiz (2005). Dynamics of hepatitis C virus NS5A quasispecies during interferon and ribavirin therapy in responder and non-responder patients with genotype 1b chronic hepatitis C. J Gen Virol 86(Pt 4): 1067-75. Rani, M. R. and R. M. Ransohoff (2005). Alternative and accessory pathways in the regulation of IFN-beta-mediated gene expression. J Interferon Cytokine Res 25(12): 788-98. Reyes, G. R. (2002). The nonstructural NS5A protein of hepatitis C virus: an expanding, multifunctional role in enhancing hepatitis C virus pathogenesis. J Biomed Sci 9(3): 187-97. Rigaut, G., A. Shevchenko, B. Rutz, M. Wilm, M. Mann and B. Seraphin (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17(10): 1030-2. Rivas-Estilla, A. M., Y. Svitkin, M. Lopez Lastra, M. Hatzoglou, A. Sherker and A. E. Koromilas (2002). PKR-dependent mechanisms of gene expression from a subgenomic hepatitis C virus clone. J Virol 76(21): 10637-53. Samuel, C. E. (2001). Antiviral actions of interferons. Clin Microbiol Rev 14(4): 778-809, table of contents. Sarrazin, C., E. Herrmann, K. Bruch and S. Zeuzem (2002). Hepatitis C virus nonstructural 5A protein and interferon resistance: a new model for testing the reliability of mutational analyses. J Virol 76(21): 11079-90. Schindler, C., D. E. Levy and T. Decker (2007). JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282(28): 20059-63. Schwemmle, M., K. C. Weining, M. F. Richter, B. Schumacher and P. Staeheli (1995). Vesicular stomatitis virus transcription inhibited by purified MxA protein. Virology 206(1): 545-54. Shim, E. H., J. I. Kim, E. S. Bang, J. S. Heo, J. S. Lee, E. Y. Kim, J. E. Lee, W. Y. Park, S. H. Kim, H. S. Kim, O. Smithies, J. J. Jang, D. I. Jin and J. S. Seo (2002). Targeted disruption of hsp70.1 sensitizes to osmotic stress. EMBO Rep 3(9): 857-61. Shimakami, T., M. Hijikata, H. Luo, Y. Y. Ma, S. Kaneko, K. Shimotohno and S. Murakami (2004). Effect of interaction between hepatitis C virus NS5A and NS5B on hepatitis C virus RNA replication with the hepatitis C virus replicon. J Virol 78(6): 2738-48. Simmonds, P., E. C. Holmes, T. A. Cha, S. W. Chan, F. McOmish, B. Irvine, E. Beall, P. L. Yap, J. Kolberg and M. S. Urdea (1993). Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol 74 (Pt 11): 2391-9. Singleton, K. D. and P. E. Wischmeyer (2006). Effects of HSP70.1/3 gene knockout on acute respiratory distress syndrome and the inflammatory response following sepsis. Am J Physiol Lung Cell Mol Physiol 290(5): L956-61. Sondermann, H., C. Scheufler, C. Schneider, J. Hohfeld, F. U. Hartl and I. Moarefi (2001). Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291(5508): 1553-7. Staeheli, P. and J. Pavlovic (1991). Inhibition of vesicular stomatitis virus mRNA synthesis by human MxA protein. J Virol 65(8): 4498-501. Stark, G. R., I. M. Kerr, B. R. Williams, R. H. Silverman and R. D. Schreiber (1998). How cells respond to interferons. Annu Rev Biochem 67: 227-64. Sumpter, R., Jr., Y. M. Loo, E. Foy, K. Li, M. Yoneyama, T. Fujita, S. M. Lemon and M. Gale, Jr. (2005). Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79(5): 2689-99. Sun, C. A., H. C. Chen, C. F. Lu, S. L. You, Y. C. Mau, M. S. Ho, S. H. Lin and C. J. Chen (1999). Transmission of hepatitis C virus in Taiwan: prevalence and risk factors based on a nationwide survey. J Med Virol 59(3): 290-6. Taguchi, T., M. Nagano-Fujii, M. Akutsu, H. Kadoya, S. Ohgimoto, S. Ishido and H. Hotta (2004). Hepatitis C virus NS5A protein interacts with 2',5'-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J Gen Virol 85(Pt 4): 959-69. Takayama, S. and J. C. Reed (2001). Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3(10): E237-41. Taniguchi, T., K. Ogasawara, A. Takaoka and N. Tanaka (2001). IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19: 623-55. Taniguchi, T. and A. Takaoka (2002). The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14(1): 111-6. Taylor, D. R., S. T. Shi, P. R. Romano, G. N. Barber and M. M. Lai (1999). Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285(5424): 107-10. Tellinghuisen, T. L., K. L. Foss and J. Treadaway (2008). Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog 4(3): e1000032. Tellinghuisen, T. L., J. Marcotrigiano, A. E. Gorbalenya and C. M. Rice (2004). The NS5A protein of hepatitis C virus is a zinc metalloprotein. J Biol Chem 279(47): 48576-87. Tellinghuisen, T. L., J. Marcotrigiano and C. M. Rice (2005). Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. Nature 435(7040): 374-9. Terenzi, F., S. Pal and G. C. Sen (2005). Induction and mode of action of the viral stress-inducible murine proteins, P56 and P54. Virology 340(1): 116-24. Theofilopoulos, A. N., R. Baccala, B. Beutler and D. H. Kono (2005). Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23: 307-36. Thomson, B. J. and R. G. Finch (2005). Hepatitis C virus infection. Clin Microbiol Infect 11(2): 86-94. Tokumoto, Y., Y. Hiasa, N. Horiike, K. Michitaka, B. Matsuura, R. T. Chung and M. Onji (2007). Hepatitis C virus expression and interferon antiviral action is dependent on PKR expression. J Med Virol 79(8): 1120-7. Uddin, S., F. Lekmine, N. Sharma, B. Majchrzak, I. Mayer, P. R. Young, G. M. Bokoch, E. N. Fish and L. C. Platanias (2000). The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon alpha-dependent transcriptional activation but not serine phosphorylation of Stat proteins. J Biol Chem 275(36): 27634-40. Uddin, S., B. Majchrzak, J. Woodson, P. Arunkumar, Y. Alsayed, R. Pine, P. R. Young, E. N. Fish and L. C. Platanias (1999). Activation of the p38 mitogen-activated protein kinase by type I interferons. J Biol Chem 274(42): 30127-31. Uddin, S. and L. C. Platanias (2004). Mechanisms of type-I interferon signal transduction. J Biochem Mol Biol 37(6): 635-41. Uddin, S., A. Sassano, D. K. Deb, A. Verma, B. Majchrzak, A. Rahman, A. B. Malik, E. N. Fish and L. C. Platanias (2002). Protein kinase C-delta (PKC-delta) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727. J Biol Chem 277(17): 14408-16. Uematsu, S. and S. Akira (2007). Toll-like receptors and Type I interferons. J Biol Chem 282(21): 15319-23. Ukai, K., M. Ishigami, K. Yoshioka, N. Kawabe, Y. Katano, K. Hayashi, T. Honda, M. Yano and H. Goto (2006). Mutations in carboxy-terminal part of E2 including PKR/eIF2alpha phosphorylation homology domain and interferon sensitivity determining region of nonstructural 5A of hepatitis C virus 1b: their correlation with response to interferon monotherapy and viral load. World J Gastroenterol 12(23): 3722-8. Van Molle, W., B. Wielockx, T. Mahieu, M. Takada, T. Taniguchi, K. Sekikawa and C. Libert (2002). HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16(5): 685-95. Varinou, L., K. Ramsauer, M. Karaghiosoff, T. Kolbe, K. Pfeffer, M. Muller and T. Decker (2003). Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-gamma-dependent innate immunity. Immunity 19(6): 793-802. Vuillermoz, I., E. Khattab, E. Sablon, I. Ottevaere, D. Durantel, C. Vieux, C. Trepo and F. Zoulim (2004). Genetic variability of hepatitis C virus in chronically infected patients with viral breakthrough during interferon-ribavirin therapy. J Med Virol 74(1): 41-53. Wang, C., J. Pflugheber, R. Sumpter, Jr., D. L. Sodora, D. Hui, G. C. Sen and M. Gale, Jr. (2003). Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication. J Virol 77(7): 3898-912. Watanabe, K., K. Yoshioka, M. Yano, M. Ishigami, K. Ukai, H. Ito, F. Miyata, T. Mizutani and H. Goto (2005). Mutations in the nonstructural region 5B of hepatitis C virus genotype 1b: their relation to viral load, response to interferon, and the nonstructural region 5A. J Med Virol 75(4): 504-12. Weber, F. (2007). Interaction of hepatitis C virus with the type I interferon system. World J Gastroenterol 13(36): 4818-23. Wen, Z., Z. Zhong and J. E. Darnell, Jr. (1995). Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82(2): 241-50. Williams, B. R. (1999). PKR; a sentinel kinase for cellular stress. Oncogene 18(45): 6112-20. Wohnsland, A., W. P. Hofmann and C. Sarrazin (2007). Viral determinants of resistance to treatment in patients with hepatitis C. Clin Microbiol Rev 20(1): 23-38. Wu, B., C. Hunt and R. Morimoto (1985). Structure and expression of the human gene encoding major heat shock protein HSP70. Mol Cell Biol 5(2): 330-41. Wu, J. S., H. F. Lee, H. L. Hsiau, | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41724 | - |
| dc.description.abstract | C型肝炎是全球性的重要肝臟疾病,並且是造成肝硬化及肝癌的主要病因之一。而目前所使用的干擾素(Interferon)及ribavirin合併療法對於HCV患者並無法達到令人滿意的治療效果。臨床觀察發現患者的治癒率會隨著其感染不同基因型的病毒而有很大的差異,感染基因型2的病人治癒率會顯著高於基因型1的病人。由於C型肝炎病毒的非結構蛋白NS5A被認為是C型肝炎病毒拮抗IFN效果的重要因子之一,我們針對NS5A所具有的IFN拮抗性深入探討,並研究NS5A是否為造成不同基因型HCV在治療反應上互異的可能原因。在第一部分的實驗中,我們證實了NS5A的確具有抑制IFN功能的作用,也找出NS5A中的ISDR區域、V3區域及C端區域對於NS5A所具有的IFN拮抗性最為重要。我們並收集了共十五名分別感染基因型1b及2a的HCV患者樣本,比較兩基因型來源的NS5A蛋白質對IFN的抑制效果,結果發現來自基因型1b的NS5A蛋白質確實會比來自基因型2a的NS5A蛋白質具有更強大的IFN拮抗效果。若將不同基因型的NS5A換入HCV replicon中,也同樣的可以發現帶有基因型1b的NS5A蛋白的replicon會對於IFN的處理具有較強的抵抗性。我們並分析出兩基因型之間在V3區域與C端區域的序列互換會左右NS5A蛋白質對IFN的抑制效果強弱。在第二部份的實驗中我們針對NS5A 能夠抑制IFN下游基因表現的機制進行探討。我們初步排除了NS5A對於JAK-STAT等多個參與IFN下游訊息傳導路徑的影響,因此希望尋找其他可能調控IFN下游基因表現且又被NS5A抑制的未知分子。我們利用TAP (tandem affinity purification)方法找到NS5A會與細胞中的heat shock protein 70-1 (Hsp70-1)結合。深入研究後發現在細胞中過度表現Hsp70-1能夠將IFN所引發的ISRE promoter活化作用增強至兩倍之多,而若將細胞中的Hsp70-1表現量以siRNA方法減少,則會發現IFN所引發的ISRE promoter活化作用降低了四分之一,由此可知Hsp70-1在細胞中對於IFN下游基因表現是具有正向調控的效果。如果將Hsp70-1與不同劑量的NS5A同時在細胞中表現時,NS5A會隨著劑量增高而逐漸把Hsp70-1對IFN引發ISRE活化所具有的正向增強效果給抑制抵銷掉。總結以上的實驗結果,不同基因型來源的NS5A所具有不同能力的IFN拮抗性或許可以用來部份說明不同基因型的HCV對IFN治療反應的差異;而NS5A與細胞內Hsp70-1的結合及抑制其對IFN正向調控的作用則可能是NS5A影響IFN功能的機制之一。 | zh_TW |
