Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41722
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱瑞民
dc.contributor.authorChien-Chun Paien
dc.contributor.author白劍群zh_TW
dc.date.accessioned2021-06-15T00:28:56Z-
dc.date.available2010-02-03
dc.date.copyright2009-02-03
dc.date.issued2009
dc.date.submitted2009-01-20
dc.identifier.citationReference
[1] Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973 May 1;137(5):1142-62.
[2] Wu L, Liu YJ. Development of dendritic-cell lineages. Immunity 2007 Jun;26(6):741-50.
[3] Benko S, Magyarics Z, Szabo A, Rajnavolgyi E. Dendritic cell subtypes as primary targets of vaccines: the emerging role and cross-talk of pattern recognition receptors. Biol Chem 2008 May;389(5):469-85.
[4] Valladeau J, Saeland S. Cutaneous dendritic cells. Semin Immunol 2005 Aug;17(4):273-83.
[5] von Bubnoff D, Bausinger H, Matz H, Koch S, Hacker G, Takikawa O, et al. Human epidermal langerhans cells express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. J Invest Dermatol 2004 Aug;123(2):298-304.
[6] Novak N, Valenta R, Bohle B, Laffer S, Haberstok J, Kraft S, et al. FcepsilonRI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. J Allergy Clin Immunol 2004 May;113(5):949-57.
[7] Silva MA. Intestinal dendritic cells and epithelial barrier dysfunction in Crohn's disease. Inflamm Bowel Dis 2008 Sep 26.
[8] Mascarell L, Lombardi V, Louise A, Saint-Lu N, Chabre H, Moussu H, et al. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells. J Allergy Clin Immunol 2008 Sep;122(3):603-9 e5.
[9] Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005 Jan 14;307(5707):254-8.
[10] Niedergang F, Kweon MN. New trends in antigen uptake in the gut mucosa. Trends Microbiol 2005 Oct;13(10):485-90.
[11] Iwasaki A. Mucosal dendritic cells. Annu Rev Immunol 2007;25:381-418.
[12] Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004 Jul 23;118(2):229-41.
[13] Bilsborough J, Viney JL. Gastrointestinal dendritic cells play a role in immunity, tolerance, and disease. Gastroenterology 2004 Jul;127(1):300-9.
[14] Akbari O, Umetsu DT. Role of regulatory dendritic cells in allergy and asthma. Curr Allergy Asthma Rep 2005 Jan;5(1):56-61.
[15] Dakic A, Shao QX, D'Amico A, O'Keeffe M, Chen WF, Shortman K, et al. Development of the dendritic cell system during mouse ontogeny. J Immunol 2004 Jan 15;172(2):1018-27.
[16] Vollstedt S, Franchini M, Hefti HP, Odermatt B, O'Keeffe M, Alber G, et al. Flt3 ligand-treated neonatal mice have increased innate immunity against intracellular pathogens and efficiently control virus infections. J Exp Med 2003 Mar 3;197(5):575-84.
[17] Janossy G, Bofill M, Poulter LW, Rawlings E, Burford GD, Navarrete C, et al. Separate ontogeny of two macrophage-like accessory cell populations in the human fetus. J Immunol 1986 Jun 15;136(12):4354-61.
[18] Inaba K, Inaba M, Deguchi M, Hagi K, Yasumizu R, Ikehara S, et al. Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc Natl Acad Sci U S A 1993 Apr 1;90(7):3038-42.
[19] Reid CD, Stackpoole A, Meager A, Tikerpae J. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J Immunol 1992 Oct 15;149(8):2681-8.
[20] Traver D, Akashi K, Manz M, Merad M, Miyamoto T, Engleman EG, et al. Development of CD8alpha-positive dendritic cells from a common myeloid progenitor. Science 2000 Dec 15;290(5499):2152-4.
[21] Vremec D, Zorbas M, Scollay R, Saunders DJ, Ardavin CF, Wu L, et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med 1992 Jul 1;176(1):47-58.
[22] Wu L, D'Amico A, Hochrein H, O'Keeffe M, Shortman K, Lucas K. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 2001 Dec 1;98(12):3376-82.
[23] Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, et al. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 1999 Jun;5(6):1331-8.
[24] Avigan D, Vasir B, Gong J, Borges V, Wu Z, Uhl L, et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res 2004 Jul 15;10(14):4699-708.
[25] Avigan DE, Vasir B, George DJ, Oh WK, Atkins MB, McDermott DF, et al. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother 2007 Oct;30(7):749-61.
[26] Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998 Mar;4(3):328-32.
[27] Kim JH, Lee Y, Bae YS, Kim WS, Kim K, Im HY, et al. Phase I/II study of immunotherapy using autologous tumor lysate-pulsed dendritic cells in patients with metastatic renal cell carcinoma. Clin Immunol 2007 Dec;125(3):257-67.
