Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41711
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃德富
dc.contributor.authorChun-Chieh Hsuen
dc.contributor.author許竣傑zh_TW
dc.date.accessioned2021-06-15T00:28:32Z-
dc.date.available2009-02-17
dc.date.copyright2009-02-17
dc.date.issued2009
dc.date.submitted2009-01-21
dc.identifier.citationCHAPTER 1
1. Huang TF. What have snakes taught us about integrins? Cell Mol Life Sci. 1998; 54: 527-40.
2. Oldenburg J, El-Maarri O. New insight into the molecular basis of hemophilia A. Int J Hematol. 2006; 83: 96-102.
3. Nurden P, Nurden AT. Congenital disorders associated with platelet dysfunctions. Thromb Haemost. 2008; 99: 253-63.
4. Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. J Thromb Haemost. 2005; 3: 1791-9.
5. Wang WJ, Huang TF. A novel tetrameric venom protein, agglucetin from Agkistrodon acutus, acts as a glycoprotein Ib agonist. Thromb Haemost. 2001; 86: 1077-86.
6. Chang CH, Chung CH, Kuo HL, Hsu CC, Huang TF. The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding. J Thromb Haemost. 2008; 6: 669-76.
7. Chung CH, Wu WB, Huang TF. Aggretin, a snake venom-derived endothelial integrin alpha 2 beta 1 agonist, induces angiogenesis via expression of vascular endothelial growth factor. Blood. 2004; 103: 2105-13.
8. McLane MA, Sanchez EE, Wong A, Paquette-Straub C, Perez JC. Disintegrins. Curr Drug Targets Cardiovasc Haematol Disord. 2004; 4: 327-55.
9. Koh DC, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci. 2006; 63: 3030-41.
10. Fox JW, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008; 275: 3016-30.
11. Kini RM. Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon. 2005; 45: 1147-61.
12. Valentin E, Lambeau G. Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins. Biochim Biophys Acta. 2000; 1488: 59-70.
13. Pirkle H. Thrombin-like enzymes from snake venoms: an updated inventory. Thromb Haemost. 1998; 79: 675-83.
14. Du XY, Clemetson KJ. Snake venom L-amino acid oxidases. Toxicon. 2002; 40: 659-65.
15. Ouyang C, Huang TF. Inhibition of platelet aggregation by 5'-nucleotidase purified from Trimeresurus gramineus snake venom. Toxicon. 1983; 21: 491-501.
16. Ouyang C, Huang TF. Potent platelet aggregation inhibitor from Trimeresurus gramineus snake venom. Biochim Biophys Acta. 1983; 757: 332-41.
17. Huang TF, Holt JC, Lukasiewicz H, Niewiarowski S. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem. 1987; 262: 16157-63.
18. [No authors listed] Two i.v. antiplatelet agents marketed for coronary disease. Am J Health Syst Pharm. 1998; 55: 1440, 1443.
19. Chung CH, Peng HC, Huang TF. Aggretin, a C-type lectin protein, induces platelet aggregation via integrin alpha(2)beta(1) and GPIb in a phosphatidylinositol 3-kinase independent pathway. Biochem Biophys Res Commun. 2001; 285: 689-95.
20. Yeh CH, Wang WC, Hsieh TT, Huang TF. Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelial cell interaction and inhibits angiogenesis. J Biol Chem. 2000; 275: 18615-8.
21. Polgar J, Clemetson JM, Kehrel BE, Wiedemann M, Magnenat EM, Wells TN, Clemetson KJ. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem. 1997; 272: 13576-83.
22. Liu CZ, Wu TF, Huang TF, Wu DH, Lin GL. Trimucytin, a collagen-like snake venom protein, activates platelets independent of I-domain within alpha2 subunit of alpha2beta1 integrin. Thromb Res. 2002; 105: 153-60.
23. Yeh CH, Peng HC, Yih JB, Huang TF. A new short chain RGD-containing disintegrin, accutin, inhibits the common pathway of human platelet aggregation. Biochim Biophys Acta. 1998; 1425: 493-504.
