請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41705完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | De-Yao Wang | en |
| dc.contributor.author | 王得耀 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:28:17Z | - |
| dc.date.available | 2009-02-03 | |
| dc.date.copyright | 2009-02-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-01-21 | |
| dc.identifier.citation | Chapter 1
1. Langer R, Vacanti JP. Tissue Engineering. Science 1993 May; 260(5110): 920-926. 2. Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res 2000;17(5):497-504. 3. Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng 2003;9:S5-S15. 4. Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 2002 Feb;8(1):1-11. 5. Schmidt CE, Leach JB. Neural tissue engineering: Strategies for repair and regeneration. Annu Rev Biomed Eng 2003;5:293-347. 6. Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci 2006 Jan;6(1):13-26. 7. Huang YC, Huang YY. Biomaterials and strategies for nerve regeneration. Artif Organs 2006 Jul;30(7):514-522. 8. Lietz M, Ullrich A, Schulte-Eversum C, Oberhoffner S, Fricke C, Muller HW, et al. Physical and biological performance of a novel block copolymer nerve guide. Biotechnol Bioeng 2006 Jan;93(1):99-109. 9. Huang YC, Huang YY, Huang CC, Liu HC. Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process. J Biomed Mater Res Part B 2005 Jul;74B(1):659-664. 10. Yang Y, De Laporte L, Rives CB, Jang JH, Lin WC, Shull KR, et al. Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release 2005 Jun;104(3):433-446. 11. Bellamkonda RV. Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy. Biomaterials 2006 Jul;27(19):3515-3518. 12. Komiyama T, Nakao Y, Toyama Y, Asou H, Vacanti CA, Vacanti MP. A novel technique to isolate adult Schwann cells for an artificial nerve conduit. J Neurosci Methods 2003 Jan;122(2):195-200. 13. Guenard V, Kleitman N, Morrissey TK, Bunge RP, Aebischer P. Syngeneic Schwann-Cells Derived from Adult Nerves Seeded in Semipermeable Guidance Channels Enhance Peripheral-Nerve Regeneration. J Neurosci 1992 Sep;12(9):3310-3320. 14. Rodriguez FJ, Verdu E, Ceballos D, Navarro X. Nerve guides seeded with autologous Schwann cells improve nerve regeneration. Exp Neurol 2000 Feb;161(2):571-584. 15. Oudega M, Moon LDF, Leme RJD. Schwann cells for spinal cord repair. Brazilian J Med Biol Res 2005 Jun;38(6):825-835. 16. Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H. Peripheral nerve tissue engineering: Autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng 2006 Jun;12(6):1451-1465. 17. Chen ZL, Strickland S. Laminin gamma 1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 2003 Nov;163(4):889-899. 18. Oyane A, Uchida M, Ito A. Laminin-apatite composite coating to enhance cell adhesion to ethylene-vinyl alcohol copolymer. J Biomed Mater Res Part A 2005 Feb;72A(2):168-174. 19. Gawlik KI, Li JY, Petersen A, Durbeej M. Laminin alpha 1 chain improves laminin alpha 2 chain deficient peripheral neuropathy. Hum Mol Genet 2006 Sep;15(18):2690-2700. 20. Wen XJ, Tresco PA. Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro. J Biomed Mater Res Part A 2006 Mar;76A(3):626-637. 21. Jansen K, van der Werff JFA, van Wachem PB, Nicolai JPA, de Leij L, van Luyn MJA. A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials 2004 Feb;25(3):483-489. 22. Ahmed Z, Underwood S, Brown RA. Nerve guide material made from fibronectin: Assessment of in vitro properties. Tissue Eng 2003 Apr;9(2):219-231. 23. Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials 2005 Jun;26(18):3911-3918. 24. Chen MH, Chen PR, Chen MH, Hsieh ST, Huang JS, Lin FH. An in vivo study of tricalcium phosphate and glutaraldehyde crosslinking gelatin conduits in peripheral nerve repair. J Biomed Mater Res Part B 2006 Apr;77B(1):89-97. 25. Mosahebi A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 2003 Apr;9(2):209-218. 26. Willenberg BJ, Hamazaki T, Meng FW, Terada N, Batich C. Self-assembled copper-capillary alginate gel scaffolds with oligochitosan support embryonic stem cell growth. J Biomed Mater Res Part A 2006 Nov;79A(2):440-450. 27. Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J, Tuszynski MH. Templated agarose scaffolds support linear axonal regeneration. Tissue Eng 2006 Oct;12(10):2777-2787. 28. Stokols S, Tuszynski MH. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 2004 Dec;25(27):5839-5846. 29. Stokols S, Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 2006 Jan;27(3):443-451. 30. Dodla MC, Bellamkonda RV. Anisotropic scaffolds facilitate enhanced neurite extension in vitro. J Biomed Mater Res Part A 2006 Aug;78A(2):213-221. 31. Ao Q, Wang AJ, Cao WL, Zhang L, Kong LJ, He Q, et al. Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro. J Biomed Mater Res Part A 2006 Apr;77A(1):11-18. 32. Wang AJ, Ao Q, Cao WL, Yu MZ, He Q, Kong LJ, et al. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering. J Biomed Mater Res Part A 2006 Oct;79A(1):36-46. 33. Ide C. Peripheral nerve regeneration. Neurosci Res 1996;25(2):101-121. 34. Evans GRD. Challenges to nerve regeneration. Semin Surg Oncol 2000 Oct-Nov;19(3):312-318. 35. Nomura H, Tator CH, Shoichet MS. Bioengineered strategies for spinal cord repair. J Neurotrauma 2006 Mar-Apr;23(3-4):496-507. 36. Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, et al. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res Part A 2007 Dec;83A(3):636-645. 37. Chew SY, Mi RF, Hoke A, Leong KW. Aligned protein-polymer composite fibers enhance nerve regeneration: A potential tissue-engineering platform. Adv Funct Mater 2007 May;17(8):1288-1296. 38. McKenzie JL, Waid MC, Shi RY, Webster TJ. Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 2004;25(7-8):1309-1317. 39. Zhang N, Zhang CH, Wen XJ. Fabrication of semipermeable hollow fiber membranes with highly aligned texture for nerve guidance. J Biomed Mater Res Part A 2005 Dec;75A(4):941-949. 40. Phillips JB, Bunting SCJ, Hall SM, Brown RA. Neural tissue engineering: A self-organizing collagen guidance conduit. Tissue Eng 2005 Sep;11(9-10):1611-1617. 41. Sonn M, Feist WM. Prototype flexible microelectrode array for implant-prosthesis applications. Med Biol Eng 1974;12(6):778-791. 42. Mercer HD, White RL. Photolithographic fabrication and physiological performance of micro-electrode arrays for neural stimulation. IEEE Trans Biomed Eng 1978;25(6):494-500. 43. Connolly P, Moores GR, Monaghan W, Shen J, Britland S, Clark P. Microelectronic and nanoelectronic interfacing techniques for biologicalsystems. Sens Actuator B-Chem 1992;6(1-3):113-121. 44. Hoshino T, Kawamori M, Suzuki T, Matsui S, Mabuchi K. Three-dimensional and multimaterial microfabrication using focused-ion-beam chemical-vapor deposition and its application to processing nerve electrodes. J Vac Sci Technol B 2004;22(6):3158-3162. 45. Muthuswamy J, Okandan M, Jain T, Gilletti A. Electrostatic microactuators for precise positioning of neural microelectrodes. IEEE Trans Biomed Eng 2005;52(10):1748-1755. 46. Yagi T, Watanabe M, Ohnishi Y, Mukai T. Bio-hybrid retinal implant: Micro/nano-fabrication of conductive polymer for molecular electrodes. Iovs 2005;46(Suppl. S):1089. 47. Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M. Growing axons on nanometric patterns - a study of contact guidance. Society for Neuroscience Abstract Viewer and Itinerary Planner 2003;2003:Abstract No. 33.17. 48. Rajnicek AM, Britland S, McCaig CD. Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci 1997 Dec;110:2905-2913. 49. Xu XY, Yee WC, Hwang PYK, Yu H, Wan ACA, Gao SJ, et al. Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits. Biomaterials 2003;24(13):2405-2412. 50. Brannonpeppas L. Recent Advances on the Use of Biodegradable Microparticles and Nanoparticles in Controlled Drug-Delivery. Int J Pharm 1995 Mar;116(1):1-9. 51. Bakken DE, Narasimhan SV, Burg KJL, Gao BZ. Laser micropatterning of polylactide microspheres into neuronal-glial coculture for the study of axonal regeneration. Macromol Symp 2005 Jul;227:335-344. 52. Goraltchouk A, Scanga V, Morshead CM, Shoichet MS. Incorporation of protein-eluting microspheres into biodegradable nerve guidance channels for controlled release. J Control Release 2006 Jan;110(2):400-407. 53. Chang WC, Keller CG, Sretavan DW. Isolation of neuronal substructures and precise neural microdissection using a nanocutting device. J Neurosci Methods 2006;152(1-2):83-90. Chapter 2 1. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: Stem cells and their niche. Cell 2004 Mar;116(6):769-778. 2. Arai F, Hirao A, Suda T. Regulation of hematopoietic stem cells by the niche. Trends Cardiovasc Med 2005 Feb;15(2):75-79. 3. Yu HM, Meyvantsson I, Shkel IA, Beebe DJ. Diffusion dependent cell behavior in microenvironments. Lab Chip 2005;5(10):1089-1095. 4. Sands RW, Mooney DJ. Polymers to drect cell fate by controlling the microenvironment. Curr Opin Biotechnol 2007 Oct;18(5):448-453. 5. Aigner T, Stove J. Collagens - major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 2003 Nov;55(12):1569-1593. 6. Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. Faseb J 1999 Nov;13(14):1883-1900. 7. Alexanian AR. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions. Exp Cell Res 2005;310(2):383-391. 8. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 1999;96(19):10711-10716. 9. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B. Plasticity of cultured mesenchymal stem cells: Switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 2005 Mar;23(3):392-402. 10. Walker GM, Zeringue HC, Beebe DJ. Microenvironment design considerations for cellular scale studies. Lab Chip 2004;4(2):91-97. 11. Pirone DM, Chen CS. Strategies for engineering the adhesive microenvironment. J Mammary Gland Biol Neoplasia 2004 Oct;9(4):405-417. 12. Park H, Cannizzaro C, Vunjak-Novakovic G, Langer R, Vacanti CA, Farokhzad OC. Nanofabrication and microfabrication of functional materials for tissue engineering. Tissue Eng 2007;13:1867-1877. 13. Fogarty BA, Heppert KE, Cory TJ, Hulbutta KR, Martin RS, Lunte SM. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation. Analyst 2005;130(6):924-930. 14. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 2001;19(3):180-192. 15. Phinney DG. Building a consensus regarding the nature and origin of mesenchymal stem cells. Journal of Cellular Biochemistry 2002:7-12. 16. Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem cells - a critical review. APMIS 2005;113(11-12):831-844. 17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315-317. 18. Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Reagan CR, et al. Mesenchyaml stem-cells reside within the connective tissues of many organs. Dev Dyn 1995;202(2):137-144. 19. Phinney DG, Prockop DJ. Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair - Current views. Stem Cells 2007;25:2896-2902. 20. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammaliam centeral-nervous-system. Science 1992;255(5052):1707-1710. 21. Ray J, Gage FH. Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Molecular and Cellular Neuroscience 2006;31(3):560-573. 22. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone-marrow mesenchymal stem-cells exposed to 5-Azacytidine. Muscle Nerve 1995 Dec;18(12):1417-1426. 23. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li BS, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001 Apr;410(6829):701-705. 24. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999 May;284(5417):1168-1170. 25. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 1997 Apr;94(8):4080-4085. 26. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats - similarities to astrocyte grafts. Proc Natl Acad Sci U S A 1998 Mar;95(7):3908-3913. 27. Black IB, Woodbury D. Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol Dis 2001 May-Jun;27(3):632-636. 28. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000 Aug;164(2):247-256. 29. Abouelfetouh A, Kondoh T, Ehara K, Kohmura E. Morphological differentiation of bone marrow stromal cells into neuron-like cells after co-culture with hippocampal slice. Brain Res 2004 Dec;1029(1):114-119. 30. Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, et al. Brain from bone: Efficient 'meta-differentiation' of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 2001 Oct;68(4-5):235-244. 31. Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow (vol 418, pg 41, 2002). Nature 2007 Jun;447(7146):879-880. 32. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 2007 Oct;207(2):267-274. 33. Scuteri A, Cassetti A, Tredici G. Adult mesenchymal stem cells rescue dorsal root ganglia neurons from dying. Brain Res 2006 Oct;1116:75-81. 34. Folch A, Toner M. Microengineering of cellular interactions. Annu Rev Biomed Eng 2000;2:227-+. 35. Tsai RYL, McKay RDG. Cell contact regulates fate choice by cortical stem cells. J Neurosci 2000;20(10):3725-3735. 36. Johe KK, Hazel TG, Muller T, DugichDjordjevic MM, McKay RDG. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 1996;10(24):3129-3140. 37. Wachs FP, Couillard-Despres S, Engelhardt M, Wilhelm D, Ploetz S, Vroemen M, et al. High efficacy of clonal growth and expansion of adult neural stem cells. Lab Invest 2003;83(7):949-962. 38. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 2004 Nov;117(23):5655-5664. 39. West MJ, Slomianka L, Gundersen HJG. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator.. Anat Rec 1991 Dec;231(4):482-497. 40. Gundersen HJG, Jensen EB. The efficiency of systematic-sampling in stereology and its prediction. J Microsc-Oxf 1987 Sep;147:229-263. 41. Yen MH, Cheng JY, Wei CW, Chuang YC, Young TH. Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass. J Micromech Microeng 2006 Jul;16(7):1143-1153. 42. Bowden M, Geschke O, Kutter JP, Diamond D. CO2 laser microfabrication of an integrated polymer microfluidic manifold for the determination of phosphorus. Lab Chip 2003;3(4):221-223. 43. Cheng JY, Yen MH, Wei CW, Chuang YC, Young TH. Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J Micromech Microeng 2005 Jun;15(6):1147-1156. 44. Yuan DJ, Das S. Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. J Appl Phys 2007;101(2). 45. Song SJ, Sanzhez-Ramos J. Brain as the Sea of Marrow. Exp Neurol 2003;184(1):54-60. 46. Lee JY, Jones C, Zern MA, Revzin A. Analysis of local tissue-specific gene expression in cellular micropatterns. Anal Chem 2006 Dec;78(24):8305-8312. 47. Hainfellner JA, Voigtlander T, Strobel T, Mazal PR, Maddalena AS, Aguzzi A, et al. Fibroblasts can express glial fibrillary acidic protein (GFAP) in vivo. J Neuropathol Exp Neurol 2001;60(5):449-461. 48. Egerbacher M, Krestan R, Bock P. Morphology, histochemistry, and differentiation of the cats epiglottic cartilage - a supporting organ composed of elastic cartilage, fibrous cartilage, myxoid tissue, and fat tissue. Anat Rec 1995;242(4):471-482. Chapter 3 1. Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenstrom P. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 2008 Mar;9(3):1044-1049. 2. Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 2006 Jun;27(16):3136-3146. 3. Li JX, He AH, Zheng JF, Han CC. Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules 2006 Jul;7(7):2243-2247. 4. Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng 2007;13:1593-1605. 5. Ji Y, Ghosh K, Shu XZ, Li BQ, Sokolov JC, Prestwich GD, et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 2006 Jul;27(20):3782-3792. 6. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 2005 Nov;26(31):6176-6184. 7. Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 2005 Sep-Oct;6(5):2583-2589. 8. Zhang YZ, Ouyang HW, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B 2005 Jan;72B(1):156-165. 9. Doshi J, Reneker DH. Electrospinning Process and Applications of Electrospun Fibers. J Electrost 1995 Aug;35(2-3):151-160. 10. Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 2001 Nov;90(9):4836-4846. 11. Li D, McCann JT, Xia YN. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small 2005 Jan;1(1):83-86. 12. Zhang YZ, Feng Y, Huang ZM, Ramakrishna S, Lim CT. Fabrication of porous electrospun nanofibres. Nanotechnology 2006 Feb;17(3):901-908. 13. Cui WG, Li XH, Zhou SB, Weng J. Investigation on process parameters of electrospinning system through orthogonal experimental design. J Appl Polym Sci 2007;103(5):3105-3112. 14. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999 Jul;40(16):4585-4592. 15. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001 Jan;42(1):261-272. 16. Borg E, Frenot A, Walkenstrom P, Gisselfalt K, Gretzer C, Gatenholm P. Electrospinning of degradable elastomeric nanofibers with various morphology and their interaction with human fibroblasts. J Appl Polym Sci 2008;108:491-497. 17. Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Sci-Polym Ed 2006;17(9):969-984. 18. Katta P, Alessandro M, Ramsier RD, Chase GG. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 2004 Nov;4(11):2215-2218. 19. Sarkar S, Deevi S, Tepper G. Biased AC electrospinning of aligned polymer nanofibers. Macromolecular Rapid Communications 2007;28:1034-1039. 20. Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 2007;13:1845-1866. 21. Holzmelster A, Rudisile M, Greiner A, Wendorff JH. Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning. Eur Polym J 2007;43:4859-4867. 22. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng 2006 May;12(5):1197-1211. 23. Park KE, Kang HK, Lee SJ, Min BM, Park WH. Biomimetic nanofibrous scaffolds: Preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules 2006 Feb;7(2):635-643. 24. Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: A review of spinning methodologies. Tissue Eng 2006 Mar;12(3):435-447. 25. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res Part B 2006 Aug;78B(2):283-290. 26. Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesionand proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng 2007;13(3):579-587. 27. Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, et al. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res Part A 2007 Dec;83A(3):636-645. 28. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, et al. Guidance of glial cell. migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 2007 Jul;28(19):3012-3025. 29. Xin XJ, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007;28(2):316-325. 30. Dang JM, Leong KW. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv Mater 2007;19:2775-+. 31. Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 2008;29:653-661. 32. Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 2007 May;313(9):1820-1829. 33. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 2004 Nov;117(23):5655-5664. 34. Hainfellner JA, Voigtlander T, Strobel T, Mazal PR, Maddalena AS, Aguzzi A, et al. Fibroblasts can express glial fibrillary acidic protein (GFAP) in vivo. J Neuropathol Exp Neurol 2001;60(5):449-461. 35. Egerbacher M, Krestan R, Bock P. Morphology, histochemistry, and differentiation of the cats epiglottic cartilage - a supporting organ composed of elastic cartilage, fibrous cartilage, myxoid tissue, and fat tissue. Anat Rec 1995;242(4):471-482. 36. Li N, Yang H, Lu LL, Duan CL, Zhao CL, Zhao HY. Spontaneous expression of neural phenotype and NGF, TrkA, TrkB genes in marrow stromal cells. Biochem Biophys Res Commun 2007;356(3):561-568. 37. Tseng PY, Chen CJ, Sheu CC, Yu CW, Huang YS. Spontaneous differentiation of adult rat marrow stromal cells in a long-term culture. J Vet Med Sci 2007;69(2):95-102. 38. Lamoury FMJ, Croitoru-Lamoury J, Brew BJ. Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markersOct-4 and Rex-1. Cytotherapy 2006;8(3):228-242. 39. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2006;24(4):1054-1064. 40. Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 2004;72(7):319-326. Chapter 4 1. Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev 2003 Oct;13(5):543-550. 2. Beckstead BL, Santosa DM, Giachelli CM. Mimicking cell-cell interactions at the biomaterial-cell interface for control of stem cell differentiation. J Biomed Mater Res Part A 2006 Oct;79A(1):94-103. 3. Badylak SF. The extracellular matrix as a biologic scaffold material.Biomaterials 2007;28:3587-3593. 4. Isenberg BC, Wong JY. Building structure into engineered tissues. Mater Today 2006 Dec;9(12):54-60. 5. Ma ZW, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 2005 Jan;11(1-2):101-109. 6. Han D, Gouma P-I. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine-Nanotechnology Biology and Medicine 2006;2(1):37-41. 7. Pirone DM, Chen CS. Strategies for engineering the adhesive microenvironment. J Mammary Gland Biol Neoplasia 2004 Oct;9(4):405-417. 8. Shin H. Fabrication methods of an engineered microenvironment for analysis of cell-biomaterial interactions. Biomaterials 2007 Jan;28(2):126-133. 9. Kim TG, Park TG. Biomimicking extracellular matrix: Cell adhesive RGD peptide modified electrospun poly( D,L-lactic-Co-glycolic acid) nanofiber mesh. Tissue Eng 2006 Feb;12(2):221-233. 10. Prestwich GD. Simplifying the extracellular matrix for 3-d cell culture and tissue engineering: A pragmatic approach. J Cell Biochem 2007;101:1370-1383. 11. Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng 2007;13:1593-1605. 12. Casper CL, Yang WD, Farach-Carson MC, Rabolt JF. Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules 2007 Apr;8(4):1116-1123. 13. Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer 2006 Apr;47(8):2911-2917. 14. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer 2005;46(14):5094-5102. 15. Zhang YZ, Ouyang HW, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B 2005 Jan;72B(1):156-165. 16. Ji Y, Ghosh K, Shu XZ, Li BQ, Sokolov JC, Prestwich GD, et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 2006 Jul;27(20):3782-3792. 17. Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 2003 Mar;8(1):64-75. 18. Doshi J, Reneker DH. Electrospinning Process and Applications of Electrospun Fibers. J Electrost 1995 Aug;35(2-3):151-160.19. Lebourg M, Serra RS, Estelles JM, Sanchez FH, Ribelles JLG, Anton JS. Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique. J Mater Sci-Mater Med 2008 May;19(5):2047-2053. 20. Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 2008;29:2348-2358. 21. Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 2007 May;313(9):1820-1829. 22. Eichhorn SJ, Sampson WW. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface 2005 Sep;2(4):309-318. 23. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999 Jul;40(16):4585-4592. 24. Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: A review of spinning methodologies. Tissue Eng 2006 Mar;12(3):435-447. 25. Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Sci-Polym Ed 2006;17(9):969-984. 26. Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 2007 Sep;13(9):2249-2257. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41705 | - |
| dc.description.abstract | 本研究將精密加工中的雷射雕刻技術 (Laser micromachining)、半導體製程衍生出的軟蝕刻技術 (Soft lithography) 以及奈米科技中的電紡織技術 (Electrospinning) 應用於神經再生領域,用來評估誘導的細胞、製備多功能性的支架、發展新式的導管加工方式以及提供排列的訊息。
為了提供神經再生研究中新的細胞來源途徑,我們分別利用生物性和物理性的方式,將間葉幹細胞 (Mesenchymal stem cell) 誘導分化成類神經細胞。首先,應用雷射雕刻技術去製作用來排列細胞的微流道系統 (Microfluidic system)。再利用微流道系統將綠色螢光基因轉殖小鼠的間葉幹細胞和紅色螢光蛋白基因轉殖小鼠的神經細胞 (Neuron cell) 區隔排列在玻片上,進行共同培養,來探討單純神經細胞的旁分泌(Paracrine)對於間葉幹細胞轉分化 (Transdifferentiation) 的影響。發現利用該系統可以提供不具有擴散障礙的共同培養平台,讓培養其中的間葉幹細胞有較高的神經相關蛋白表現,並且在區隔排列之下,兩種細胞的融合現象 (Cell fusion) 更容易被觀察。此外,利用電紡織技術來製備奈米尺寸的聚己內酯 (Polyε-Caprolactone) 細絲,以物理結構來誘導分化間葉幹細胞,使該細胞具有類神經細胞的型態表現,以及表現神經相關蛋白和增加神經相關基因的表現量。 再者,為了提供誘導細胞具有孔洞性的仿生基材,我們改良傳統的電紡織技術,製備具有微米尺寸孔洞的電紡織支架,用來模擬相似於生理微環境 (Microenvironment) 的結構。首先,應用改良式電紡織技術結合顆粒蝕刻技術 (Particle leaching),同時製備並且均勻混合電紡織明膠 (Gelatin) 細絲以及聚己內酯顆粒,當扮演成孔劑(Pore generator)的聚己內酯溶解後,留下孔洞提高了材料的孔隙度以及細胞對材料的穿透性。此外,利用幾丁聚醣 (Chitosan) 水溶液收集具有物理性誘導分化潛力的電紡織聚己內酯細絲,在冷凍乾燥(Lyophilizing) 之後形成同時具有微米尺寸孔洞以及奈米尺寸紋理的電紡織支架。 最後,我們提供創新的加工方式將多孔性的仿生基材製備成神經導管,以及使用排列生物分子來引導細胞生長的方向。首先,應用雷射雕刻技術並且結合電腦輔助設計以及電腦輔助製造,可以快速、精確、客製化、批次量造地製造神經導管 (Nerve conduit),使得多孔性的高分子材料不會在導管加工過程中坍塌變形。並且應用軟蝕刻技術去製作具有微米尺寸結構的次級神經導管模具,再利用高分子灌模、成型、脫模之後,以共軸方式將次級神經導管堆疊成神經導管。以及應用軟蝕刻技術製作軟性結構將生物分子層黏連蛋白 (Laminin) 以微接觸式印刷技術 (Microcontact printing) 拓印在細胞培養之基材上,可以引導許旺氏細胞 (Schwann cell) 依特定方向性生長,用來探討訊息和細胞間的交互作用。 | zh_TW |
| dc.description.abstract | This work demonstrates how micro/nanotechniques, laser micromachining, soft lithography, and electrospining define material properties and applications at the nanoscale or microscale for broad capabilities in the development of processes of nerve regeneration such as needs of induced cell, engineered scaffold, and patterned signal.
To obtain alter neuron cell resources, induced cues of cocultured neuron and physical structure were used to transdifferentiate mesenchymal stem cells (MSCs) into neuron-like cells. Green fluorescent protein expressing (GFP+) mMSCs and red fluorescent protein expressing (RFP+) neuron cells were microfluidic patterned separately on the same cover glass. When cocultured with neuron cells, more mMSCs expressed neural markers, Beta tubulin III and Glial fibrillary acidic protein (GFAP) in the microfluidic patterned coculture system than cells in a transwell system. Also, two reporters, GFP and RFP, provide us a way to assay that a very few case of fused cell happened. The microfluidic patterned coculture system facilitates to evaluate the plasticity and behavior of cells and dynamic cross-talks between cells. Besides, aligned and random collected electrospun polycaprolactone (PCL) fibers were fabricated to provide not only contact guidance but also nanometric cues to affect cell fate. Compared to mMSCs cultured on cover glass, cells expressed protein level of Beta tubulin III and GFAP, and even higher mRNA level of Nestin, Beta tubulin III, TH, Synapsin, GFAP, and MBP. Nanometric topographies used to change cell functions are a way to evaluate cell plasticity and cell-biomaterial interactions. Furthermore, to provide the induced cell with physical supporting and potential transdifferentiated cues, particle leaching and lyophilizing were introduced into electrospinning to fabricate engineered scaffold with electrospun fibers and microstructured pores. We used the rotating multichannel electrospinning (RM-ELSP) to produce gelatin electrospun scaffolds with controllable porosity. Gelatin electrospun fibers and PCL microparticles were formed and blended simultaneously using the RM-ELSP. The composites were turned into the porous electrospun scaffolds with the use of acetone to leach out PCL microparticles and leave space for cell ingrowth to improve its poor porosity. Besides, a chitosan solution as a collector of electrospun PCL fibers is used to support the fibers after changed it to be a porous sponge using lyophilizing. A chitosan/PCL composute, a porous chitosan sponge distributed electrospun PCL fibers within its microstructure, provided topographical cues on its surface to not only improve GFP+ mMSCs infiltration within the electrospun scaffolds but also increase higher mRNA level of Nestin, TH, Synapsin, GFAP and MBP. It implied that nano-topographical cues in engineered scaffold have a great potential to make mMSCs transdifferentiated into neuron-like cells. Moreover, turning engineered scaffold to nerve conduits employed multiple channels and microstructure in their lumen surface and providing pattern signal to orient the cell growth were considered also. We fabricated porous chitosan conduits employed designed patterns of engraved channels using the direct-write CO2 laser micromachining. Laser micromachining allows us to shape various selected materials in the regions engraved with the designed patterns. Besides, we presented a new way to fabricate nerve conduits using soft lithography and molding process. Afterwards the conduit subunit microfabrication, the conduit subunits were stacked coaxially to form a nerve conduit. Due to the precise capability and cost-effective of soft lithography, it is a well-suited way for us to fabricate nerve conduits having complex designs. Finally, we demonstrated the efficacy of microcontact printed laminin to align and redirect Schwann cells growth; and therefore, microcontact printing is able to pattern cell-recognition molecules on scaffolds for guided cell growth in tissue regeneration. These micro- and nanotechniques and approaches, laser micromachining, soft lithography, and electrospinning, are useful in advanced material and biological studies in tissue engineering such as change of functions and behaviors of cells to be a new resource of induced neuron cells; development of engineered scaffolds with properties of scaffold size, network interconnectivity, and geometrical designs; and establishment of artificial microenvironment composed of biochemical, physical, and topographical cues used for regenerated cell adherence, viability, proliferation, and differentiation to integrate the nerve regeneration processes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:28:17Z (GMT). No. of bitstreams: 1 ntu-98-F93548019-1.pdf: 31846672 bytes, checksum: 156569064afd8f4208f615a8e8cb5bee (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Acknowledgement I
Abstract (Chinese) II Abstract IV Table of Contents VIII List of Figures XIII List of Tables XV List of Publications XVI List of Patents XVII Chapter 1: Background and literature review 1 1.1. Tissue engineering triad 1 1.1.1. Cell 2 1.1.2. Signal 3 1.1.3. Scaffold 5 1.2. Nerve regeneration 9 1.2.1. Nervous system 9 1.2.2. Nerve injury 11 1.2.3. Nerve repair using tabulation 13 1.3. Challenge in nerve regeneration 14 1.4. Micro/nanotechniques and approaches in nerve regeneration 15 1.5. References 21 PART I: INDUCED CELL 25 Chapter 2: Evaluation of transdifferentiated from mesenchymal stem cells to neuron-like cells using microfluidic patterned coculture system……...26 2.1. Introduction 27 2.1.1. Mesenchymal stem cell 29 2.1.2. Neuron stem cell 31 2.1.3. Mesenchymal stem cell and neuron cell interactions 33 2.1.3.1. MSCs transdifferentiated into neuron-like cells in vivo 34 2.1.3.2. MSCs transdifferentiated into neuron-like cells in vitro 34 2.1.3.3. Concerns of transdifferentiation 35 2.1.3.4. MSCs rescued dying neuron related cells 37 2.1.4. Microfluidic patterning 38 2.2. Materials and methods 40 2.2.1. Microfluidic patterning device fabrication 40 2.2.2. Primary culture of GFP+ mMSCs and RFP+ neuron cells 41 2.2.3. Microfluidic patterning 43 2.2.4. Immuno-cytochemistry analysis 44 2.2.5. Stereological cell count 45 2.3. Results 46 2.3.1. Microfluidic device 46 2.3.2. Differentiated neurons from neuron sphere 47 2.3.3. Cocultured MSCs and neuron cells 50 2.3.4. Neural markers expressed in mMSCs with and without cell-cell contact induction 52 2.3.5. Cell fusion 56 2.4. Discussion 57 2.5. Conclusions 60 2.6. References 61 Chapter 3: Electrospun polycaprolactone fibers facilitated mesenchymal stem cells to transdifferentiate into neuron-like cells 65 3.1. Introduction 66 3.2. Materials and methods 68 3.2.1. Electrospinning 68 3.2.2. MSCs isolation and culture 69 3.2.3. Morphology observations 70 3.2.4. Immuno-cytochemistry analysis 70 3.2.5. Quantitative real-time polymerase chain reaction 71 3.3. Results 73 3.3.1. PCL electrospun fibers and membrane 73 3.3.2. Induced elongation of GFP+ mMSCs along electrospun fibers 74 3.3.3. Living cell observation 76 3.3.4. Neural marker expressed GFP+ mMSCs 78 3.3.5. Quantitative real-time polymerase chain reaction 81 3.4. Discussion 83 3.5. Conclusions 85 3.6. References 86 PART II: ENGINEERED SCAFFOLD 90 Chapter 4: Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size via the rotating multichannel electrospinning 91 4.1. Introduction 92 4.1.1. Electrospinning 94 4.1.2. Gelatin 98 4.1.3. Polycaprolactone 98 4.2. Materials and methods 99 4.2.1. Electrospinning 99 4.2.2. Glutaraldehyde vapor crosslinking 101 4.2.3. Pore formation 102 4.2.4. Degradation test 102 4.2.5. Fiber and cell morphology observations 103 4.2.6. Cell seeding and culture 103 4.2.7. Cell proliferation and cell toxicity assay 104 4.3. Results 105 4.3.1. Electrospinning of PCL and the PCL/gelatin composites 105 4.3.2. Glutaraldehyde vapor crosslinking and PCL leaching 109 4.3.3. Cell morphologies 111 4.3.4. Cell proliferation and total cell number assay 113 4.4. Discussion 114 4.5. Conclusion 117 4.6. References 117 Chapter 5: Microstructure of chitosan sponge blended with electrospun polycaprolactone fibers facilitated neural differentiation of mesenchymal stem cells 120 5.1. Introduction 121 5.2. Materials and methods 123 5.2.1. Electrospinning 123 5.2.2. Lyophilizing and neutralization of chitosan/PCL composites 124 5.2.3. Mesenchymal stem cell culture 125 5.2.4. Srtucture morphology 126 5.2.5. Quantitative real-time polymerase chain reaction 127 5.3. Results 128 5.3.1. Electrospinning of PCL 128 5.3.3. The chitosan/PCL composite 129 5.3.4. Observations of seeded cells within the chitosan sponge 132 5.3.5. Quantitative real-time polymerase chain reaction 133 5.4. Discussion 134 5.5. Conclusion 136 5.6. References 137 PART III: NERVE CONDUIT AND SIGNAL PATTERNING 139 Chapter 6: Manufacture of nerve conduits via the direct-write CO2 laser micromachining 140 6.1. Introduction 141 6.1.1. Chitosan 144 6.1.2. Laser micromachining 145 6.2. Materials and methods 147 6.2.1. Preparation of chitosan sponge 147 6.2.2. Processes of laser micromachined conduits 147 6.2.3. Wire-heated conduit process 149 6.2.4. Conduit structures 149 6.2.5. Pore structure comparisons 150 6.3. Results 150 6.3.1. Laser micromachined conduit structure 150 6.3.2. Comparisons of pore structures 151 6.4. Discussion 153 6.5. Conclusion 156 6.6. References 157 Chapter 7: Fabricate coaxial stacked nerve conduits through soft lithography and molding processes 160 7.1. Introduction 161 7.1.1. Soft lithography 163 7.2. Materials and methods 164 7.2.1. Lithographic processes 164 7.2.2. PDMS mold production 165 7.2.3. Conduit subunit production 165 7.2.4. Nerve conduit production 166 7.3. Results 166 7.3.1. PDMS mold production 166 7.3.2. Conduit subunit production 168 7.3.3. Coaxial sacking by rational symmetry 169 7.4. Discussion 171 7.5. Conclusion 172 7.6. References 173 Chapter 8: Microcontant printing (μCP) of laminin on oxygen plasma activated substrates for alignment and morphology of Schwann cells 175 8.1. Introduction 176 8.1.1. Schwann cell 178 8.1.2. Plasma activation 180 8.2. Materials and methods 182 8.2.1. Elastomeric stamp preparation 182 8.2.2 Substrate preparation 185 8.2.3. Contact angle measurement before and after oxygen plasma treatment 186 8.2.4. Microcontact printing 187 8.2.5. Primary culture of Schwann cell 187 8.3. Results 189 8.3.1. Effect of oxygen plasma treatment 189 8.3.2. Validation of the microcontact pattern 190 8.3.3. Orientation and morphology of Schwann cells on micropatterned substrates 190 8.4. Discussion 192 8.5. Conclusion 194 8.6. References 195 Chapter 9: Conclusions 197 9.1. Conclusions 197 | |
| dc.language.iso | en | |
| dc.subject | 軟蝕刻技術 | zh_TW |
| dc.subject | 組織工程 | zh_TW |
| dc.subject | 神經再生 | zh_TW |
| dc.subject | 電紡織技術 | zh_TW |
| dc.subject | 間葉幹細胞 | zh_TW |
| dc.subject | 微流道系統 | zh_TW |
| dc.subject | 轉分化 | zh_TW |
| dc.subject | 聚己內酯 | zh_TW |
| dc.subject | 微環境 | zh_TW |
| dc.subject | 神經導管 | zh_TW |
| dc.subject | 微接觸式印刷技術 | zh_TW |
| dc.subject | 許旺氏細胞 | zh_TW |
| dc.subject | Microcontact printing | en |
| dc.subject | Transdifferentiation | en |
| dc.subject | Polycaprolactone | en |
| dc.subject | Microenvironment | en |
| dc.subject | Nerve conduit | en |
| dc.subject | Schwann cell | en |
| dc.subject | Laser micromachining | en |
| dc.subject | Soft lithography | en |
| dc.subject | Electrospinning | en |
| dc.subject | Mesenchymal stem cell | en |
| dc.subject | Microfluidic system | en |
| dc.title | 微奈米技術應用於神經再生研究 | zh_TW |
| dc.title | The Application of Micro/nanotechniques and Approaches
in Studying of Nerve Regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭宏志,鍾次文,吳信志,林劭品 | |
| dc.subject.keyword | 組織工程,神經再生,軟蝕刻技術,電紡織技術,間葉幹細胞,微流道系統,轉分化,聚己內酯,微環境,神經導管,微接觸式印刷技術,許旺氏細胞, | zh_TW |
| dc.subject.keyword | Laser micromachining,Soft lithography,Electrospinning,Mesenchymal stem cell,Microfluidic system,Transdifferentiation,Polycaprolactone,Microenvironment,Nerve conduit,Microcontact printing,Schwann cell, | en |
| dc.relation.page | 202 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-01-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 31.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