[28] Russo V, Tanzarella S, Dalerba P, Rigatti D, Rovere P, Villa A, et al. Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proc Natl Acad Sci U S A 2000 Feb 29;97(5):2185-90.
[29] Kim SG, Park MY, Kim CH, Sohn HJ, Kim HS, Park JS, et al. Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination. Vaccine 2008 Nov 25;26(50):6433-40.
[30] Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA. Clonal origin and evolution of a transmissible cancer. Cell 2006 Aug 11;126(3):477-87.
[31] Chu RM, Lin CY, Liu CC, Yang SY, Hsiao YW, Hung SW, et al. Proliferation characteristics of canine transmissible venereal tumor. Anticancer Res 2001 Nov-Dec;21(6A):4017-24.
[32] Liao KW, Lin ZY, Pao HN, Kam SY, Wang FI, Chu RM. Identification of canine transmissible venereal tumor cells using in situ polymerase chain reaction and the stable sequence of the long interspersed nuclear element. J Vet Diagn Invest 2003 Sep;15(5):399-406.
[33] Hsiao YW, Liao KW, Hung SW, Chu RM. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta 1 and restores the lymphokine-activated killing activity. J Immunol 2004 Feb 1;172(3):1508-14.
[34] Liu CC, Wang YS, Lin CY, Chuang TF, Liao KW, Chi KH, et al. Transient downregulation of monocyte-derived dendritic-cell differentiation, function, and survival during tumoral progression and regression in an in vivo canine model of transmissible venereal tumor. Cancer Immunol Immunother 2008 Apr;57(4):479-91.
[35] Lin CY, Chuang TF, Liao KW, Huang YJ, Pai CC, Chu RM. Combined immunogene therapy of IL-6 and IL-15 enhances anti-tumor activity through augmented NK cytotoxicity. Cancer Lett 2008 Aug 28.
[36] Hsiao YW, Liao KW, Chung TF, Liu CH, Hsu CD, Chu RM. Interactions of host IL-6 and IFN-gamma and cancer-derived TGF-beta1 on MHC molecule expression during tumor spontaneous regression. Cancer Immunol Immunother 2008 Jul;57(7):1091-104.
[37] Finocchiaro LM, Glikin GC. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Ther 2008 Feb;15(4):267-76.
[38] Oyamada T, Tanaka H, Park CH, Ueki H, Komiya T, Arai S. Pathology of canine oral malignant melanoma with cartilage and/or osteoid formation. J Vet Med Sci 2007 Nov;69(11):1155-61.
[39] Bergman PJ. Canine oral melanoma. Clin Tech Small Anim Pract 2007 May;22(2):55-60.
[40] Zigler M, Villares GJ, Lev DC, Melnikova VO, Bar-Eli M. Tumor immunotherapy in melanoma: strategies for overcoming mechanisms of resistance and escape. Am J Clin Dermatol 2008;9(5):307-11.
[41] Tamura K, Yamada M, Isotani M, Arai H, Yagihara H, Ono K, et al. Induction of dendritic cell-mediated immune responses against canine malignant melanoma cells. Vet J 2008 Jan;175(1):126-9.
[42] Kondo H, Hazama S, Kawaoka T, Yoshino S, Yoshida S, Tokuno K, et al. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res 2008 Jan-Feb;28(1B):379-87.
[43] Gong J, Chen D, Kashiwaba M, Kufe D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 1997 May;3(5):558-61.
[44] Koido S, Hara E, Homma S, Fujise K, Gong J, Tajiri H. Dendritic/tumor fusion cell-based vaccination against cancer. Arch Immunol Ther Exp (Warsz) 2007 Sep-Oct;55(5):281-7.
[45] Yasuda T, Kamigaki T, Nakamura T, Imanishi T, Hayashi S, Kawasaki K, et al. Dendritic cell-tumor cell hybrids enhance the induction of cytotoxic T lymphocytes against murine colon cancer: a comparative analysis of antigen loading methods for the vaccination of immunotherapeutic dendritic cells. Oncol Rep 2006 Dec;16(6):1317-24.
[46] Lindner M, Schirrmacher V. Tumour cell-dendritic cell fusion for cancer immunotherapy: comparison of therapeutic efficiency of polyethylen-glycol versus electro-fusion protocols. Eur J Clin Invest 2002 Mar;32(3):207-17.
[47] Bird RC, Deinnocentes P, Lenz S, Thacker EE, Curiel DT, Smith BF. An allogeneic hybrid-cell fusion vaccine against canine mammary cancer. Vet Immunol Immunopathol 2008 Jun 15;123(3-4):289-304.
[48] Weise JB, Maune S, Gorogh T, Kabelitz D, Arnold N, Pfisterer J, et al. A dendritic cell based hybrid cell vaccine generated by electrofusion for immunotherapy strategies in HNSCC. Auris Nasus Larynx 2004 Jun;31(2):149-53.