| dc.description.abstract | Chronic hepatitis C infection is a global health burden as being the leading cause of liver cirrhosis and hepatocellular carcinoma. Currently, interferon (IFN) therapy, in combination with ribavirin, has been the most widely used treatment for hepatitis C virus (HCV) infection. It has a sustained response rate of about 75~80% for patients infected with HCV genotype 2, but only about 35~45% for those infected with HCV genotype 1. Since the non-structural 5A protein (NS5A) of HCV had been suggested as one of the viral determinants of IFN resistance, the present study investigated the anti-IFN mechanism of NS5A and whether NS5A of HCV genotypes 1 and 2 (1b-NS5A and 2a-NS5A, respectively) exerted differential counteractive effects against IFN treatment. First, we validated the IFN antagonism of NS5A and identified the interferon sensitivity-determining region/protein kinase R-binding domain (ISDR/ PKR-BD), the V3 domain, and the C-terminus region as the domains required for its anti-IFN activity. In the comparison between genotypes, it was found that 1b-NS5As exerted more profound inhibitory effects on IFN activity than 2a-NS5As. The replication of the 2a-NS5A-containing replicons was more sensitive to IFN treatment than that of the 1b-NS5A-containing replicons. By domain swapping, we found the V3 and the C-terminus regions were responsible for the differential anti-IFN effects between genotypes. Next, we focused on investigating the underlying mechanism by which NS5A inhibits the IFN-induced expression of interferon-stimulated genes (ISGs). By examining the JAK-STAT signaling and other alternative pathways that regulate IFN-induced transcription, we found no effect of NS5A on these signaling pathways. Thus we aimed at discovering other cellular molecules that involve in IFN-induced ISRE activation and that is targeted by NS5A. We used tandem affinity purification (TAP) to find NS5A-interacting cellular factors. As a result, heat shock protein 70-1 (Hsp70-1) was identified by LC-MS/MS analysis. The interaction between NS5A and Hsp70-1 was confirmed by co-immunoprecipitation assay in vivo. The exploration on the role of Hsp70-1 in IFN-induced ISRE activation revealed that overexpression of Hsp70-1 in 293T cells resulted in a 114% increase of IFN-induced ISRE activation, and knockdown of Hsp70-1 resulted in a 25% decrease. Furthermore, the positive regulation of Hsp70-1 on IFN-induced ISRE activation was offset by NS5A in a dose-dependent manner. These observations demonstrated that Hsp70-1 functions as a positive regulator in IFN-induced signaling and there are counteractive effects between Hsp70-1 and NS5A. In conclusion, that 1b-NS5As exert higher magnitudes of IFN antagonism than do 2a-NS5As may partly explain the genotype-linked differences in the response of HCV to IFN treatment and that NS5A interacts with and inhibits Hsp70-1 provides a possible mechanism by which NS5A utilizes to disturb IFN-induced ISRE activation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:29:01Z (GMT). No. of bitstreams: 1 ntu-98-F90445104-1.pdf: 3590574 bytes, checksum: 350e88067ad4b72774473628a5ab9ca6 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii Table of Contents v Chapter 1 Introduction 1 1.1 Hepatitis C Virus 2 1.1.1 HCV genome and viral proteins 2 1.1.2 HCV Replication 4 1.1.3 Treatment strategy and virologic response rate 5 1.1.4 HCV infection in Taiwan 6 1.2 Type I Interferon 7 1.2.1 Induction of Type I IFN production 7 1.2.2 IFN Signaling pathway 9 1.2.3 Alternative pathways and accessory components of type I IFN signaling 10 1.2.4 Antiviral activities and virus evasion 14 1.3 Interaction between Hepatitis C Virus and Type I Interferon System 15 1.3.1 HCV as a trigger of IFN anti-viral activity 15 1.3.2 HCV proteins with anti-IFN activity 16 1.4 Hepatitis C Virus NS5A Protein and its Anti-Interferon Activity 16 1.4.1 Protein structure and function of NS5A protein 17 1.4.2 The ISDR, the PKR-BD, and inhibition of PKR 18 1.4.3 The V3 region 20 1.4.4 Inhibition of 2’, 5’-OAS pathway 20 1.4.5 Induction of IL-8 expression 21 1.5 Heat Shock Protein 70 Family 22 1.5.1 Cellular functions of Hsp70s 22 1.5.2 Structure of Hsp70s 22 1.5.3 Molecular mechanism of the Hsp70 chaperons 23 1.5.4 Hsp70-1 24 1.6 Specific Aims of this Study 25 1.6.1 To investigate the IFN antagonism of NS5A proteins from genotypes 1b and 2a 25 1.6.2 To explore the possible mechanisms which NS5A employs to disturb IFN-induced ISRE activation 25 Chapter 2 Materials and Methods 27 2.1 Cell Lines 28 2.2 Constructs 28 2.3 Western Blotting and Antibodies 30 2.4 Silver Staining 32 2.5 Viruses 33 2.6 Plaque Assay 33 2.7 Trans-Rescue Assay 34 2.8 ISRE-Luc Reporter Assay 35 2.9 Quantitative Real-Time PCR Analysis of ISGs 35 2.10 HCV Replicon RNA Transfection and Replication Analysis 36 2.11 Chromatin Immunoprecipitation 37 2.12 TAP Purification of NS5A-Interacting Cellular Proteins 39 2.13 Co-Immunoprecipitation 40 2.14 Knockdown of Hsp70-1 and PKR by siRNA 40 Chapter 3 Results 42 3.1 HCV NS5A inhibits IFN activity with a genotype-related manner 43 3.1.1 HCV NS5A inhibits IFN-induced ISRE promoter activation and IFN-mediated anti-VSV activity 43 3.1.2 The ISDR/PKR-BD, the V3 domain, and the C-terminus region are required for the anti-IFN activity of NS5A 45 3.1.3 1b-NS5As and 2a-NS5As display differential inhibitory effects on the IFN-induced signaling, anti-viral activity, and transcription of ISGs 46 3.1.4 The HCV subgenomic and genomic replicons harboring 1b-NS5A or 2a-NS5A display differential IFN responses 48 3.1.5 HCV 1b-NS5A sequences are distinct from 2a-NS5A sequences in three major regions 49 3.1.6 The V3 and the C-terminus regions are responsible for the differential anti-IFN effects of 1b-NS5As and 2a-NS5As 51 3.2 Mechanistic investigation of the IFN antagonism of NS5A 52 3.2.1 IFN-induced transduction of JAK-STAT signaling and the interaction of ISGF3 complex with ISRE were not affected by NS5A 53 3.2.2 PKR is not required for ISRE-Luc activation in our assay model 54 3.2.3 NS5A does not inhibit IFN-induced activation of p38 55 3.2.4 NS5A does not affect the phosphorylation on Ser727 of STAT1 57 3.2.5 NS5A does not induce IL-8 expression in our assay system 57 3.3 The interaction of NS5A with Hsp70-1 58 3.3.1 Hsp70-1 is identified as a NS5A-interacting cellular protein 58 3.3.2 NS5A interacts with Hsp70-1 in vivo 59 3.3.3 The domains required for the NS5A-Hsp70-1 interaction 60 3.3.4 Hsp70-1 has a positive regulative role on IFN-induced ISRE activation 61 3.3.5 The counteractive effect between NS5A and Hsp70-1 62 3.3.6 1b- and 2a-NS5As show no genotypic difference in the interaction with Hsp70-1 63 Chapter 4 Discussion and Concluding Remarks 66 4.1 Summary 67 4.2 The genotypic difference of NS5A 68 4.3 The mechanism of the IFN antagonism of NS5A 71 4.4 Interaction between NS5A and Hsp70-1 74 4.5 Future directions and concluding remarks 77 Chapter 5 Figures & Tables 79 Figure 1. Inhibition of IFN-induced ISRE-Luc expression and anti-VSV activity by HCV NS5A. 80 Figure 2. The inhibition of IFN activity by HCV NS5A is not a cell-type or virus-type specific effect. 81 Figure 3. The domains essential for the IFN antagonism of NS5A. 82 Figure 4. NS5A proteins from genotypes 1b and 2a exhibit differential inhibitory effects on IFN activity. 84 Figure 5. NS5A proteins from genotypes 1b and 2a exhibit differential inhibitory effects on IFN-induced expression of endogenous ISGs. 86 Figure 6. HCV replicons containing NS5A protein from genotypes 1b and 2a exhibit differential response to IFN treatment. 87 Figure 7. Amino acid sequence alignment between 1b-NS5As and 2a-NS5As 88 Figure 8. Domain swapping was performed to determine the regions responsible for the differential anti-IFN activity between 1b-NS5As and 2a-NS5As. 90 Figure 9. Effects of NS5A on the interaction of ISGF3 complex with ISRE-containing promoters. 92 Figure 10. Verification of the role of PKR in IFN-induced ISRE activation. 93 Figure 11. Verification of the role of p38 in IFN-induced ISRE activation and the effect of NS5A on p38 phosphorylation. 94 Figure 12. Effect of NS5A on IFN-induced phosphorylation on STAT1 Ser721. 95 Figure 13. Effect of NS5A on the expression level of IL-8 RNA. 96 Figure 14. TAP purification of NS5A-interacting cellular proteins. 97 Figure 15. The LC-MS/MS report revealed a NS5A-interacting protein as Hsp70-1. 98 Figure 16. Confirmation of the interaction between NS5A and Hsp70-1. 99 Figure 17. The interacting domain within NS5A to bind Hsp70-1. 100 Figure 18. The interacting domain within Hsp70-1 to bind NS5A. 101 Figure 19. Hsp70-1 enhanced IFN-induced ISRE activation. 102 Figure 20. The functional interaction between NS5A and Hsp70-1. 103 Figure 21. The interaction between Hsp70-1 with 1b-NS5As and 2a-NS5As. 104 Figure 22. The effect of Hsp70-1 knockdown on the replication of HCV. 105 Table 1. The primers used for the generation of NS5A deletion mutants 106 Table 2. The primers used for real-time PCR quantification of gene expression 107 Table 3. The primers used for real-time quantification of HCV replicon RNA 108 Table 4. The primers used for PCR amplification of ISG promoters in ChIP assay 109 Table 5. Primers used for the cloning of wild-type and mutants of Hsp70-1 110 Chapter 6 References 111 Appendix 127 | |
| dc.language.iso | en | |
| dc.subject | C型肝炎病毒 | zh_TW |
| dc.subject | 干擾素拮抗作用 | zh_TW |
| dc.subject | 基因型 | zh_TW |
| dc.subject | 非結構蛋白5A | zh_TW |
| dc.subject | IFN antagonism | en |
| dc.subject | Hsp70-1 | en |
| dc.subject | Genotype | en |
| dc.subject | NS5A | en |
| dc.subject | Hepatitis C virus | en |
| dc.title | C型肝炎病毒非結構蛋白5A對甲型干擾素具有拮抗作用之機制探討 | zh_TW |
| dc.title | Mechanistic Investigation of the IFN-alpha Antagonism of Hepatitis C Virus Non-Structural Protein 5A | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳培哲,陳美如,董馨蓮,李建國,林宜玲 | |
| dc.subject.keyword | C型肝炎病毒,非結構蛋白5A,基因型,干擾素拮抗作用, | zh_TW |
| dc.subject.keyword | Hepatitis C virus,NS5A,Genotype,IFN antagonism,Hsp70-1, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-01-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