24. Yeh CH, Peng HC, Huang TF. Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbeta3 antagonist and inducing apoptosis. Blood. 1998; 92: 3268-76.
25. Wu WB, Peng HC, Huang TF. Disintegrin causes proteolysis of beta-catenin and apoptosis of endothelial cells. Involvement of cell-cell and cell-ECM interactions in regulating cell viability. Exp Cell Res. 2003; 286: 115-27.
26. Tseng YL, Lee CJ, Huang TF. Effects of a snake venom metalloproteinase, triflamp, on platelet aggregation, platelet-neutrophil and neutrophil-neutrophil interactions: involvement of platelet GPIbalpha and neutrophil PSGL-1. Thromb Haemost. 2004; 91: 315-24.
27. Huang TF, Sheu JR, Teng CM. Mechanism of action of a potent antiplatelet peptide, triflavin from Trimeresurus flavoviridis snake venom. Thromb Haemost. 1991; 66: 489-93.
28. Knudsen KA, Tuszynski GP, Huang TF, Niewiarowski S. Trigramin, an RGD-containing peptide from snake venom, inhibits cell-substratum adhesion of human melanoma cells. Exp Cell Res. 1988; 179: 42-9.
29. Wang WJ, Huang TF. Purification and characterization of a novel metalloproteinase, acurhagin, from Agkistrodon acutus venom. Thromb Haemost. 2002; 87: 641-50.
30. Wu WB, Peng HC, Huang TF. Crotalin, a vWF and GP Ib cleaving metalloproteinase from venom of Crotalus atrox. Thromb Haemost. 2001; 86: 1501-11.
31. Liu CZ, Huang TF. Crovidisin, a collagen-binding protein isolated from snake venom of Crotalus viridis, prevents platelet-collagen interaction. Arch Biochem Biophys. 1997; 337: 291-9.
32. Wu WB, Chang SC, Liau MY, Huang TF. Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells. Biochem J. 2001; 357: 719-28.
33. De Luca M, Ward CM, Ohmori K, Andrews RK, Berndt MC. Jararhagin and jaracetin: novel snake venom inhibitors of the integrin collagen receptor, alpha 2 beta 1. Biochem Biophys Res Commun. 1995; 206: 570-6.
34. Huang TF, Chang MC, Teng CM. Antiplatelet protease, kistomin, selectively cleaves human platelet glycoprotein Ib. Biochim Biophys Acta. 1993; 1158: 293-9.
35. Ward CM, Andrews RK, Smith AI, Berndt MC. Mocarhagin, a novel cobra venom metalloproteinase, cleaves the platelet von Willebrand factor receptor glycoprotein Ibalpha. Identification of the sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein Ibalpha as a binding site for von Willebrand factor and alpha-thrombin. Biochemistry. 1996; 35: 4929-38.
36. Tseng YL, Lee CJ, Huang TF. Effects of a snake venom metalloproteinase, triflamp, on platelet aggregation, platelet-neutrophil and neutrophil-neutrophil interactions: involvement of platelet GPIbalpha and neutrophil PSGL-1. Thromb Haemost. 2004; 91: 315-24.
37. Tseng YL, Lee CJ, Hsu CC, Huang TF. Triflamp, a snake venom metalloproteinase, reduces neutrophil-platelet adhesion through proteolysis of PSGL-1 but not glycoprotein Ib alpha. Thromb Haemost. 2004; 91: 1177-85.
38. Canobbio I, Balduini C, Torti M. Signalling through the platelet glycoprotein Ib-V-IX complex. Cell Signal. 2004; 16: 1329-44.
39. Surin WR, Barthwal MK, Dikshit M. Platelet collagen receptors, signaling and antagonism: emerging approaches for the prevention of intravascular thrombosis. Thromb Res. 2008; 122: 786-803.
40. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res. 2004; 114: 447-53.
41. Murphy G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer. 2008; 8: 929-41.
42. Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008; 90: 369-79.