[49] Hayashi T, Tanaka H, Tanaka J, Wang R, Averbook BJ, Cohen PA, et al. Immunogenicity and therapeutic efficacy of dendritic-tumor hybrid cells generated by electrofusion. Clin Immunol 2002 Jul;104(1):14-20.
[50] Savai R, Schermuly RT, Pullamsetti SS, Schneider M, Greschus S, Ghofrani HA, et al. A combination hybrid-based vaccination/adoptive cellular therapy to prevent tumor growth by involvement of T cells. Cancer Res 2007 Jun 1;67(11):5443-53.
[51] Savai R, Schermuly RT, Schneider M, Pullamsetti SS, Grimminger F, Seeger W, et al. Hybrid-primed lymphocytes and hybrid vaccination prevent tumor growth of lewis lung carcinoma in mice. J Immunother 2006 Mar-Apr;29(2):175-87.
[52] Yu Z, Ma B, Zhou Y, Zhang M, Qiu X, Fan Q. Activation of antitumor cytotoxic T lymphocytes by fusion of patient-derived dendritic cells with autologous osteosarcoma. Exp Oncol 2005 Dec;27(4):273-8.
[53] Parajuli P, Sloan AE. Dendritic cell-based immunotherapy of malignant gliomas. Cancer Invest 2004;22(3):405-16.
[54] Sloan AE, Parajuli P. Human autologous dendritic cell-glioma fusions: feasibility and capacity to stimulate T cells with proliferative and cytolytic activity. J Neurooncol 2003 Aug-Sep;64(1-2):177-83.
[55] Koido S, Nikrui N, Ohana M, Xia J, Tanaka Y, Liu C, et al. Assessment of fusion cells from patient-derived ovarian carcinoma cells and dendritic cells as a vaccine for clinical use. Gynecol Oncol 2005 Nov;99(2):462-71.
[56] Guo W, Guo Y, Tang S, Qu H, Zhao H. Dendritic cell-Ewing's sarcoma cell hybrids enhance antitumor immunity. Clin Orthop Relat Res 2008 Sep;466(9):2176-83.
[57] Papewalis C, Fassnacht M, Willenberg HS, Domberg J, Fenk R, Rohr UP, et al. Dendritic cells as potential adjuvant for immunotherapy in adrenocortical carcinoma. Clin Endocrinol (Oxf) 2006 Aug;65(2):215-22.
[58] Trefzer U, Herberth G, Wohlan K, Milling A, Thiemann M, Sharav T, et al. Tumour-dendritic hybrid cell vaccination for the treatment of patients with malignant melanoma: immunological effects and clinical results. Vaccine 2005 Mar 18;23(17-18):2367-73.
[59] Xia D, Chan T, Xiang J. Dendritic cell/myeloma hybrid vaccine. Methods Mol Med 2005;113:225-33.
[60] Koido S, Homma S, Hara E, Mitsunaga M, Namiki Y, Takahara A, et al. In vitro generation of cytotoxic and regulatory T cells by fusions of human dendritic cells and hepatocellular carcinoma cells. J Transl Med 2008 Sep 15;6(1):51.
[61] Sheng XL, Zhang H. In-vitro activation of cytotoxic T lymphocytes by fusion of mouse hepatocellular carcinoma cells and lymphotactin gene-modified dendritic cells. World J Gastroenterol 2007 Nov 28;13(44):5944-50.
[62] Guan X, Peng JR, Leng XS. [Establishment of dendritomas by fusion of human dendritic cells with human hepatocellular carcinoma cell line HLE cells]. Zhonghua Zhong Liu Za Zhi 2005 Aug;27(8):465-7.
[63] Wu S, Ma J, Che X, Liu Y, Wang H, Zhao J, et al. Treatment of hepatocellular carcinoma with the cellular tumor vaccines generated by in vitro modification of tumor cells with non gene transfer approaches. Adv Exp Med Biol 1998;451:283-93.
[64] Serhal K, Baillou C, Ghinea N, Fontanges P, Dupuy FP, Lemoine FM, et al. Characteristics of hybrid cells obtained by dendritic cell/tumour cell fusion in a T-47D breast cancer cell line model indicate their potential as anti-tumour vaccines. Int J Oncol 2007 Dec;31(6):1357-65.
[65] Guo GH, Chen SZ, Yu J, Zhang J, Luo LL, Xie LH, et al. In vivo anti-tumor effect of hybrid vaccine of dendritic cells and esophageal carcinoma cells on esophageal carcinoma cell line 109 in mice with severe combined immune deficiency. World J Gastroenterol 2008 Feb 28;14(8):1167-74.
[66] Deng YJ, Xia JC, Zhou J, Wang QJ, Zhang PY, Zhang LJ, et al. [Antitumor efficacy of fusion cells from esophageal carcinoma cells and dendritic cells as a vaccine in vitro]. Ai Zheng 2007 Feb;26(2):137-41.
[67] Guo G, Chen S, Zhang J, Luo L, Yu J, Dong H, et al. Antitumor activity of a fusion of esophageal carcinoma cells with dendritic cells derived from cord blood. Vaccine 2005 Nov 1;23(45):5225-30.
[68] Tamai H, Watanabe S, Zheng R, Deguchi K, Cohen PA, Koski GK, et al. Effective treatment of spontaneous metastases derived from a poorly immunogenic murine mammary carcinoma by combined dendritic-tumor hybrid vaccination and adoptive transfer of sensitized T cells. Clin Immunol 2008 Apr;127(1):66-77.
[69] Lee WT, Tamai H, Cohen P, Teker AM, Shu S. Immunotherapy of established murine squamous cell carcinoma using fused dendritic-tumor cell hybrids. Arch Otolaryngol Head Neck Surg 2008 Jun;134(6):608-13.
[70] Zhou J, Xia JC, Wang H, Wang QJ, Huang LX, Li YQ, et al. [Antitumor response induced by vaccine of autologous dendritic/tumor fusion cells against renal cell]. Zhonghua Zhong Liu Za Zhi 2007 Jun;29(6):411-4.
[71] Tanaka Y, Koido S, Ohana M, Liu C, Gong J. Induction of impaired antitumor immunity by fusion of MHC class II-deficient dendritic cells with tumor cells. J Immunol 2005 Feb 1;174(3):1274-80.
[72] Laurin D KJ, Bienvenu J, Bardin C, Bernaud J, Lebecque S, Gebuhrer L, Rigal D, Eljaafari A. Allogeneic reaction induces dendritic cell maturation through proinflammatory cytokine secretion. Transplantation 2004;77:267-75.
[73] Yasuda T, Kamigaki T, Kawasaki K, Nakamura T, Yamamoto M, Kanemitsu K, et al. Superior anti-tumor protection and therapeutic efficacy of vaccination with allogeneic and semiallogeneic dendritic cell/tumor cell fusion hybrids for murine colon adenocarcinoma. Cancer Immunol Immunother 2007 Jul;56(7):1025-36.
[74] Matsumoto S, Saito H, Tsujitani S, Ikeguchi M. Allogeneic gastric cancer cell-dendritic cell hybrids induce tumor antigen (carcinoembryonic antigen) specific CD8(+) T cells. Cancer Immunol Immunother 2006 Feb;55(2):131-9.
[75] Lundqvist A, Palmborg A, Bidla G, Whelan M, Pandha H, Pisa P. Allogeneic tumor-dendritic cell fusion vaccines for generation of broad prostate cancer T-cell responses. Med Oncol 2004;21(2):155-65.
[76] Wagner JL, Sarmiento UM, Storb R. Cellular, serological, and molecular polymorphism of the class I and class II loci of the canine Major Histocompatibility Complex. Tissue Antigens 2002 Mar;59(3):205-10.
[77] Kennedy LJ, Barnes A, Happ GM, Quinnell RJ, Bennett D, Angles JM, et al. Extensive interbreed, but minimal intrabreed, variation of DLA class II alleles and haplotypes in dogs. Tissue Antigens 2002 Mar;59(3):194-204.
[78] Wells JW, Cowled CJ, Darling D, Guinn BA, Farzaneh F, Noble A, et al. Semi-allogeneic dendritic cells can induce antigen-specific T-cell activation, which is not enhanced by concurrent alloreactivity. Cancer Immunol Immunother 2007 Dec;56(12):1861-73.
[79] Schiltz PM, Lee GJ, Zhang JG, Hoa N, Wepsic HT, Dillman RO, et al. Human allogeneic and murine xenogeneic dendritic cells are cytotoxic to human tumor cells via two distinct pathways. Cancer Biother Radiopharm 2007 Oct;22(5):672-83.
[80] Suzuki T, Fukuhara T, Tanaka M, Nakamura A, Akiyama K, Sakakibara T, et al. Vaccination of dendritic cells loaded with interleukin-12-secreting cancer cells augments in vivo antitumor immunity: characteristics of syngeneic and allogeneic antigen-presenting cell cancer hybrid cells. Clin Cancer Res 2005 Jan 1;11(1):58-66.
[81] Shi M, Su L, Hao S, Guo X, Xiang J. Fusion hybrid of dendritic cells and engineered tumor cells expressing interleukin-12 induces type 1 immune responses against tumor. Tumori 2005 Nov-Dec;91(6):531-8.
[82] Ullrich E, Menard C, Flament C, Terme M, Mignot G, Bonmort M, et al. Dendritic cells and innate defense against tumor cells. Cytokine Growth Factor Rev 2008 Feb;19(1):79-92.
[83] Liu C, Lou Y, Lizee G, Qin H, Liu S, Rabinovich B, et al. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J Clin Invest 2008 Mar;118(3):1165-75.
[84] Kijima M, Yamaguchi T, Ishifune C, Maekawa Y, Koyanagi A, Yagita H, et al. Dendritic cell-mediated NK cell activation is controlled by Jagged2-Notch interaction. Proc Natl Acad Sci U S A 2008 May 13;105(19):7010-5.
[85] Koch SD, Uss E, Lier RA, Ten Berge IJ. Alloantigen-induced regulatory CD8(+)CD103(+) T cells. Hum Immunol 2008 Sep 23.
[86] Zhang M, Berndt BE, Chen JJ, Kao JY. Expression of a soluble TGF-beta receptor by tumor cells enhances dendritic cell/tumor fusion vaccine efficacy. J Immunol 2008 Sep 1;181(5):3690-7.
[87] Imura K, Ueda Y, Hayashi T, Itoh T, Shimizu K, Tamai H, et al. Induction of cytotoxic T lymphocytes against human cancer cell lines using dendritic cell-tumor cell hybrids generated by a newly developed electrofusion technique. Int J Oncol 2006 Sep;29(3):531-9.
[88] Yu Z, Ma B, Zhou Y, Zhang M, Long H, Wang Y, et al. Allogeneic Tumor Vaccine Produced by Electrofusion between Osteosarcoma Cell Line and Dendritic Cells in the Induction of Antitumor Immunity. Cancer Invest 2007 Oct 18:1-7.
[89] Wang YS, Chi KH, Chu RM. Cytokine profiles of canine monocyte-derived dendritic cells as a function of lipopolysaccharide- or tumor necrosis factor-alpha-induced maturation. Vet Immunol Immunopathol 2007 Aug 15;118(3-4):186-98.
[90] Wang YS, Chi KH, Liao KW, Liu CC, Cheng CL, Lin YC, et al. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Can J Vet Res 2007 Jul;71(3):165-74.
[91] Koido S, Hara E, Homma S, Torii A, Mitsunaga M, Yanagisawa S, et al. Streptococcal preparation OK-432 promotes fusion efficiency and enhances induction of antigen-specific CTL by fusions of dendritic cells and colorectal cancer cells. J Immunol 2007 Jan 1;178(1):613-22.
[92] Fadilah SA, Vuckovic S, Khalil D, Hart DN. Cord blood CD34+ cells cultured with FLT3L, stem cell factor, interleukin-6, and IL-3 produce CD11c+CD1a-/c- myeloid dendritic cells. Stem Cells Dev 2007 Oct;16(5):849-55.
[93] Hagglund HG, McSweeney PA, Mathioudakis G, Bruno B, Georges GE, Gass MJ, et al. Ex vivo expansion of canine dendritic cells from CD34+ bone marrow progenitor cells. Transplantation 2000 Nov 27;70(10):1437-42.
[94] Schreurs MW, Eggert AA, de Boer AJ, Figdor CG, Adema GJ. Generation and functional characterization of mouse monocyte-derived dendritic cells. Eur J Immunol 1999 Sep;29(9):2835-41.
[95] Ojima T, Iwahashi M, Nakamura M, Matsuda K, Nakamori M, Ueda K, et al. Streptococcal preparation OK-432 promotes the capacity of dendritic cells (DCs) to prime carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocyte responses induced with genetically modified DCs that express CEA. Int J Oncol 2008 Feb;32(2):459-66.
[96] Shu YQ, Gu Y. The effect of dendritic cells activated by OK-432 and pulsed with antigens on cytokine induced killers. Biomed Pharmacother 2006 May;60(4):156-60.
[97] Kanzaki N, Terashima M, Kashimura S, Hoshino M, Ohtani S, Matsuyama S, et al. Understanding the response of dendritic cells to activation by streptococcal preparation OK-432. Anticancer Res 2005 Nov-Dec;25(6B):4231-8.
[98] Ryoma Y, Moriya Y, Okamoto M, Kanaya I, Saito M, Sato M. Biological effect of OK-432 (picibanil) and possible application to dendritic cell therapy. Anticancer Res 2004 Sep-Oct;24(5C):3295-301.
[99] Biller BJ, Elmslie RE, Burnett RC, Avery AC, Dow SW. Use of FoxP3 expression to identify regulatory T cells in healthy dogs and dogs with cancer. Vet Immunol Immunopathol 2007 Mar 15;116(1-2):69-78.
[100] Vasir B, Wu Z, Crawford K, Rosenblatt J, Zarwan C, Bissonnette A, et al. Fusions of dendritic cells with breast carcinoma stimulate the expansion of regulatory T cells while concomitant exposure to IL-12, CpG oligodeoxynucleotides, and anti-CD3/CD28 promotes the expansion of activated tumor reactive cells. J Immunol 2008 Jul 1;181(1):808-21.
[101] Ou X, Cai S, Liu P, Zeng J, He Y, Wu X, et al. Enhancement of dendritic cell-tumor fusion vaccine potency by indoleamine-pyrrole 2,3-dioxygenase inhibitor, 1-MT. J Cancer Res Clin Oncol 2008 May;134(5):525-33.
[102] Wobser M, Voigt H, Houben R, Eggert AO, Freiwald M, Kaemmerer U, et al. Dendritic cell based antitumor vaccination: impact of functional indoleamine 2,3-dioxygenase expression. Cancer Immunol Immunother 2007 Jul;56(7):1017-24.
[103] Homma S, Sagawa Y, Ito M, Ohno T, Toda G. Cancer immunotherapy using dendritic/tumour-fusion vaccine induces elevation of serum anti-nuclear antibody with better clinical responses. Clin Exp Immunol 2006 Apr;144(1):41-7.
[104] Barbuto JA, Ensina LF, Neves AR, Bergami-Santos P, Leite KR, Marques R, et al. Dendritic cell-tumor cell hybrid vaccination for metastatic cancer. Cancer Immunol Immunother 2004 Dec;53(12):1111-8.
[105] Avigan D. Dendritic cell-tumor fusion vaccines for renal cell carcinoma. Clin Cancer Res 2004 Sep 15;10(18 Pt 2):6347S-52S.
[106] Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T. Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 2001 Sep;50(7):337-44.
[107] Homma S, Matai K, Irie M, Ohno T, Kufe D, Toda G. Immunotherapy using fusions of autologous dendritic cells and tumor cells showed effective clinical response in a patient with advanced gastric carcinoma. J Gastroenterol 2003;38(10):989-94.
[108] Krause SW, Neumann C, Soruri A, Mayer S, Peters JH, Andreesen R. The treatment of patients with disseminated malignant melanoma by vaccination with autologous cell hybrids of tumor cells and dendritic cells. J Immunother 2002 Sep-Oct;25(5):421-8.
[109] Kikuchi T, Akasaki Y, Abe T, Fukuda T, Saotome H, Ryan JL, et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 2004 Nov-Dec;27(6):452-9.
[110] Schuler G, Thurner B, Romani N. Dendritic cells: from ignored cells to major players in T-cell-mediated immunity. Int Arch Allergy Immunol 1997 Apr;112(4):317-22.
[111] Moll H, Berberich C. Dendritic cell-based vaccination strategies: induction of protective immunity against leishmaniasis. Immunobiology 2001 Dec;204(5):659-66.
[112] Shrestha N, Ida JA, Lubinski AS, Pallin M, Kaplan G, Haslett PA. Regulation of acquired immunity by gamma delta T-cell/dendritic-cell interactions. Ann N Y Acad Sci 2005 Dec;1062:79-94.
[113] Santegoets SJ, Bontkes HJ, Stam AG, Bhoelan F, Ruizendaal JJ, van den Eertwegh AJ, et al. Inducing antitumor T cell immunity: comparative functional analysis of interstitial versus Langerhans dendritic cells in a human cell line model. J Immunol 2008 Apr 1;180(7):4540-9.
[114] Yamaguchi S, Tatsumi T, Takehara T, Sasakawa A, Hikita H, Kohga K, et al. Dendritic cell-based vaccines suppress metastatic liver tumor via activation of local innate and acquired immunity. Cancer Immunol Immunother 2008 Dec;57(12):1861-9.
[115] You RI, Chang YC, Chen PM, Wang WS, Hsu TL, Yang CY, et al. Apoptosis of dendritic cells induced by decoy receptor 3 (DcR3). Blood 2008 Feb 1;111(3):1480-8.
[116] Erdmann M, Schuler-Thurner B. Dendritic cell vaccines in metastasized malignant melanoma. G Ital Dermatol Venereol 2008 Aug;143(4):235-50.
[117] Bercovici N, Haicheur N, Massicard S, Vernel-Pauillac F, Adotevi O, Landais D, et al. Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J Immunother 2008 Jan;31(1):101-12.
[118] Chekhun VF. Cancer vaccines. Exp Oncol 2008 Jun;30(2):90.
[119] Shu S, Zheng R, Lee WT, Cohen PA. Immunogenicity of dendritic-tumor fusion hybrids and their utility in cancer immunotherapy. Crit Rev Immunol 2007;27(5):463-83.
[120] Kavanagh B, Ko A, Venook A, Margolin K, Zeh H, Lotze M, et al. Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother 2007 Oct;30(7):762-72.
[121] Sanchez J, Ramirez GA, Buendia AJ, Vilafranca M, Martinez CM, Altimira J, et al. Immunohistochemical characterization and evaluation of prognostic factors in canine oral melanomas with osteocartilaginous differentiation. Vet Pathol 2007 Sep;44(5):676-82.
[122] Schultheiss PC. Histologic features and clinical outcomes of melanomas of lip, haired skin, and nail bed locations of dogs. J Vet Diagn Invest 2006 Jul;18(4):422-5.
[123] Kalani AD, Jack A, Montenegro G, Degliuomini J, Wallack MK. Immunotherapy as an adjuvant therapy in the management of advanced, surgically resected, melanoma. G Ital Dermatol Venereol 2008 Feb;143(1):59-70.
[124] Alexeev V, Mucci T, Igoucheva O. Immunotherapeutic strategies for the treatment of malignant melanoma. G Ital Dermatol Venereol 2008 Apr;143(2):139-49.
[125] Isotani M, Katsuma K, Tamura K, Yamada M, Yagihara H, Azakami D, et al. Efficient generation of canine bone marrow-derived dendritic cells. J Vet Med Sci 2006 Aug;68(8):809-14.
[126] Huang YC, Hung SW, Jan TR, Liao KW, Cheng CH, Wang YS, et al. CD5-low expression lymphocytes in canine peripheral blood show characteristics of natural killer cells. J Leukoc Biol 2008 Aug 15.
[127] Pepin E, Goutet M, Ban M. Murine bone marrow-derived dendritic cells as a potential in vitro model for predictive identification of chemical sensitizers. Toxicol Lett 2007 Dec 10;175(1-3):89-101.
[128] Schimmelpfennig CH, Schulz S, Arber C, Baker J, Tarner I, McBride J, et al. Ex vivo expanded dendritic cells home to T-cell zones of lymphoid organs and survive in vivo after allogeneic bone marrow transplantation. Am J Pathol 2005 Nov;167(5):1321-31.
[129] Wu L, Dakic A. Development of dendritic cell system. Cell Mol Immunol 2004 Apr;1(2):112-8.
[130] Haenssle HA, Krause SW, Emmert S, Zutt M, Kretschmer L, Schmidberger H, et al. Hybrid cell vaccination in metastatic melanoma: clinical and immunologic results of a phase I/II study. J Immunother 2004 Mar-Apr;27(2):147-55.
[131] Julia K. Archbold WAM, Scott R. Burrows, Jamie Rossjohn, McCluskey aJ. T-cell allorecognition: a case of mistaken identity or de´ ja` vu? Cell 2008;29(5):220-6.
[132] Parkhurst MR, DePan C, Riley JP, Rosenberg SA, Shu S. Hybrids of dendritic cells and tumor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor-associated antigens in the context of MHC class I and class II molecules. J Immunol 2003 May 15;170(10):5317-25.
[133] Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007 Apr;8(4):345-50.
[134] Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C, Kanamoto M, et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 2008 Oct;29(4):628-36.
[135] Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L. Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol 2008 May;9(5):486-94.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41722-
dc.description.abstract樹突狀細胞/腫瘤細胞融合型癌症疫苗是一種新型且具有腫瘤專一性的免疫療法。然而在臨床治療上由於樹突狀細胞的生產不易,常導致治療上的限制。在本篇研究中,我們成功的使用體外培養的方式誘導骨髓單核球細胞分化成樹突狀細胞,其生產量較周邊血液來源的生產方式達20倍之多。我們首先利用異體骨髓來源之樹突狀細胞與腫瘤細胞(犬傳染性花柳性腫瘤,CTVT)融合,進而製備癌症疫苗。在臨床評估上,我們將此疫苗施打在帶有CTVT腫瘤(長至兩公分直徑大小時)的實驗犬隻,施打部位為近局部淋巴結的皮下。此疫苗重複施打三次、每次間隔兩星期,以評估疫苗的治療效果。施打兩次後即發現此疫苗已具有抑制腫瘤的生長的能力,三次後腫瘤的生長則受到嚴重的抑制。此外,此疫苗成功的引起抗腫瘤的免疫相關反應(包括增加腫瘤內浸潤的淋巴球、腫瘤專一性毒殺型T細胞的活化、以及增加腫瘤的組織相容性複合物分子的表現)。進一步發現自然殺手型細胞的免疫反應也在治療後被加強。由於在CTVT的實驗模式中得到良好的效果,我們將此疫苗之原理應用在犬隻口腔惡性黑色素瘤病畜的臨床治療實驗上。此治療乃結合外科手術切除與癌症疫苗的施打。超過半數的病例成功的引起抗腫瘤的相關免疫反應,且相較於只接受手術治療的病畜而言,具有延長其存活率的作用。綜合上述,本研究研發出一個有效生產異體骨髓來源之樹突狀細胞,且經過與腫瘤細胞融合制成癌症疫苗後,成功的引起宿主的免疫反應並抑制腫瘤的生長或延長其存活率。因此本融合型疫苗在癌症治療上有其潛力。zh_TW
dc.description.abstractDendritic cell (DC)/cancer cell hybrid vaccine has been emphasized as a new and cancer cell-specific therapeutics. However, the relatively low yield efficiency of the DC generation from peripheral blood limits its clinical application. In this study, we have generated over 20 times more DC from bone marrow (BMDC)/mononuclear leucocytes than the peripheral blood source. The allogeneic BMDC were fused with canine transmissible venereal tumor (CTVT) cells to produce the hybrid vaccine, which was injected subcutaneously (SQ) three times with a two-weeks interval near the draining lymph nodes into beagles with CTVTs of 2 cm in diameter. The CTVT-fusion hybrid vaccination program inhibited the tumor growth as early as at the second vaccination. It significantly increased the host immune responses including the increased lymphocytic infiltrations, CTL responses, and MHC I/II expressions on the tumor. It was interesting to find that the NK activity was also enhanced. We then generated the fusion hybrids of allogeneic BMDC/canine oral malignant melanomas from individual canine patients. The melanoma fusion hybrids were given SQ to the original canine patients but after a surgical removal of the melanoma. After the vaccinations, more than half of the cases have shown increased specific immune responses and the survival time were significantly prolonged in comparing to the dogs with the surgery removal only. To conclude, the canine allogeneic BMDC provided us an efficient way to generate the fusion hybrid vaccines that augmented the host immune responses and demonstrated its clinical potentials in treating cancers.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:28:56Z (GMT). No. of bitstreams: 1
ntu-98-R95629013-1.pdf: 2443495 bytes, checksum: 0f59eeee5514b803779974fa1b7ca465 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
口試委員審定書………………………………………………………I
致謝……………………………………………………………………II
中文摘要……………………………………………………………..III
Abstract ……………………………………………………………IV
Contents…………………………………………………………………V
Abbriviation…………………………………………………………VII
Chapter 1. Background and Literature Review……………………1
1.1Dendritic cells and its application in immunotherapy……1
a.Biological function of dendritic cells………………………1
b.Subtypes of dendritic cells in mouse and human ……………4
c.Dendritic cells based immunotherapy……………………………5
1.2Canine transmissible venereal tumor…………………………6
1.3Canine melanoma……………………………………………………7
1.4Fusion hybrids……………………………………………………8
a.Rationale of fusion hybrids………………………………………8
b.Fusion technique (Electro and PEG)……………………………9
c.Comparative analysis of different loading methods…………9
d.Application of fusion hybrids in variety of tumors………12
e.Allogeneic and semiallogeneic fusion hybrids………………13
f.Allogeneic tumor cells as fusion hybrids……………………17
g.Efficiency of fusion hybrids between iDC and mDC…………18
h.Modified fusion hybrids…………………………………………19
i.Clinical application in human trials………………………23
1.5 Objectives of the study……………………………………24
Chapter 2. Introduction…………………………………………………………25
Chapter 3. Material and Methods………………………………28
Animals and generations of peripheral blood-derived DC and BMDCs………28
Flow cytometry analysis of BMDC phenotypes……………………29
Quantitative RT-PCR…………………………………………………30
FITC-dextran uptake assay…………………………………………30
Allogeneic Mix Lymphocyte Reaction (MLR)……………………30
Fusion hybrid vaccine generation………………………………31
Vaccination program and sample collections…………………32
Nature killer cell activities …………………………………34
Cytotoxic T lymphocytes reactions……………………………34
ELISPOT assay………………………………………………………35
Statistical analysis……………………………………………35
Chapter 4. Results……………………………………………………36
Generation of BMDCs and PBDC………………………………………36
Fusion hybrids of BMDCs and CTVT cells…………………………36
mBMDC/CTVT fusion hybrid vaccination effects on tumor growth........38
Induction of innate and adaptive immune responses by the mBMDC/CTVT fusion hybrid vaccinations…38
Adverse effects and toxicities……………………………………39
Clinical trials of mBMDC/canine oral malignant melanoma…39
Chapter 5. Discussion……………………………………………………………42
Legends for tables and figures…………………………………48
Figure…………………………………………………………………54
Reference……………………………………………………………65
dc.language.isoen
dc.subject融合型疫苗zh_TW
dc.subject黑色素瘤zh_TW
dc.subject犬傳染性花柳病zh_TW
dc.subject骨髓來源樹突狀細胞zh_TW
dc.subjectMelanomaen
dc.subjectHybrid vaccinesen
dc.subjectCTVTen
dc.subjectBMDCen
dc.title異體骨髓來源樹突狀細胞與犬隻腫瘤細胞融合癌症疫苗在臨床應用上的評估zh_TW
dc.titleClinical Evaluation of Allogeneic Bone Marrow-derived Dendritic Cells/Tumor Fusion Hybrids in Canine Cancersen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.coadvisor郭宗甫
dc.contributor.oralexamcommittee詹東榮,鄭安理,林中天
dc.subject.keyword骨髓來源樹突狀細胞,犬傳染性花柳病,黑色素瘤,融合型疫苗,zh_TW
dc.subject.keywordBMDC,CTVT,Melanoma,Hybrid vaccines,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2009-01-20
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved