請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41723完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張?仁 | |
| dc.contributor.author | Yu-Wun Jiang | en |
| dc.contributor.author | 江玉雯 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:28:59Z | - |
| dc.date.available | 2009-02-03 | |
| dc.date.copyright | 2009-02-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-01-20 | |
| dc.identifier.citation | 1. Chen, G. and D.V. Goeddel, TNF-R1 signaling: a beautiful pathway. Science, 2002. 296(5573): p. 1634-5.
2. Wajant, H., K. Pfizenmaier, and P. Scheurich, Tumor necrosis factor signaling. Cell Death Differ, 2003. 10(1): p. 45-65. 3. Dean, J.L., et al., The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal, 2004. 16(10): p. 1113-21. 4. Ghosh, S. and M. Karin, Missing pieces in the NF-kappaB puzzle. Cell, 2002. 109 Suppl: p. S81-96. 5. Clark, A.R., J.L. Dean, and J. Saklatvala, Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett, 2003. 546(1): p. 37-44. 6. Tchen, C.R., et al., The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. J Biol Chem, 2004. 279(31): p. 32393-400. 7. Perkins, N.D., The Rel/NF-kappa B family: friend and foe. Trends Biochem Sci, 2000. 25(9): p. 434-40. 8. Zabel, U., R. Schreck, and P.A. Baeuerle, DNA binding of purified transcription factor NF-kappa B. Affinity, specificity, Zn2+ dependence, and differential half-site recognition. J Biol Chem, 1991. 266(1): p. 252-60. 9. Gerritsen, M.E., et al., CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci U S A, 1997. 94(7): p. 2927-32. 10. Sheppard, K.A., et al., Transcriptional activation by NF-kappaB requires multiple coactivators. Mol Cell Biol, 1999. 19(9): p. 6367-78. 11. Furia, B., et al., Enhancement of nuclear factor-kappa B acetylation by coactivator p300 and HIV-1 Tat proteins. J Biol Chem, 2002. 277(7): p. 4973-80. 12. Kiernan, R., et al., Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem, 2003. 278(4): p. 2758-66. 13. Barboric, M., et al., NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell, 2001. 8(2): p. 327-37. 14. Waterborg, J.H., Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem Cell Biol, 2002. 80(3): p. 363-78. 15. Urnov, F.D. and A.P. Wolffe, Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene, 2001. 20(24): p. 2991-3006. 16. Sengupta, N. and E. Seto, Regulation of histone deacetylase activities. J Cell Biochem, 2004. 93(1): p. 57-67. 17. Marks, P., et al., Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer, 2001. 1(3): p. 194-202. 18. Kim, M.S., et al., Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med, 2001. 7(4): p. 437-43. 19. Nair, A.R., et al., Paradoxical effects of trichostatin A: inhibition of NF-Y-associated histone acetyltransferase activity, phosphorylation of hGCN5 and downregulation of cyclin A and B1 mRNA. Cancer Lett, 2001. 166(1): p. 55-64. 20. Tong, X., L. Yin, and C. Giardina, Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem Biophys Res Commun, 2004. 317(2): p. 463-71. 21. Yoshida, M., et al., Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem, 1990. 265(28): p. 17174-9. 22. Drummond, D.C., et al., Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol, 2005. 45: p. 495-528. 23. Adcock, I.M., HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol, 2007. 150(7): p. 829-31. 24. Glozak, M.A., et al., Acetylation and deacetylation of non-histone proteins. Gene, 2005. 363: p. 15-23. 25. Chen, L., et al., Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science, 2001. 293(5535): p. 1653-7. 26. Karin, M., Nuclear factor-kappaB in cancer development and progression. Nature, 2006. 441(7092): p. 431-6. 27. Smith, W.L. and L.J. Marnett, Prostaglandin endoperoxide synthase: structure and catalysis. Biochim Biophys Acta, 1991. 1083(1): p. 1-17. 28. DeWitt, D.L., Prostaglandin endoperoxide synthase: regulation of enzyme expression. Biochim Biophys Acta, 1991. 1083(2): p. 121-34. 29. Feng, L., et al., Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression. Arch Biochem Biophys, 1993. 307(2): p. 361-8. 30. Bidgood, M.J., et al., Type IIA secretory phospholipase A2 up-regulates cyclooxygenase-2 and amplifies cytokine-mediated prostaglandin production in human rheumatoid synoviocytes. J Immunol, 2000. 165(5): p. 2790-7. 31. Crofford, L.J., et al., Involvement of nuclear factor kappa B in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis Rheum, 1997. 40(2): p. 226-36. 32. Marrogi, A., et al., Human mesothelioma samples overexpress both cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (NOS2): in vitro antiproliferative effects of a COX-2 inhibitor. Cancer Res, 2000. 60(14): p. 3696-700. 33. Vane, J.R., et al., Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci U S A, 1994. 91(6): p. 2046-50. 34. Seibert, K., et al., Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A, 1994. 91(25): p. 12013-7. 35. Tsujii, M., S. Kawano, and R.N. DuBois, Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A, 1997. 94(7): p. 3336-40. 36. Wu, K.K., Control of cyclooxygenase-2 transcriptional activation by pro-inflammatory mediators. Prostaglandins Leukot Essent Fatty Acids, 2005. 72(2): p. 89-93. 37. Gorgoni, B., et al., The transcription factor C/EBPbeta is essential for inducible expression of the cox-2 gene in macrophages but not in fibroblasts. J Biol Chem, 2001. 276(44): p. 40769-77. 38. D'Acquisto, F., et al., Involvement of NF-kappaB in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages. FEBS Lett, 1997. 418(1-2): p. 175-8. 39. Kojima, M., et al., Lipopolysaccharide increases cyclo-oxygenase-2 expression in a colon carcinoma cell line through nuclear factor-kappa B activation. Oncogene, 2000. 19(9): p. 1225-31. 40. Zubiaga, A.M., J.G. Belasco, and M.E. Greenberg, The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol, 1995. 15(4): p. 2219-30. 41. Bakheet, T., B.R. Williams, and K.S. Khabar, ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res, 2006. 34(Database issue): p. D111-4. 42. Stoecklin, G., et al., Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. Embo J, 2002. 21(17): p. 4709-18. 43. Dean, J.L., et al., The 3' untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol, 2001. 21(3): p. 721-30. 44. Carballo, E., W.S. Lai, and P.J. Blackshear, Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood, 2000. 95(6): p. 1891-9. 45. Taylor, G.A., et al., A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity, 1996. 4(5): p. 445-54. 46. Anderson, P., Post-transcriptional control of cytokine production. Nat Immunol, 2008. 9(4): p. 353-9. 47. Carballo, E., W.S. Lai, and P.J. Blackshear, Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science, 1998. 281(5379): p. 1001-5. 48. Clark, A., Post-transcriptional regulation of pro-inflammatory gene expression. Arthritis Res, 2000. 2(3): p. 172-4. 49. Stoecklin, G. and P. Anderson, Posttranscriptional mechanisms regulating the inflammatory response. Adv Immunol, 2006. 89: p. 1-37. 50. Fenger-Gron, M., et al., Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell, 2005. 20(6): p. 905-15. 51. Franks, T.M. and J. Lykke-Andersen, TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev, 2007. 21(6): p. 719-35. 52. Sauer, I., et al., Interferons limit inflammatory responses by induction of tristetraprolin. Blood, 2006. 107(12): p. 4790-7. 53. Lai, W.S., et al., Promoter analysis of Zfp-36, the mitogen-inducible gene encoding the zinc finger protein tristetraprolin. J Biol Chem, 1995. 270(42): p. 25266-72. 54. Lai, W.S., M.J. Thompson, and P.J. Blackshear, Characteristics of the intron involvement in the mitogen-induced expression of Zfp-36. J Biol Chem, 1998. 273(1): p. 506-17. 55. Chen, Y.-L., Regulation of Lipopolysaccharide-induced Genes Expression in Mouse Macrophages. Doctoral dissertation, 2007. 56. Lin, N.Y., et al., Regulation of tristetraprolin during differentiation of 3T3-L1 preadipocytes. Febs J, 2007. 274(3): p. 867-78. 57. Hwang, D., et al., Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide : Mediation through both mitogen-activated protein kinase and nf-kb signaling pathways in macrophages. Biochemical Pharmacology, 1997. 54(1): p. 87-96. 58. Sorli, C.H., et al., Basal expression of cyclooxygenase-2 and nuclear factor-interleukin 6 are dominant and coordinately regulated by interleukin 1 in the pancreatic islet. Proc Natl Acad Sci U S A, 1998. 95(4): p. 1788-93. 59. Wilson, A.J., et al., Novel detection and differential utilization of a c-myc transcriptional block in colon cancer chemoprevention. Cancer Res, 2002. 62(21): p. 6006-10. 60. Kemp, M.G., et al., The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res, 2005. 33(1): p. 325-36. 61. Fu, J., et al., Regulation of P-TEFb elongation complex activity by CDK9 acetylation. Mol Cell Biol, 2007. 27(13): p. 4641-51. 62. Sabo, A., et al., Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription. Mol Cell Biol, 2008. 28(7): p. 2201-12. 63. Lai, W.S., E.A. Kennington, and P.J. Blackshear, Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem, 2002. 277(11): p. 9606-13. 64. Tong, X., et al., Cyclooxygenase-2 regulation in colon cancer cells: modulation of RNA polymerase II elongation by histone deacetylase inhibitors. J Biol Chem, 2005. 280(16): p. 15503-9. 65. Eberhardy, S.R. and P.J. Farnham, c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J Biol Chem, 2001. 276(51): p. 48562-71. 66. Napolitano, G., et al., Transcriptional activity of positive transcription elongation factor b kinase in vivo requires the C-terminal domain of RNA polymerase II. Gene, 2000. 254(1-2): p. 139-45. 67. Garriga, J. and X. Grana, Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene, 2004. 337: p. 15-23. 68. Conaway, J.W., et al., Control of elongation by RNA polymerase II. Trends Biochem Sci, 2000. 25(8): p. 375-80. 69. Cao, W., et al., Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med, 2008. 205(6): p. 1491-503. 70. Chi, H. and R.A. Flavell, Acetylation of MKP-1 and the control of inflammation. Sci Signal, 2008. 1(41): p. pe44. 71. Hoffmann, A., G. Natoli, and G. Ghosh, Transcriptional regulation via the NF-kappaB signaling module. Oncogene, 2006. 25(51): p. 6706-16. 72. Cross, S.L., et al., Functionally distinct NF-kappa B binding sites in the immunoglobulin kappa and IL-2 receptor alpha chain genes. Science, 1989. 244(4903): p. 466-9. 73. Tabuchi, Y., et al., DNA microarray analyses of genes elicited by ultrasound in human U937 cells. Biochem Biophys Res Commun, 2002. 290(1): p. 498-503. 74. Mariadason, J.M., G.A. Corner, and L.H. Augenlicht, Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res, 2000. 60(16): p. 4561-72. 75. Finco, T.S., A.A. Beg, and A.S. Baldwin, Jr., Inducible phosphorylation of I kappa B alpha is not sufficient for its dissociation from NF-kappa B and is inhibited by protease inhibitors. Proc Natl Acad Sci U S A, 1994. 91(25): p. 11884-8. 76. Place, R.F., E.J. Noonan, and C. Giardina, HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol, 2005. 70(3): p. 394-406. 77. Pryzbylkowski, P., O. Obajimi, and J.C. Keen, Trichostatin A and 5 Aza-2' deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR. Breast Cancer Res Treat, 2008. 111(1): p. 15-25. 78. Sureban, S.M., et al., Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology, 2007. 132(3): p. 1055-65. 79. Finnin, M.S., et al., Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 1999. 401(6749): p. 188-93. 80. Su, G.H., et al., A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res, 2000. 60(12): p. 3137-42. 81. Shim, J. and M. Karin, The control of mRNA stability in response to extracellular stimuli. Mol Cells, 2002. 14(3): p. 323-31. 82. Chen, C.Y. and A.B. Shyu, AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci, 1995. 20(11): p. 465-70. 83. Gao, M., et al., A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements. Embo J, 2001. 20(5): p. 1134-43. 84. Mukherjee, D., et al., The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. Embo J, 2002. 21(1-2): p. 165-74. 85. Chen, C.Y. and A.B. Shyu, Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol Cell Biol, 1994. 14(12): p. 8471-82. 86. Kontoyiannis, D., et al., Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity, 1999. 10(3): p. 387-98. 87. Hitti, E., et al., Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol, 2006. 26(6): p. 2399-407. 88. Brook, M., et al., Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol Cell Biol, 2006. 26(6): p. 2408-18. 89. Lasa, M., et al., Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol, 2000. 20(12): p. 4265-74. 90. Winzen, R., et al., The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. Embo J, 1999. 18(18): p. 4969-80. 91. Brook, M., et al., Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett, 2000. 483(1): p. 57-61. 92. Ming, X.F., M. Kaiser, and C. Moroni, c-jun N-terminal kinase is involved in AUUUA-mediated interleukin-3 mRNA turnover in mast cells. Embo J, 1998. 17(20): p. 6039-48. 93. Chen, C.Y., et al., Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science, 1998. 280(5371): p. 1945-9. 94. Ming, X.F., et al., Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol, 2001. 21(17): p. 5778-89. 95. Sheng, H., J. Shao, and R.N. Dubois, K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B1. Cancer Res, 2001. 61(6): p. 2670-5. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41723 | - |
| dc.description.abstract | 腫瘤壞死因子(Tumor necrosis factor-α, TNF-α)是一個免疫系統中的細胞激素,此細胞激素也能夠刺激急性反應的發生。我們研究了二個被TNF-α所誘導表現的基因的調控機制:環氧化酵素(cyclooxygenase-2, COX-2)以及Tristetraprolin (TTP)。我們觀察到在NIH3T3細胞中,COX-2 mRNA可以被TNF-α所誘導表現,並且TNF-α的誘導效果能夠被組蛋白去乙醯化酵素抑制劑TSA所抑制。除此之外,NFκB抑制劑BAY也具有和TSA相同的抑制效果,因此我們推測NFκB signaling pathway可能對COX-2的調控有重要影響。但是實驗結果卻發現NFκB 在細胞核與質的分佈或者與DNA的結合能力都不受TSA影響。最後藉由chromatin immunoprecipitation的方法知道TSA是作用在抑制polymerase II進行cox-2基因轉錄的elongation階段,至於詳細的分子機制仍需進一步的探討。另一個研究的主題是TTP mRNA穩定性的調控機制:當細胞受到TNF-α刺激時,TTP mRNA的半衰期會短暫地增長使mRNA能夠累積表現,進一步的研究後知道這個變化是在post-transcriptional level受到3’ untranslated region上AU-rich element的調控。我們會再進一步了解這個調控方式是透過何種訊息傳導來達成。 | zh_TW |
| dc.description.abstract | Tumor necrosis factor (TNF)-α is a cytokine involved in systemic inflammation, and is a member of a group of cytokines that stimulate the acute phase reaction. In this study, we focus on the regulatory mechanism of two TNF-α induced genes, cyclooxygenase-2 (COX-2) and Tristetraprolin (TTP). Using NIH3T3 cell line as a model, we found that COX-2 mRNA was activated by TNF-α treatment, and histone deacetylase inhibitor (HDACi) TSA could significantly block COX-2 activation. In addition, TNFα induced COX-2 expression could be inhibited by NFκB inhibitor BAY to a similar level as TSA. This indicated that NFκB signaling pathway may play an important role in modulating COX-2 expression. However, effects of TSA were not on NFκB nucleocytoplasmic distribution or DNA-binding ability. Results of chromatin immunoprecipitation (ChIP) assay revealed that TSA impaired COX-2 mRNA production by suppressing polymerase II elongation on the cox-2 gene. Further investigation on the molecular mechanism of this action would help to understand how HDACi suppressed gene expression. Another focus of this study is about the transient stabilization of TTP mRNA in response to TNF-α stimulation. We investigated the role of 3’untranslated region (UTR) in the regulation mechanism of TTP, and we found that the AU-rich element (ARE) was crucial for TTP expression modulation in the post-transcriptional level. Nevertheless, related works are still ongoing to explore the signaling cascade involved in transient TTP mRNA accumulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:28:59Z (GMT). No. of bitstreams: 1 ntu-98-R95b46036-1.pdf: 3249737 bytes, checksum: 53062c12e7fe3ee705603d002382e603 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 中文摘要 英文摘要 I. INTRODUCTION Tumor necrosis factor signaling...1 NFκB...3 HDAC inhibitors...5 Cyclooxygenase-2 (COX-2)...6 AU-rich element (ARE)-mediated mRNA stability regulation...7 Tristetraprolin (TTP)...9 II. MATERIALS AND METHODS Cell culture...13 Reagents for cell treatment...13 Plasmids and constructs...14 Site-directed mutagenesis...15 RNA isolation...16 Real-time PCR...17 Transient transfection, luciferase and galactosidase assays...17 Preparation of cytosolic and nuclear extracts and Western blotting assay...18 Electrophoretic mobility shift assay (EMSA)...19 Chromatin-immunoprecipitation (ChIP)...20 RNA pull-down assay...22 III. RESULTS Part I TSA suppressed TNF-α induced COX-2 mRNA expression in a cell type-specific manner...23 Both HDAC inhibitors, TSA and sodium butyrate impaired COX-2 production...24 NFκB inhibitor had a similar effect as TSA in suppressing COX-2 mRNA expression...25 cox-2 promoter contained a functional NFκB element...26 TSA did not alter NFκB expression and nucleocytoplasmic shuttling during TNF-α activation...27 TSA did not alter NFκB DNA binding ability during TNF-α activation...28 TSA suppressed COX-2 activation by inhibiting polymerase II enlongation...29 Suppression of polymerase elongation by TSA was not due to alternation of the interaction between NFκB and P-TEFb...31 Part II The expression profile of TTP during TNF-α stimulation of RAW264.7...32 Rapid change of TTP mRNA stability in the course of TNF-α stimulation...33 ARE as an essential element on ttp 3’UTR in regulating TTP expression...34 F118N mutant was created to monitor the possibility of TTP negative autoregulation...36 TTP AREs mediated the reduction of reporter activity...38 Detection of TTP ARE-binding proteins...39 IV. DISCUSSION Part I Reduction of COX-2 expression was due to TSA-induced pre-mature transcription...40 TSA may modulate signaling transduction pathways...41 TSA suppressed TNF-α induced COX-2 mRNA expression in a cell type-specific manner...42 TSA-induced initiation of cox-2 transcription is cell type-specific...43 TSA did not alter NFκB activity in TNF-α stimulated NIH3T3 cells...44 Inhibition of COX-2 basal level expression by TSA...46 Impaired COX-2 production by TSA and sodium butyrate but not by Apicidin or Scriptaid...46 Part II The stability of TTP mRNA changes rapidly in response to TNF-α stimulation...48 TTP ARE as a sufficient regulatory target of mRNA stabilization...48 Possible signaling transduction pathways involved in the stability of TTP mRNA...49 Detection of destabilizing or stabilizing proteins associated with TTP AREs...51 V. FIGURES Figure 1. TNF-α and COX-2 mRNA expression profile in response to TNF-α and TSA...52 Figure 2. Effects of various HDAC inhibitors on TNF-α-induced COX-2 mRNA expression in NIH3T3 cells...54 Figure 3. Effects of BAY on TNF-α-induced COX-2 mRNA expression in NIH3T3 cells...55 Figure 4. Analysis of cox-2 promoter activity in TSA-treated and TNF-α-stimulated NIH3T3 cells...56 Figure 5. NFκB expression and subcellular localization of TSA treated and TNF-α-stimulated NIH3T3 cells...57 Figure 6. DNA binding activity of NFκB on murine cox-2 promoter...58 Figure 7. Association of pol II on exon 1, 2, and 10 of the cox-2 gene...60 Figure 8. NFκB and P-TEFb association in TSA-treated and TNF-α-stimulated NIH3T3 cells...61 Figure 9. TTP mRNA and protein expression of TNF-α stimulated RAW264.7...62 Figure 10. TTP mRNA stability in TNF-α-stimulated RAW264.7 cells...64 Figure 11. Ectopic expression of TTP constructs...65 Figure 12. RNA pull-down assay...69 Figure 13. Functional characterization of TTP AREs...70 Figure 14. Identification of TTP ARE-associated protein by RNA pull-down...71 VI. SUPPLEMENTAL DATA AND TABLES Supplemental data 1. Subcellular localization of HuR...72 Supplemental data 2. COX-2 mRNA stability in response to TSA in NIH3T3 cells...73 Table 1. Histone deacetylase inhibitors...74 VII. REFERENCES...75 VIII. ABBREVIAION AND CHEMICAL SYMBOLS...82 | |
| dc.language.iso | en | |
| dc.subject | AU富含區 | zh_TW |
| dc.subject | 腫瘤壞死因子 | zh_TW |
| dc.subject | 環氧化酵素 | zh_TW |
| dc.subject | 核酸結合蛋白TTP | zh_TW |
| dc.subject | 組蛋白去乙醯化酵素抑制劑 | zh_TW |
| dc.subject | tristetraprolin | en |
| dc.subject | TNF-α | en |
| dc.subject | AU-rich element | en |
| dc.subject | cyclooxygenase-2 | en |
| dc.subject | histone deacetylase inhibitor | en |
| dc.title | 腫瘤壞死因子TNFα誘發基因表現之機轉
Part I: 組蛋白去乙醯化酵素抑制劑trichostatin A對環氧化酵素COX-2基因表現的抑制作用 Part II: RNA結合蛋白tristetraprolin的後轉錄調節 | zh_TW |
| dc.title | The mechanism of TNFα-induced gene expression
Part I: HDAC inhibitor trichostatin A-mediated inhibition of cyclooxygenase 2 gene expression Part II: The post-transcriptional regulation of RNA-binding protein tristetraprolin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂勝春,果伽蘭,譚賢明 | |
| dc.subject.keyword | 腫瘤壞死因子,環氧化酵素,核酸結合蛋白TTP,組蛋白去乙醯化酵素抑制劑,AU富含區, | zh_TW |
| dc.subject.keyword | TNF-α,cyclooxygenase-2,tristetraprolin,histone deacetylase inhibitor,AU-rich element, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-01-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