43. Hsu CC, Wu WB, Chang YH, Kuo HL, Huang TF. Antithrombotic effect of a protein-type I class snake venom metalloproteinase, kistomin, is mediated by affecting glycoprotein Ib-von Willebrand factor interaction. Mol Pharmacol. 2007; 72: 984-92.
44. Hsu CC, Wu WB, Huang TF. A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J Thromb Haemost. 2008; 6: 1578-85.
45. Chang HH, Hu ST, Huang TF, Chen SH, Lee YH, Lo SJ. Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun. 1993; 190: 242-9.
46. Huang TF, Ouyang C, Teng CM. Rhodostomin, a snake venom peptide, and its fragment inhibit platelet aggregation by acting as fibrinogen receptor antagonist. Abstract 141, XIth International Congress on Thrombosis, Ljubljana, Yugoslavia, 1990.
CHAPTER 2
1. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res. 2004; 114: 447-53.
2. [No authors listed] Two i.v. antiplatelet agents marketed for coronary disease. Am J Health Syst Pharm. 1998; 55: 1440, 1443.
3. Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC. Glycoprotein Ib-IX-V. Int J Biochem Cell Biol. 2003; 35: 1170-4 .
4. Canobbio I, Balduini C, Torti M. Signalling through the platelet glycoprotein Ib-V-IX complex. Cell Signal. 2004; 16: 1329-44.
5. Bonneffoy A, Vermylen J, Hoylaerts MF. Inhibition of von Willebrand factor-GPIb/IX/V interactions as a strategy to prevent arterial thrombosis. Expert Rev Cardiovasc Ther. 2003; 1: 257-69.
6. Clemetson KJ, Clemetson JM. Platelet collagen receptors. Thromb Haemost. 2001; 86:189-97.
7. Moroi M, Jung SM. Platelet glycoprotein VI: its structure and function. Thromb Res. 2004; 114: 221-33.
8. Arai M, Yamamoto N, Moroi M, Akamatsu N, Fukutake K, Tanoue K. Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br J Haematol. 1995; 89: 124-30.
9. Moroi M, Jung SM, Okuma M, Shinmyozu K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest. 1989; 84: 1440-5.
10. Gardiner EE, Karunakaran D, Shen Y, Arthur JF, Andrews RK, Berndt MC. Controlled shedding of platelet glycoprotein (GP) VI and GPIb-IX-V by ADAM family metalloproteinases. J Thromb Haemost. 2007; 5: 1530-7.
11. Bergmeier W, Rabie T, Strehl A, Piffath CL, Prostredna M, Wagner DD, Nieswandt B. GPVI down-regulation in murine platelets through metalloproteinase-dependent shedding. Thromb Haemost. 2004; 91: 951-8.
12. Marsh NA. Diagnostic Uses of Snake Venom. Haemostasis. 2001; 31: 211-7.
13. Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta. 2000; 1477: 146-56.
14. Kamiguti AS. Platelets as targets of snake venom metalloproteinases. Toxicon. 2005; 45: 1041-9.
15. Fox JW, Serrano SMT. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005; 45: 969-85.
16. Huang TF, Chang MC, Teng CM. Antiplatelet protease, kistomin, selectively cleaves human platelet glycoprotein Ib. Biochim Biophys Acta. 1993; 1158: 293-9.
17. Miura Y, Takahashi T, Jung SM, Moroi M. Analysis of the interaction of platelet collagen receptor glycoprotein VI (GPVI) with collagen. J Biol Chem. 2002; 277: 46197-204.
18. Wu WB, Peng HC, Huang TF. Crotalin, a vWF and GPIb cleaving metalloproteinase from venom of Crotalus atrox. Thromb Haemost 2001; 86: 1501-11.
19. Tseng YL, Lee CJ, Huang TF. Effects of a snake venom metalloproteinase, triflamp, on platelet aggregation, platelet-neutrophil and neutrophil-neutrophil interactions: involvement of platelet GPIbalpha and neutrophil PSGL-1. Thromb Haemost 2004; 91: 315-24.
20. Polgar J, Clemetson JM, Kehrel BE, Wiedemann M, Magnenat EM, Wells TN, Clemetson KJ. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem. 1997; 272: 13576-83.
21. Liu CZ, Hur BT, Huang TF. Measurement of glycoprotein IIb/IIIa blockade by flow cytometry with fluorescein isothiocyanate-conjugated crotavirin, a member of disintegrins. Thromb Haemost. 1996; 76: 585-91.
22. Chang MC, Huang TF. In vivo effect of a thrombin-like enzyme on platelet plug formation induced in mesenteric microvessels of mice. Thromb Res. 1994; 73: 31-8.
23. Wang WJ, Huang TF. A novel tetrameric venom protein, agglucetin from Agkistrodon acutus, acts as a glycoprotein Ib agonist. Thromb Haemost. 2001; 86: 1077-86.
24. Huang TF, Ouyang C, Teng CM. Rhodostomin, a snake venom peptide, and its fragment inhibit platelet aggregation by acting as fibrinogen receptor antagonist. Abstract 141, XIth International Congress on Thrombosis, Ljubljana, Yugoslavia, 1990.
25. Yeh CH, Chang MC, Peng HC, Huang TF. Pharmacological characterization and antithrombotic effect of agkistin, a platelet glycoprotein Ib antagonist. Br J Pharmacol. 2001; 132: 843-50.
26. Wu WB, Chang SC, Liau MY, Huang TF. Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells. Biochem J. 2001; 357: 719-28.
27. Jackson SP, Schoenwaelder SM. Antiplatelet therapy: in search of the ‘magic bullet’. Nat Rev Drug Discov. 2003; 2: 775-89.
28. Dormann D, Clemetson JM, Navdaev A, Kehrel BE, Clemetson KJ. Alboaggregin A activates platelets by a mechanism involving glycoprotein VI as well as glycoprotein Ib. Blood. 2001; 97: 929-36.
29. Du Xiao-Yan, Magnenat E, Wells TN, Clemetson KJ. Alboluxin, a snake C-type lectin from Trimeresurus albolabris venom is a potent platelet agonist acting via GPIb and GPVI. Thromb Haemost. 2002; 87: 692-8.
30. Berndt MC, Gregory C, Kabral A, Zola H, Fournier D, Castaldi PA. Purification and preliminary characterization of the glycoprotein Ib complex in the human platelet membrane. Eur J Biochem. 1985; 151: 637-49.
31. Chen H, Locke D, Liu Y, Liu C, Kahn ML. The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion. J Biol Chem. 2002; 277: 3011-9.
32. Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost. 2001; 86: 178-88.
33. Berndt MC, Karunakaran D, Gardiner EE, Andrews RK. Programmed autologous cleavage of platelet receptors. J Thromb Haemost. 2007; 5: 212-9.
34. Tseng YL, Wu WB, Hsu CC, Peng HC, Huang TF. Inhibitory effects of human alpha2-macroglobulin and mouse serum on the PSGL-1 and glycoprotein Ib proteolysis by a snake venom metalloproteinase, triflamp. Toxicon. 2004; 43: 769-77
CHAPTER 3
1. Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003; 16: 379-414.
2. Lopez-Bojorquez LN, Dehesa AZ, Reyes-Teran G. Molecular mechanism involved in the pathogenesis of sepsis shock. Arch Med Res. 2004; 35: 465-79.
3. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007; 7: 678-89.
4. Wright SD, Levin SM, Jone MTC, Chad Z, Kabbash LG. CR3 (Cd11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med. 1989; 169: 175-83.
5. Weerasinghe D, McHugh KP, Ross FP, Brown EJ, Gisler RH, Imhof BA. A role for the alphavbeta3 integrin in the transmigration of monocytes. J Cell Biol. 1998; 142: 595-607.
6. Gerold G, Ajaj KA, Bienert M, Laws HJ, Zychlinsky A, de Diego JL. A Toll-like receptor 2-integrin beta3 complex senses bacterial lipopeptides via vitronectin. Nat Immunol. 2008; 9: 761-8.
7. Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Niewiarowski S. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med. 1990; 195: 168-71.
8. Du XY, Sim DS, Lee WH, Zhang Y. Blood cells as targets of snake toxins. Blood Cells Mol Dis. 2006; 36: 414-21.
9. Au LC, Huang YB, Huang TF, Teh GW, Lin HH, Choo KB. A common precursor for a putative hemorrhagic protein and rhodostomin, a platelet aggregation inhibitor of the venom of Calloselasma rhodostoma: molecular cloning and sequence analysis. Biochem Biophys Res Commun. 1991; 181: 585-93.
10. Yeh CH, Peng HC, Yang RS, Huang TF. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor by a selective alphaVbeta3 blockade of endothelial cells. Mol Pharmacol 2001; 59: 1333-42.
11. Tseng YL, Peng HC, Huang TF. Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed Sci. 2004; 11: 683-91
12. Guo RT, Chou LJ, Chen YC, Chen CY, Pari K, Jen CJ, Lo SJ, Huang SL, Lee CY, Chang TW, Chaung WJ. Expression in Pichia patoris and characterization by circular dichroism and NMR of rhodostomin. Proteins. 2001; 43: 499-508.
13. Lin YT, Tang CH, Chuang WJ, Wang SM, Huang TF, Fu WM. Inhibition of adipogenesis by RGD-dependent disintegrin. Biochem Pharmacol. 2005; 70: 1469-78.
14. Liu CZ, Hur BT, Shen MC, Huang TF. Measurement of glycoprotein IIb-IIIa blocked by flow cytometry with fluorescein isothiocyanate-conjugated crotavirin, a member of disintegrin. Thromb Haemost.1996; 76: 585-91.
15. Yen YT, Liao F, Hsiao CH, Kao CL, Chen YC, Wu-Hsieh BA. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virology. 2006; 80: 2684-93
16. Pawlinski R, Mackman N. Tissue factor, coagulation proteases, and protease-activated receptors in endotoxemia and sepsis. Crit Care Med. 2004; 32: S293-7
17. Singh B, Janardhan KS, Kanthan R. Expression of angiostatin, integrin alphavbeta3, and vitronectin in human lungs in sepsis. Exp Lung Res. 2005; 31: 771-82.
18. Huang TF. What have snakes taught about integrins? Cell Mol Life Sci. 1998; 54: 527-40.
19. Hermann P, Armant M, Brown E, Rubio M, Ishihara H, Ulrich D, Caspary RG, Lindberg FP, Armitage R, Maliszewski C, Delespesse G, Sarfati M. The vitronectin receptor and its associated CD47 molecule mediates proinflammatory cytokine synthesis in human monocytes by interaction with soluble CD23. J Cell Biol. 1999; 144: 767-75.
20. Taniguchi-Sidle A, Isenman DE. Mutagenesis of Arg-Gly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18). J Biol Chem. 1992; 267: 635-43.
21. Wright SD, Reddy PA, Jong MT, Erickson BW. C3bi receptor (complement receptor type 3) recognizes a region of complement protein C3 containing the sequence Arg-Gly-Asp. Proc Natl Acad Sci USA. 1987; 84: 1965-8.
22. Harris ES, McIntyre TM, Prescott SM, Zimmerman GA. The leukocyte integrins. J Biol Chem. 2000; 275: 23409-12.
23. Guo H, Cai CQ, Schroeder RA, Kuo PC. Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. J Immunol. 2001; 166: 1079-86.
24. Kawai T, Akira S. TLR signaling. Semin Immunol. 2007; 19: 24-32.
25. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002; 100: 673-87.
26. Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, Ni H, Lazarus AH, Freedman J, Semple JW. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood. 2006; 107: 637-41.
27. Sheu JR, Hung WC, Wu CH, Ma MC, Kan YC, Lin CH, Lin MS, Luk HN, Yen MH. Reduction in lipopolysaccharide-induced thrombocytopenia by triflavin in a rat model of septicemia. Circulation. 1999; 99: 3056-62.
28. Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med. 1999; 341: 586-92.
29. Pawlinski R, Pedersen B, Schabbauer G, Tencati M, Holscher T, Boisvert W, Andrade-Gordon P, Frank RD, Mackman N. Role of tissue factor and protease activated receptors in a mouse model of endotoxemia. Blood. 2004; 103: 1342-7.
30. Abraham E, Reinhart K, Opal S, Demeyer I, Doig C, Rodriguez AL, Beale R, Svoboda P, Laterre PF, Simon S, Light B, Spapen H, Stone J, Seibert A, Peckelsen C, De Deyne C, Postier R, Pettila V, Artigas A, Percell SR, Shu V, Zwingelstein C, Tobias J, Poole L, Stolzenbach JC, Creasey AA; OPTIMIST Trial Study Group. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA. 2003; 290: 238-47.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41711-
dc.description.abstract蛇毒中有許多不同成份,而許多成份經純化後具有特殊作用。研究這些特殊成份分子結構和活性,不僅僅可應用為工具更可以發展成為新的治療策略。舉例來說,出血性蛇毒蛋白在血管系統中透過針對血球,血管和血中蛋白的活性而影響循環平衡。本論文中我們利用兩個純化自馬來亞腹蛇(C. Rhodostoma)中具有抗血小板活性的蛇毒蛋白,來研究其機轉成為藥物的設計策略。其中一個是蛇毒金屬依賴性蛋白酵素 Kistomin,另一個則是抗黏著蛋白 rhodostomin(Rn)。
血管壁損傷所造成胞外基質的暴露將引發血栓生成,血小板上的受體如糖蛋白(GP)Ibα和VI扮演著血小板被基質活化凝集的關鍵。vWF及膠原蛋白(collagen)分別和血小板上的GPIba與GPVI結合來調控著血栓生成初期的血小板活化。Kistomin屬於蛇毒金屬依賴性蛋白酵素,已知可以抑制vWF引發之血小板凝集。本論文中進一步證明此抑制作用乃經由kistomin結合並水解GPIbα和vWF,其中kistomin在GPIbα上分別水解兩個不同位置而產生兩個小片段(45和130kDa),而vWF經水解產生小分子的多聚體。活體外試驗中,kistomin在人類全血中仍具有水解GPIbα的活性;注射kistomin的小鼠,其血小板失去了對GPIbα致效劑引發凝集的活性。由於GPIbα和GPVI在活性機轉和結構功能的類似性,我們測試了kistomin在GPVI與膠原蛋白間交互作用的影響。研究中發現高濃度的kistomin會抑制膠原蛋白所引起的血小板凝集,也會抑制convulxin(GPVI的致效劑)和GPVI專一抗體所引發的凝集。利用流式細胞儀和西方點墨法得知kistomin可水解GPVI並產生小的片段。基因工程表現的GPVI也被kistomin作用後產生25kDa和35kDa的片段,推測其水解位置約在類mucin區域。因此我們合成此區域(Leu180到Asn249)作為kistomin受質,水解後利用飛行質譜儀(MALDI-TOF-MS)檢測發現水解位置在FSE205/A206TA和NKV218/F219TT。這種水解活性也會抑制血小板GPVI活化時的tyrosine kinase磷酸化及血小板貼附到膠原蛋白。活體試驗中更證明了kistomin注射有效延長小鼠腸繫膜微血管栓塞時間及尾巴出血時間。本研究進一步研究kistomin阻礙GPIbα和vWF交互作用的機轉,並且首次發現小分子蛇毒金屬依賴性蛋白酵素會透過水解GPVI而抑制collagen和GPVI間的交互作用。Kistomin提供了針對GPIbα/GPVI作用相關之新抗血栓的治療策略。
敗血症常造成多重器官衰竭和敗血性休克引發病人死亡,然而治療策略卻仍然有限。在抗發炎作用中,內毒素(endotoxin)注射常用於急性發炎之研究。我們評估了抗黏著蛋白 Rn 在菌血症之作用及對脂多醣(lipopolysaccharide, LPS)活化單核球之作用機轉。活體研究中發現Rn有效降低血中TNFα,IL-6,IL-1β和IL-10以及改善心血管功能衰竭和血小板低下症。組織切片中也可以發現Rn對脂多醣引發之組織發炎也有保護作用。為了了解這些作用的可能機轉,我們在試管實驗中研究Rn對脂多醣活化之人類單核球細胞株(THP-1)的影響。Rn同樣抑制了細胞激素的分泌及mitogen-activated protein kinases的活化。流式細胞儀分析顯示Rn可以濃度相關性的結合到單核球表面,並且專一性阻斷αVβ3抗體的結合。脂多醣引發之單核球對纖維結合素(fibronectin)黏著及移行均為Rn所抑制。此外,Rn也抑制了脂多醣活化單核球造成組織因子(tissue factor)的表現和促凝血活性。本研究證實除了藉由抗血小板作用外,Rn可能藉由和單核球上的αVβ3交互作用而影響脂多醣對單核球的活化,包括發炎細胞激素釋放,細胞貼附和移行以及促凝血活性。
對於蛇毒金屬依賴性蛋白酵素和抗黏著蛋白仍有許多值得研究的功能及應用,目前實驗室也繼續進行中。
zh_TW
dc.description.abstractSome snakes store different protein mixture of toxins in the venom gland, and purified venom components are special and specific to their substrates. Based on the molecular structure-relationship of these unique molecules, we can not only use as tool but also develop new classes of therapeutics. For example, the proteins from hemorrhagic venoms have diverse effect on the cardiovascular system by affecting blood cells, plasma proteins and vessel wall components. In these reports, we used two snake venom proteins purified from venom of Calloselasma rhodostoma, both with antiplatelet activities, as the tools for investigating the their opportunity as new drug-designing candidates. One is SVMP, kistomin, and the other is disintegrin, rhodostomin.
Injuries to the vessel wall and the subsequent exposure of matrix of the subendothelial layer result in thrombus formation. Binding of von Willebrand factor (vWF) to platelet glycoprotein (GP) Ib-IX-V and collagen to platelet GPVI both mediate platelet activation in the early stage of thrombus formation. Kistomin has been shown to inhibit vWF-induced platelet aggregation. In the present study, we found that kistomin specifically inhibited vWF-induced platelet aggregation through binding and cleavage of platelet GPIbα and vWF. Cleavage of platelet GPIbα by kistomin resulted in release of 45- and 130-kDa soluble fragments, indicating that kistomin cleaves GPIbα at two distinct sites. In parallel, cleavage of vWF by kistomin also resulted in the formation of low-molecular-mass multimers of vWF. In ex-vivo studies, kistomin exhibited the cleaving activity on platelet GPIbα in whole blood, and GPIbα agonist-induced platelet aggregation was inhibited. Because of the crucial roles of GPIbα-vWF and GPVI-collagen in mediating the initial platelet aggregation process and the structural similarity between GPIbα and GPVI, we further investigated the effect of kistomin on GPVI-collgen interaction. We found that kistomin also inhibited collagen-induced platelet aggregation. Moreover, kistomin inhibited platelet aggregation induced by convulxin, a GPVI agonist, and a GPVI-specific antibody in a concentration and time-dependent manner. Kistomin treatment decreased the expression of platelet GPVI but not that of integrin α2β1 or αIIbβ3, accompanied with the formation of GPVI cleavage fragments, as determined by flow cytometric and Western blot analyses. In addition, intact platelet GPVI and recombinant GPVI were digested by kistomin to release 25 and 35kDa-fragments, suggesting that kistomin cleaved GPVI near the mucin-like region. We designed four synthetic peptides ranging from Leu180 to Asn249 as the substrates for kistomin and found that kistomin cleaved these synthetic peptides at FSE205/A206TA and NKV218/F219TT, as analyzed by MALDI-TOF-MS. In addition, GPVI-specific antibody-induced tyrosine kinase phosphorylation in platelets was reduced after kistomin pretreatment, and platelet adhesion to collagen but not to fibrinogen was attenuated by kistomin. Its in vivo antithrombotic effect was evidenced by prolonging the occlusion time in mesenteric microvessels of mice and tail-bleeding time was prolonged in mice receiving intravenous kistomin. In conclusion, kistomin, a P-I class metalloproteinase, interrupts interactions between both GPIbα-vWF and GPVI-collagen through its proteolytic activity, which is responsible for its antithrombotic activity both in vitro and in vivo. Kistomin can be a useful tool for studying metalloproteinase-substrate interactions and ligand-GPIbα/GPVI interaction at molecular basis.
Sepsis cause lots of death because of multiple organs failure and septic shock, but progress in the development of better therapeutic modalities for sepsis has been slow. Endotoxin injection is widely used to study the acute inflammatory response. We evaluated the effects of rhodostomin on endotoxemia and explor the possible mechanism on LPS-activated monocytes. We found that rhodostomin significantly decreased the production of tumor necrosis factor-α, interleukin-6, -1β and -10 and improved cardiovascular dysfunction and thrombocytopenia in vivo. Rhodostomin also protected against tissue inflammation following LPS-induced endotoxemia in mice, as evidenced by histological examination. To understand the mechanism of this obvious inhibition, we evaluated the in vitro effects of rhodostomin on LPS-treated human monocyte cell line, THP-1. Rhodostomin inhibited cytokine production and mitogen-activated protein kinase activation of THP-1 induced by LPS. Flow cytometric analysis revealed that rhodostomin concentration-dependently bound to LPS-activated THP-1 and specifically blocked anti-αvβ3 mAb binding to THP-1, but not anti-β1 and anti-β2 mAbs binding. LPS-induced THP-1 adherences to immobilized fibronectin and cell migration were inhibited by rhodostomin. Moreover, rhodostomin blocked the enhanced expression and the procoagulant activity of tissue factor on THP-1 cells stimulated by LPS. These results suggest that in addition to its antiplatelet activity, rhodostomin may interact with αvβ3 integrin of monocytes leading to interfere with the LPS triggered activation of monocytes, including proinflammatory cytokines release, subsequent adhesion, and migration and the procoagulant activity.
Furthermore, we are interested in some topics about kistomin and Rn and more related investigations are undergoing.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:28:32Z (GMT). No. of bitstreams: 1
ntu-98-D92443002-1.pdf: 3611965 bytes, checksum: b0dda5ba002dd4fa3fd6166a6e9f9819 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員審定書 ……………………………………………… i
誌謝 …………………………………………………………… ii
中文摘要 … ……………………………………………………… iv
Abstract ………………………………………………………… vi
Abbreviation …………………………………………………… ix
CHEAPTER 1
Introduction ………………………………………………………… 1
References ……………………………………………………… 16
CHEAPTER 2
Antithrombotic Effect of a P-I Class Snake Venom Metalloproteinase, Kistomin, Is Mediated by Affecting Glycoprotein Ib-von Willebrand Factor and Glycoprotein VI-Collagen Interaction ...…………………………………………………… 23
References ……………………………………………………………57
CHEAPTER 3
Mechanism of Action of a Disintegrin, Rhodostomin, in Improvement of Endotoxemia …………………………………… 61
References …… ……………………………………………………… 83
CHEAPTER 4
Perspectives ……………………………………………………… 87
Publication List …………………………………………………… 91
dc.language.isoen
dc.title蛇毒金屬依賴性蛋白酵素抗血栓作用及蛇毒抗黏著蛋白抗敗血症作用之研究zh_TW
dc.titleStudies on the Antithrombotic Activity of a Snake
Venom Metalloproteinase, Kistomin, and the Antiseptic Activity of a Disintegrin, Rhostomin
en
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.oralexamcommittee鄧哲明,蔡蔭和,楊春茂,顏茂雄
dc.subject.keyword蛇毒,蛋白,血栓,敗血症,zh_TW
dc.subject.keywordsnake venom,protein,thrombosis,sepsis,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2009-01-21
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
3.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved