Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑
dc.contributor.authorDe-Yao Wangen
dc.contributor.author王得耀zh_TW
dc.date.accessioned2021-06-15T00:28:17Z-
dc.date.available2009-02-03
dc.date.copyright2009-02-03
dc.date.issued2009
dc.date.submitted2009-01-21
dc.identifier.citationChapter 1
1. Langer R, Vacanti JP. Tissue Engineering. Science 1993 May; 260(5110):
920-926.
2. Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue
engineering. Pharm Res 2000;17(5):497-504.
3. Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng
2003;9:S5-S15.
4. Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue
engineering. Part II. Rapid prototyping techniques. Tissue Eng 2002
Feb;8(1):1-11.
5. Schmidt CE, Leach JB. Neural tissue engineering: Strategies for repair and
regeneration. Annu Rev Biomed Eng 2003;5:293-347.
6. Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol
Biosci 2006 Jan;6(1):13-26.
7. Huang YC, Huang YY. Biomaterials and strategies for nerve regeneration. Artif
Organs 2006 Jul;30(7):514-522.
8. Lietz M, Ullrich A, Schulte-Eversum C, Oberhoffner S, Fricke C, Muller HW,
et al. Physical and biological performance of a novel block copolymer nerve
guide. Biotechnol Bioeng 2006 Jan;93(1):99-109.
9. Huang YC, Huang YY, Huang CC, Liu HC. Manufacture of porous polymer
nerve conduits through a lyophilizing and wire-heating process. J Biomed Mater
Res Part B 2005 Jul;74B(1):659-664.
10. Yang Y, De Laporte L, Rives CB, Jang JH, Lin WC, Shull KR, et al.
Neurotrophin releasing single and multiple lumen nerve conduits. J Control
Release 2005 Jun;104(3):433-446.
11. Bellamkonda RV. Peripheral nerve regeneration: An opinion on channels,
scaffolds and anisotropy. Biomaterials 2006 Jul;27(19):3515-3518.
12. Komiyama T, Nakao Y, Toyama Y, Asou H, Vacanti CA, Vacanti MP. A novel
technique to isolate adult Schwann cells for an artificial nerve conduit. J
Neurosci Methods 2003 Jan;122(2):195-200.
13. Guenard V, Kleitman N, Morrissey TK, Bunge RP, Aebischer P. Syngeneic
Schwann-Cells Derived from Adult Nerves Seeded in Semipermeable Guidance
Channels Enhance Peripheral-Nerve Regeneration. J Neurosci 1992
Sep;12(9):3310-3320.
14. Rodriguez FJ, Verdu E, Ceballos D, Navarro X. Nerve guides seeded with autologous Schwann cells improve nerve regeneration. Exp Neurol 2000
Feb;161(2):571-584.
15. Oudega M, Moon LDF, Leme RJD. Schwann cells for spinal cord repair.
Brazilian J Med Biol Res 2005 Jun;38(6):825-835.
16. Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H. Peripheral nerve tissue
engineering: Autologous Schwann cells vs. transdifferentiated mesenchymal
stem cells. Tissue Eng 2006 Jun;12(6):1451-1465.
17. Chen ZL, Strickland S. Laminin gamma 1 is critical for Schwann cell
differentiation, axon myelination, and regeneration in the peripheral nerve. J
Cell Biol 2003 Nov;163(4):889-899.
18. Oyane A, Uchida M, Ito A. Laminin-apatite composite coating to enhance cell
adhesion to ethylene-vinyl alcohol copolymer. J Biomed Mater Res Part A 2005
Feb;72A(2):168-174.
19. Gawlik KI, Li JY, Petersen A, Durbeej M. Laminin alpha 1 chain improves
laminin alpha 2 chain deficient peripheral neuropathy. Hum Mol Genet 2006
Sep;15(18):2690-2700.
20. Wen XJ, Tresco PA. Effect of filament diameter and extracellular matrix
molecule precoating on neurite outgrowth and Schwann cell behavior on
multifilament entubulation bridging device in vitro. J Biomed Mater Res Part A
2006 Mar;76A(3):626-637.
21. Jansen K, van der Werff JFA, van Wachem PB, Nicolai JPA, de Leij L, van Luyn
MJA. A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue
reactions, and degradation in the rat. Biomaterials 2004 Feb;25(3):483-489.
22. Ahmed Z, Underwood S, Brown RA. Nerve guide material made from
fibronectin: Assessment of in vitro properties. Tissue Eng 2003
Apr;9(2):219-231.
23. Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS. An in vivo evaluation
of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit
material. Biomaterials 2005 Jun;26(18):3911-3918.
24. Chen MH, Chen PR, Chen MH, Hsieh ST, Huang JS, Lin FH. An in vivo study
of tricalcium phosphate and glutaraldehyde crosslinking gelatin conduits in
peripheral nerve repair. J Biomed Mater Res Part B 2006 Apr;77B(1):89-97.
25. Mosahebi A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix
improves peripheral nerve regeneration in tissue-engineered conduits. Tissue
Eng 2003 Apr;9(2):209-218.
26. Willenberg BJ, Hamazaki T, Meng FW, Terada N, Batich C. Self-assembled
copper-capillary alginate gel scaffolds with oligochitosan support embryonic
stem cell growth. J Biomed Mater Res Part A 2006 Nov;79A(2):440-450.
27. Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J, Tuszynski MH. Templated
agarose scaffolds support linear axonal regeneration. Tissue Eng 2006
Oct;12(10):2777-2787.
28. Stokols S, Tuszynski MH. The fabrication and characterization of linearly
oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 2004
Dec;25(27):5839-5846.
29. Stokols S, Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels
stimulate and guide linear axonal growth following spinal cord injury.
Biomaterials 2006 Jan;27(3):443-451.
30. Dodla MC, Bellamkonda RV. Anisotropic scaffolds facilitate enhanced neurite
extension in vitro. J Biomed Mater Res Part A 2006 Aug;78A(2):213-221.
31. Ao Q, Wang AJ, Cao WL, Zhang L, Kong LJ, He Q, et al. Manufacture of
multimicrotubule chitosan nerve conduits with novel molds and
characterization in vitro. J Biomed Mater Res Part A 2006 Apr;77A(1):11-18.
32. Wang AJ, Ao Q, Cao WL, Yu MZ, He Q, Kong LJ, et al. Porous chitosan tubular
scaffolds with knitted outer wall and controllable inner structure for nerve
tissue engineering. J Biomed Mater Res Part A 2006 Oct;79A(1):36-46.
33. Ide C. Peripheral nerve regeneration. Neurosci Res 1996;25(2):101-121.
34. Evans GRD. Challenges to nerve regeneration. Semin Surg Oncol 2000
Oct-Nov;19(3):312-318.
35. Nomura H, Tator CH, Shoichet MS. Bioengineered strategies for spinal cord
repair. J Neurotrauma 2006 Mar-Apr;23(3-4):496-507.
36. Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, et al. Aligned
electrospun nanofibers specify the direction of dorsal root ganglia neurite
growth. J Biomed Mater Res Part A 2007 Dec;83A(3):636-645.
37. Chew SY, Mi RF, Hoke A, Leong KW. Aligned protein-polymer composite fibers
enhance nerve regeneration: A potential tissue-engineering platform. Adv Funct
Mater 2007 May;17(8):1288-1296.
38. McKenzie JL, Waid MC, Shi RY, Webster TJ. Decreased functions of astrocytes
on carbon nanofiber materials. Biomaterials 2004;25(7-8):1309-1317.
39. Zhang N, Zhang CH, Wen XJ. Fabrication of semipermeable hollow fiber
membranes with highly aligned texture for nerve guidance. J Biomed Mater Res
Part A 2005 Dec;75A(4):941-949.
40. Phillips JB, Bunting SCJ, Hall SM, Brown RA. Neural tissue engineering: A
self-organizing collagen guidance conduit. Tissue Eng 2005
Sep;11(9-10):1611-1617.
41. Sonn M, Feist WM. Prototype flexible microelectrode array for
implant-prosthesis applications. Med Biol Eng 1974;12(6):778-791.
42. Mercer HD, White RL. Photolithographic fabrication and physiological
performance of micro-electrode arrays for neural stimulation. IEEE Trans
Biomed Eng 1978;25(6):494-500.
43. Connolly P, Moores GR, Monaghan W, Shen J, Britland S, Clark P.
Microelectronic and nanoelectronic interfacing techniques for biologicalsystems.
Sens Actuator B-Chem 1992;6(1-3):113-121.
44. Hoshino T, Kawamori M, Suzuki T, Matsui S, Mabuchi K. Three-dimensional
and multimaterial microfabrication using focused-ion-beam chemical-vapor
deposition and its application to processing nerve electrodes. J Vac Sci Technol B
2004;22(6):3158-3162.
45. Muthuswamy J, Okandan M, Jain T, Gilletti A. Electrostatic microactuators for
precise positioning of neural microelectrodes. IEEE Trans Biomed Eng
2005;52(10):1748-1755.
46. Yagi T, Watanabe M, Ohnishi Y, Mukai T. Bio-hybrid retinal implant:
Micro/nano-fabrication of conductive polymer for molecular electrodes. Iovs
2005;46(Suppl. S):1089.
47. Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M. Growing axons on
nanometric patterns - a study of contact guidance. Society for Neuroscience
Abstract Viewer and Itinerary Planner 2003;2003:Abstract No. 33.17.
48. Rajnicek AM, Britland S, McCaig CD. Contact guidance of CNS neurites on
grooved quartz: influence of groove dimensions, neuronal age and cell type. J
Cell Sci 1997 Dec;110:2905-2913.
49. Xu XY, Yee WC, Hwang PYK, Yu H, Wan ACA, Gao SJ, et al. Peripheral nerve
regeneration with sustained release of poly(phosphoester) microencapsulated
nerve growth factor within nerve guide conduits. Biomaterials
2003;24(13):2405-2412.
50. Brannonpeppas L. Recent Advances on the Use of Biodegradable Microparticles
and Nanoparticles in Controlled Drug-Delivery. Int J Pharm 1995
Mar;116(1):1-9.
51. Bakken DE, Narasimhan SV, Burg KJL, Gao BZ. Laser micropatterning of
polylactide microspheres into neuronal-glial coculture for the study of axonal
regeneration. Macromol Symp 2005 Jul;227:335-344.
52. Goraltchouk A, Scanga V, Morshead CM, Shoichet MS. Incorporation of
protein-eluting microspheres into biodegradable nerve guidance channels for
controlled release. J Control Release 2006 Jan;110(2):400-407.
53. Chang WC, Keller CG, Sretavan DW. Isolation of neuronal substructures and
precise neural microdissection using a nanocutting device. J Neurosci Methods
2006;152(1-2):83-90.
Chapter 2
1. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: Stem cells and
their niche. Cell 2004 Mar;116(6):769-778.
2. Arai F, Hirao A, Suda T. Regulation of hematopoietic stem cells by the niche.
Trends Cardiovasc Med 2005 Feb;15(2):75-79.
3. Yu HM, Meyvantsson I, Shkel IA, Beebe DJ. Diffusion dependent cell behavior
in microenvironments. Lab Chip 2005;5(10):1089-1095.
4. Sands RW, Mooney DJ. Polymers to drect cell fate by controlling the
microenvironment. Curr Opin Biotechnol 2007 Oct;18(5):448-453.
5. Aigner T, Stove J. Collagens - major component of the physiological cartilage
matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv
Drug Deliv Rev 2003 Nov;55(12):1569-1593.
6. Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in
preservation of cellular phenotype: cocultivation of hepatocytes and
nonparenchymal cells. Faseb J 1999 Nov;13(14):1883-1900.
7. Alexanian AR. Neural stem cells induce bone-marrow-derived mesenchymal
stem cells to generate neural stem-like cells via juxtacrine and paracrine
interactions. Exp Cell Res 2005;310(2):383-391.
8. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout
forebrain and cerebellum, and they differentiate into astrocytes after injection
into neonatal mouse brains. Proc Natl Acad Sci U S A 1999;96(19):10711-10716.
9. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B.
Plasticity of cultured mesenchymal stem cells: Switch from nestin-positive to
excitable neuron-like phenotype. Stem Cells 2005 Mar;23(3):392-402.
10. Walker GM, Zeringue HC, Beebe DJ. Microenvironment design considerations
for cellular scale studies. Lab Chip 2004;4(2):91-97.
11. Pirone DM, Chen CS. Strategies for engineering the adhesive microenvironment.
J Mammary Gland Biol Neoplasia 2004 Oct;9(4):405-417.
12. Park H, Cannizzaro C, Vunjak-Novakovic G, Langer R, Vacanti CA, Farokhzad OC. Nanofabrication and microfabrication of functional materials for tissue
engineering. Tissue Eng 2007;13:1867-1877.
13. Fogarty BA, Heppert KE, Cory TJ, Hulbutta KR, Martin RS, Lunte SM. Rapid
fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis
devices using CO2 laser ablation. Analyst 2005;130(6):924-930.
14. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells:
Nature, biology, and potential applications. Stem Cells 2001;19(3):180-192.
15. Phinney DG. Building a consensus regarding the nature and origin of
mesenchymal stem cells. Journal of Cellular Biochemistry 2002:7-12.
16. Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem
cells - a critical review. APMIS 2005;113(11-12):831-844.
17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause
DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells.
The International Society for Cellular Therapy position statement. Cytotherapy
2006;8(4):315-317.
18. Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Reagan CR, et al.
Mesenchyaml stem-cells reside within the connective tissues of many organs.
Dev Dyn 1995;202(2):137-144.
19. Phinney DG, Prockop DJ. Concise review: Mesenchymal stem/multipotent
stromal cells: The state of transdifferentiation and modes of tissue repair -
Current views. Stem Cells 2007;25:2896-2902.
20. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells
of the adult mammaliam centeral-nervous-system. Science
1992;255(5052):1707-1710.
21. Ray J, Gage FH. Differential properties of adult rat and mouse brain-derived
neural stem/progenitor cells. Molecular and Cellular Neuroscience
2006;31(3):560-573.
22. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone-marrow
mesenchymal stem-cells exposed to 5-Azacytidine. Muscle Nerve 1995
Dec;18(12):1417-1426.
23. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li BS, et al. Bone
marrow cells regenerate infarcted myocardium. Nature 2001
Apr;410(6829):701-705.
24. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al.
Bone marrow as a potential source of hepatic oval cells. Science 1999
May;284(5417):1168-1170.
25. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and
macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 1997
Apr;94(8):4080-4085.
26. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and
migration of human bone marrow stromal cells implanted in the brains of albino
rats - similarities to astrocyte grafts. Proc Natl Acad Sci U S A 1998
Mar;95(7):3908-3913.
27. Black IB, Woodbury D. Adult rat and human bone marrow stromal stem cells
differentiate into neurons. Blood Cells Mol Dis 2001 May-Jun;27(3):632-636.
28. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et
al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp
Neurol 2000 Aug;164(2):247-256.
29. Abouelfetouh A, Kondoh T, Ehara K, Kohmura E. Morphological differentiation
of bone marrow stromal cells into neuron-like cells after co-culture with
hippocampal slice. Brain Res 2004 Dec;1029(1):114-119.
30. Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, et al. Brain
from bone: Efficient 'meta-differentiation' of marrow stroma-derived mature
osteoblasts to neurons with Noggin or a demethylating agent. Differentiation
2001 Oct;68(4-5):235-244.
31. Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD,
Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from
adult marrow (vol 418, pg 41, 2002). Nature 2007 Jun;447(7146):879-880.
32. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G.
Adipose-derived stem cells differentiate into a Schwann cell phenotype and
promote neurite outgrowth in vitro. Exp Neurol 2007 Oct;207(2):267-274.
33. Scuteri A, Cassetti A, Tredici G. Adult mesenchymal stem cells rescue dorsal root
ganglia neurons from dying. Brain Res 2006 Oct;1116:75-81.
34. Folch A, Toner M. Microengineering of cellular interactions. Annu Rev Biomed
Eng 2000;2:227-+.
35. Tsai RYL, McKay RDG. Cell contact regulates fate choice by cortical stem cells.
J Neurosci 2000;20(10):3725-3735.
36. Johe KK, Hazel TG, Muller T, DugichDjordjevic MM, McKay RDG. Single
factors direct the differentiation of stem cells from the fetal and adult central
nervous system. Genes Dev 1996;10(24):3129-3140.
37. Wachs FP, Couillard-Despres S, Engelhardt M, Wilhelm D, Ploetz S, Vroemen M,
et al. High efficacy of clonal growth and expansion of adult neural stem cells.
Lab Invest 2003;83(7):949-962.
38. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine
mesenchymal stem cells into multiple cell-types under minimal damage
conditions. J Cell Sci 2004 Nov;117(23):5655-5664.
39. West MJ, Slomianka L, Gundersen HJG. Unbiased stereological estimation of the
total number of neurons in the subdivisions of the rat hippocampus using the
optical fractionator.. Anat Rec 1991 Dec;231(4):482-497.
40. Gundersen HJG, Jensen EB. The efficiency of systematic-sampling in stereology
and its prediction. J Microsc-Oxf 1987 Sep;147:229-263.
41. Yen MH, Cheng JY, Wei CW, Chuang YC, Young TH. Rapid cell-patterning and
microfluidic chip fabrication by crack-free CO2 laser ablation on glass. J
Micromech Microeng 2006 Jul;16(7):1143-1153.
42. Bowden M, Geschke O, Kutter JP, Diamond D. CO2 laser microfabrication of an
integrated polymer microfluidic manifold for the determination of phosphorus.
Lab Chip 2003;3(4):221-223.
43. Cheng JY, Yen MH, Wei CW, Chuang YC, Young TH. Crack-free direct-writing
on glass using a low-power UV laser in the manufacture of a microfluidic chip. J
Micromech Microeng 2005 Jun;15(6):1147-1156.
44. Yuan DJ, Das S. Experimental and theoretical analysis of direct-write laser
micromachining of polymethyl methacrylate by CO2 laser ablation. J Appl Phys
2007;101(2).
45. Song SJ, Sanzhez-Ramos J. Brain as the Sea of Marrow. Exp Neurol
2003;184(1):54-60.
46. Lee JY, Jones C, Zern MA, Revzin A. Analysis of local tissue-specific gene
expression in cellular micropatterns. Anal Chem 2006 Dec;78(24):8305-8312.
47. Hainfellner JA, Voigtlander T, Strobel T, Mazal PR, Maddalena AS, Aguzzi A, et
al. Fibroblasts can express glial fibrillary acidic protein (GFAP) in vivo. J
Neuropathol Exp Neurol 2001;60(5):449-461.
48. Egerbacher M, Krestan R, Bock P. Morphology, histochemistry, and
differentiation of the cats epiglottic cartilage - a supporting organ composed of
elastic cartilage, fibrous cartilage, myxoid tissue, and fat tissue. Anat Rec
1995;242(4):471-482.
Chapter 3
1. Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenstrom P. Electrospinning of
highly porous scaffolds for cartilage regeneration. Biomacromolecules 2008
Mar;9(3):1044-1049.
2. Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, et al.
Characterisation of electrospun polystyrene scaffolds for three-dimensional in
vitro biological studies. Biomaterials 2006 Jun;27(16):3136-3146.
3. Li JX, He AH, Zheng JF, Han CC. Gelatin and gelatin-hyaluronic acid
nanofibrous membranes produced by electrospinning of their aqueous solutions.
Biomacromolecules 2006 Jul;7(7):2243-2247.
4. Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL. Cross-linking
electrospun type II collagen tissue engineering scaffolds with carbodiimide in
ethanol. Tissue Eng 2007;13:1593-1605.
5. Ji Y, Ghosh K, Shu XZ, Li BQ, Sokolov JC, Prestwich GD, et al. Electrospun
three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 2006
Jul;27(20):3782-3792.
6. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ. Electrospun
chitosan-based nanofibers and their cellular compatibility. Biomaterials 2005
Nov;26(31):6176-6184.
7. Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Characterization
of the surface biocompatibility of the electrospun PCL-collagen nanofibers using
fibroblasts. Biomacromolecules 2005 Sep-Oct;6(5):2583-2589.
8. Zhang YZ, Ouyang HW, Lim CT, Ramakrishna S, Huang ZM. Electrospinning
of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater
Res Part B 2005 Jan;72B(1):156-165.
9. Doshi J, Reneker DH. Electrospinning Process and Applications of Electrospun
Fibers. J Electrost 1995 Aug;35(2-3):151-160.
10. Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid
droplets in electrospinning of nanofibers. J Appl Phys 2001
Nov;90(9):4836-4846.
11. Li D, McCann JT, Xia YN. Use of electrospinning to directly fabricate hollow
nanofibers with functionalized inner and outer surfaces. Small 2005
Jan;1(1):83-86.
12. Zhang YZ, Feng Y, Huang ZM, Ramakrishna S, Lim CT. Fabrication of porous
electrospun nanofibres. Nanotechnology 2006 Feb;17(3):901-908.
13. Cui WG, Li XH, Zhou SB, Weng J. Investigation on process parameters of
electrospinning system through orthogonal experimental design. J Appl Polym
Sci 2007;103(5):3105-3112.
14. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning.
Polymer 1999 Jul;40(16):4585-4592.
15. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables
on the morphology of electrospun nanofibers and textiles. Polymer 2001
Jan;42(1):261-272.
16. Borg E, Frenot A, Walkenstrom P, Gisselfalt K, Gretzer C, Gatenholm P.
Electrospinning of degradable elastomeric nanofibers with various morphology
and their interaction with human fibroblasts. J Appl Polym Sci
2008;108:491-497.
17. Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK.
Mechano-morphological studies of aligned nanofibrous scaffolds of
polycaprolactone fabricated by electrospinning. J Biomater Sci-Polym Ed
2006;17(9):969-984.
18. Katta P, Alessandro M, Ramsier RD, Chase GG. Continuous electrospinning of
aligned polymer nanofibers onto a wire drum collector. Nano Lett 2004
Nov;4(11):2215-2218.
19. Sarkar S, Deevi S, Tepper G. Biased AC electrospinning of aligned polymer
nanofibers. Macromolecular Rapid Communications 2007;28:1034-1039.
20. Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds
with controlled fiber orientation. Tissue Eng 2007;13:1845-1866.
21. Holzmelster A, Rudisile M, Greiner A, Wendorff JH. Structurally and chemically
heterogeneous nanofibrous nonwovens via electrospinning. Eur Polym J
2007;43:4859-4867.
22. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for
tissue engineering applications: A review. Tissue Eng 2006
May;12(5):1197-1211.
23. Park KE, Kang HK, Lee SJ, Min BM, Park WH. Biomimetic nanofibrous
scaffolds: Preparation and characterization of PGA/chitin blend nanofibers.
Biomacromolecules 2006 Feb;7(2):635-643.
24. Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: A
review of spinning methodologies. Tissue Eng 2006 Mar;12(3):435-447.
25. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via
electrospinning for enhanced cell attachment and proliferation. J Biomed Mater
Res Part B 2006 Aug;78B(2):283-290.
26. Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesionand proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone
scaffolds. Tissue Eng 2007;13(3):579-587.
27. Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, et al. Aligned
electrospun nanofibers specify the direction of dorsal root ganglia neurite growth.
J Biomed Mater Res Part A 2007 Dec;83A(3):636-645.
28. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, et al. Guidance
of glial cell. migration and axonal growth on electrospun nanofibers of
poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend.
Biomaterials 2007 Jul;28(19):3012-3025.
29. Xin XJ, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal
stem cells and induced chondrogenic and osteogenic lineages in electrospun
PLGA nanofiber scaffold. Biomaterials 2007;28(2):316-325.
30. Dang JM, Leong KW. Myogenic induction of aligned mesenchymal stem cell
sheets by culture on thermally responsive electrospun nanofibers. Adv Mater
2007;19:2775-+.
31. Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun
fibrous scaffolds on Schwann cell maturation. Biomaterials 2008;29:653-661.
32. Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing
differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell
Res 2007 May;313(9):1820-1829.
33. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine
mesenchymal stem cells into multiple cell-types under minimal damage
conditions. J Cell Sci 2004 Nov;117(23):5655-5664.
34. Hainfellner JA, Voigtlander T, Strobel T, Mazal PR, Maddalena AS, Aguzzi A, et
al. Fibroblasts can express glial fibrillary acidic protein (GFAP) in vivo. J
Neuropathol Exp Neurol 2001;60(5):449-461.
35. Egerbacher M, Krestan R, Bock P. Morphology, histochemistry, and
differentiation of the cats epiglottic cartilage - a supporting organ composed of
elastic cartilage, fibrous cartilage, myxoid tissue, and fat tissue. Anat Rec
1995;242(4):471-482.
36. Li N, Yang H, Lu LL, Duan CL, Zhao CL, Zhao HY. Spontaneous expression of
neural phenotype and NGF, TrkA, TrkB genes in marrow stromal cells. Biochem
Biophys Res Commun 2007;356(3):561-568.
37. Tseng PY, Chen CJ, Sheu CC, Yu CW, Huang YS. Spontaneous differentiation of
adult rat marrow stromal cells in a long-term culture. J Vet Med Sci
2007;69(2):95-102.
38. Lamoury FMJ, Croitoru-Lamoury J, Brew BJ. Undifferentiated mouse
mesenchymal stem cells spontaneously express neural and stem cell markersOct-4 and Rex-1. Cytotherapy 2006;8(3):228-242.
39. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal
stem cells spontaneously express neural proteins in culture and are neurogenic
after transplantation. Stem Cells 2006;24(4):1054-1064.
40. Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, et al.
Bone marrow-derived mesenchymal stem cells already express specific neural
proteins before any differentiation. Differentiation 2004;72(7):319-326.
Chapter 4
1. Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev 2003
Oct;13(5):543-550.
2. Beckstead BL, Santosa DM, Giachelli CM. Mimicking cell-cell interactions at
the biomaterial-cell interface for control of stem cell differentiation. J Biomed
Mater Res Part A 2006 Oct;79A(1):94-103.
3. Badylak SF. The extracellular matrix as a biologic scaffold material.Biomaterials 2007;28:3587-3593.
4. Isenberg BC, Wong JY. Building structure into engineered tissues. Mater Today
2006 Dec;9(12):54-60.
5. Ma ZW, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as
tissue-engineering scaffolds. Tissue Eng 2005 Jan;11(1-2):101-109.
6. Han D, Gouma P-I. Electrospun bioscaffolds that mimic the topology of
extracellular matrix. Nanomedicine-Nanotechnology Biology and Medicine
2006;2(1):37-41.
7. Pirone DM, Chen CS. Strategies for engineering the adhesive microenvironment.
J Mammary Gland Biol Neoplasia 2004 Oct;9(4):405-417.
8. Shin H. Fabrication methods of an engineered microenvironment for analysis of
cell-biomaterial interactions. Biomaterials 2007 Jan;28(2):126-133.
9. Kim TG, Park TG. Biomimicking extracellular matrix: Cell adhesive RGD
peptide modified electrospun poly( D,L-lactic-Co-glycolic acid) nanofiber mesh.
Tissue Eng 2006 Feb;12(2):221-233.
10. Prestwich GD. Simplifying the extracellular matrix for 3-d cell culture and tissue
engineering: A pragmatic approach. J Cell Biochem 2007;101:1370-1383.
11. Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL. Cross-linking
electrospun type II collagen tissue engineering scaffolds with carbodiimide in
ethanol. Tissue Eng 2007;13:1593-1605.
12. Casper CL, Yang WD, Farach-Carson MC, Rabolt JF. Coating electrospun
collagen and gelatin fibers with perlecan domain I for increased growth factor
binding. Biomacromolecules 2007 Apr;8(4):1116-1123.
13. Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Crosslinking of
the electrospun gelatin nanofibers. Polymer 2006 Apr;47(8):2911-2917.
14. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of
gelatin nanofiber prepared from gelatin-formic acid solution. Polymer
2005;46(14):5094-5102.
15. Zhang YZ, Ouyang HW, Lim CT, Ramakrishna S, Huang ZM. Electrospinning
of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater
Res Part B 2005 Jan;72B(1):156-165.
16. Ji Y, Ghosh K, Shu XZ, Li BQ, Sokolov JC, Prestwich GD, et al. Electrospun
three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 2006
Jul;27(20):3782-3792.
17. Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Curr
Opin Colloid Interface Sci 2003 Mar;8(1):64-75.
18. Doshi J, Reneker DH. Electrospinning Process and Applications of Electrospun
Fibers. J Electrost 1995 Aug;35(2-3):151-160.19. Lebourg M, Serra RS, Estelles JM, Sanchez FH, Ribelles JLG, Anton JS.
Biodegradable polycaprolactone scaffold with controlled porosity obtained by
modified particle-leaching technique. J Mater Sci-Mater Med 2008
May;19(5):2047-2053.
20. Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, et al.
The potential to improve cell infiltration in composite fiber-aligned electrospun
scaffolds by the selective removal of sacrificial fibers. Biomaterials
2008;29:2348-2358.
21. Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing
differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell
Res 2007 May;313(9):1820-1829.
22. Eichhorn SJ, Sampson WW. Statistical geometry of pores and statistics of porous
nanofibrous assemblies. J R Soc Interface 2005 Sep;2(4):309-318.
23. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning.
Polymer 1999 Jul;40(16):4585-4592.
24. Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: A
review of spinning methodologies. Tissue Eng 2006 Mar;12(3):435-447.
25. Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK.
Mechano-morphological studies of aligned nanofibrous scaffolds of
polycaprolactone fabricated by electrospinning. J Biomater Sci-Polym Ed
2006;17(9):969-984.
26. Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in
electrospun fiber via engineered porosity. Tissue Eng 2007 Sep;13(9):2249-2257.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41705-
dc.description.abstract本研究將精密加工中的雷射雕刻技術 (Laser micromachining)、半導體製程衍生出的軟蝕刻技術 (Soft lithography) 以及奈米科技中的電紡織技術 (Electrospinning) 應用於神經再生領域,用來評估誘導的細胞、製備多功能性的支架、發展新式的導管加工方式以及提供排列的訊息。
為了提供神經再生研究中新的細胞來源途徑,我們分別利用生物性和物理性的方式,將間葉幹細胞 (Mesenchymal stem cell) 誘導分化成類神經細胞。首先,應用雷射雕刻技術去製作用來排列細胞的微流道系統 (Microfluidic system)。再利用微流道系統將綠色螢光基因轉殖小鼠的間葉幹細胞和紅色螢光蛋白基因轉殖小鼠的神經細胞 (Neuron cell) 區隔排列在玻片上,進行共同培養,來探討單純神經細胞的旁分泌(Paracrine)對於間葉幹細胞轉分化
(Transdifferentiation) 的影響。發現利用該系統可以提供不具有擴散障礙的共同培養平台,讓培養其中的間葉幹細胞有較高的神經相關蛋白表現,並且在區隔排列之下,兩種細胞的融合現象 (Cell fusion) 更容易被觀察。此外,利用電紡織技術來製備奈米尺寸的聚己內酯 (Polyε-Caprolactone) 細絲,以物理結構來誘導分化間葉幹細胞,使該細胞具有類神經細胞的型態表現,以及表現神經相關蛋白和增加神經相關基因的表現量。
再者,為了提供誘導細胞具有孔洞性的仿生基材,我們改良傳統的電紡織技術,製備具有微米尺寸孔洞的電紡織支架,用來模擬相似於生理微環境 (Microenvironment) 的結構。首先,應用改良式電紡織技術結合顆粒蝕刻技術 (Particle leaching),同時製備並且均勻混合電紡織明膠 (Gelatin) 細絲以及聚己內酯顆粒,當扮演成孔劑(Pore generator)的聚己內酯溶解後,留下孔洞提高了材料的孔隙度以及細胞對材料的穿透性。此外,利用幾丁聚醣 (Chitosan)
水溶液收集具有物理性誘導分化潛力的電紡織聚己內酯細絲,在冷凍乾燥(Lyophilizing) 之後形成同時具有微米尺寸孔洞以及奈米尺寸紋理的電紡織支架。
最後,我們提供創新的加工方式將多孔性的仿生基材製備成神經導管,以及使用排列生物分子來引導細胞生長的方向。首先,應用雷射雕刻技術並且結合電腦輔助設計以及電腦輔助製造,可以快速、精確、客製化、批次量造地製造神經導管 (Nerve conduit),使得多孔性的高分子材料不會在導管加工過程中坍塌變形。並且應用軟蝕刻技術去製作具有微米尺寸結構的次級神經導管模具,再利用高分子灌模、成型、脫模之後,以共軸方式將次級神經導管堆疊成神經導管。以及應用軟蝕刻技術製作軟性結構將生物分子層黏連蛋白 (Laminin) 以微接觸式印刷技術 (Microcontact printing) 拓印在細胞培養之基材上,可以引導許旺氏細胞 (Schwann cell) 依特定方向性生長,用來探討訊息和細胞間的交互作用。
zh_TW
dc.description.abstractThis work demonstrates how micro/nanotechniques, laser micromachining, soft lithography, and electrospining define material properties and applications at the nanoscale or microscale for broad capabilities in the development of processes of nerve regeneration such as needs of induced cell, engineered scaffold, and patterned signal.
To obtain alter neuron cell resources, induced cues of cocultured neuron and physical structure were used to transdifferentiate mesenchymal stem cells (MSCs) into
neuron-like cells. Green fluorescent protein expressing (GFP+) mMSCs and red fluorescent protein expressing (RFP+) neuron cells were microfluidic patterned separately on the same cover glass. When cocultured with neuron cells, more mMSCs expressed neural markers, Beta tubulin III and Glial fibrillary acidic protein (GFAP) in the microfluidic patterned coculture system than cells in a transwell system. Also, two reporters, GFP and RFP, provide us a way to assay that a very few case of fused cell happened. The microfluidic patterned coculture system facilitates to
evaluate the plasticity and behavior of cells and dynamic cross-talks between cells. Besides, aligned and random collected electrospun polycaprolactone (PCL) fibers
were fabricated to provide not only contact guidance but also nanometric cues to affect cell fate. Compared to mMSCs cultured on cover glass, cells expressed protein
level of Beta tubulin III and GFAP, and even higher mRNA level of Nestin, Beta tubulin III, TH, Synapsin, GFAP, and MBP. Nanometric topographies used to change cell functions are a way to evaluate cell plasticity and cell-biomaterial interactions.
Furthermore, to provide the induced cell with physical supporting and potential transdifferentiated cues, particle leaching and lyophilizing were introduced into
electrospinning to fabricate engineered scaffold with electrospun fibers and microstructured pores. We used the rotating multichannel electrospinning (RM-ELSP)
to produce gelatin electrospun scaffolds with controllable porosity. Gelatin electrospun fibers and PCL microparticles were formed and blended simultaneously using the RM-ELSP. The composites were turned into the porous electrospun
scaffolds with the use of acetone to leach out PCL microparticles and leave space for cell ingrowth to improve its poor porosity. Besides, a chitosan solution as a collector of electrospun PCL fibers is used to support the fibers after changed it to be a porous sponge using lyophilizing. A chitosan/PCL composute, a porous chitosan sponge distributed electrospun PCL fibers within its microstructure, provided topographical cues on its surface to not only improve GFP+ mMSCs infiltration within the
electrospun scaffolds but also increase higher mRNA level of Nestin, TH, Synapsin, GFAP and MBP. It implied that nano-topographical cues in engineered scaffold have
a great potential to make mMSCs transdifferentiated into neuron-like cells.
Moreover, turning engineered scaffold to nerve conduits employed multiple channels and microstructure in their lumen surface and providing pattern signal to orient the
cell growth were considered also. We fabricated porous chitosan conduits employed designed patterns of engraved channels using the direct-write CO2 laser
micromachining. Laser micromachining allows us to shape various selected materials in the regions engraved with the designed patterns. Besides, we presented a new way
to fabricate nerve conduits using soft lithography and molding process. Afterwards the conduit subunit microfabrication, the conduit subunits were stacked coaxially to form a nerve conduit. Due to the precise capability and cost-effective of soft lithography, it
is a well-suited way for us to fabricate nerve conduits having complex designs. Finally, we demonstrated the efficacy of microcontact printed laminin to align and
redirect Schwann cells growth; and therefore, microcontact printing is able to pattern cell-recognition molecules on scaffolds for guided cell growth in tissue regeneration.
These micro- and nanotechniques and approaches, laser micromachining, soft lithography, and electrospinning, are useful in advanced material and biological studies in tissue engineering such as change of functions and behaviors of cells to be a new resource of induced neuron cells; development of engineered scaffolds with properties of scaffold size, network interconnectivity, and geometrical designs; and establishment of artificial microenvironment composed of biochemical, physical, and topographical cues used for regenerated cell adherence, viability, proliferation, and differentiation to integrate the nerve regeneration processes.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:28:17Z (GMT). No. of bitstreams: 1
ntu-98-F93548019-1.pdf: 31846672 bytes, checksum: 156569064afd8f4208f615a8e8cb5bee (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgement I
Abstract (Chinese) II
Abstract IV
Table of Contents VIII
List of Figures XIII
List of Tables XV
List of Publications XVI
List of Patents XVII
Chapter 1: Background and literature review 1
1.1. Tissue engineering triad 1
1.1.1. Cell 2
1.1.2. Signal 3
1.1.3. Scaffold 5
1.2. Nerve regeneration 9
1.2.1. Nervous system 9
1.2.2. Nerve injury 11
1.2.3. Nerve repair using tabulation 13
1.3. Challenge in nerve regeneration 14
1.4. Micro/nanotechniques and approaches in nerve regeneration 15
1.5. References 21
PART I: INDUCED CELL 25
Chapter 2: Evaluation of transdifferentiated from mesenchymal stem cells to
neuron-like cells using microfluidic patterned coculture system……...26
2.1. Introduction 27
2.1.1. Mesenchymal stem cell 29
2.1.2. Neuron stem cell 31
2.1.3. Mesenchymal stem cell and neuron cell interactions 33
2.1.3.1. MSCs transdifferentiated into neuron-like cells in vivo 34
2.1.3.2. MSCs transdifferentiated into neuron-like cells in vitro 34
2.1.3.3. Concerns of transdifferentiation 35
2.1.3.4. MSCs rescued dying neuron related cells 37
2.1.4. Microfluidic patterning 38
2.2. Materials and methods 40
2.2.1. Microfluidic patterning device fabrication 40
2.2.2. Primary culture of GFP+ mMSCs and RFP+ neuron cells 41
2.2.3. Microfluidic patterning 43
2.2.4. Immuno-cytochemistry analysis 44
2.2.5. Stereological cell count 45
2.3. Results 46
2.3.1. Microfluidic device 46
2.3.2. Differentiated neurons from neuron sphere 47
2.3.3. Cocultured MSCs and neuron cells 50
2.3.4. Neural markers expressed in mMSCs with and without
cell-cell contact induction 52
2.3.5. Cell fusion 56
2.4. Discussion 57
2.5. Conclusions 60
2.6. References 61
Chapter 3: Electrospun polycaprolactone fibers facilitated mesenchymal stem
cells to transdifferentiate into neuron-like cells 65
3.1. Introduction 66
3.2. Materials and methods 68
3.2.1. Electrospinning 68
3.2.2. MSCs isolation and culture 69
3.2.3. Morphology observations 70
3.2.4. Immuno-cytochemistry analysis 70
3.2.5. Quantitative real-time polymerase chain reaction 71
3.3. Results 73
3.3.1. PCL electrospun fibers and membrane 73
3.3.2. Induced elongation of GFP+ mMSCs along electrospun fibers 74
3.3.3. Living cell observation 76
3.3.4. Neural marker expressed GFP+ mMSCs 78
3.3.5. Quantitative real-time polymerase chain reaction 81
3.4. Discussion 83
3.5. Conclusions 85
3.6. References 86
PART II: ENGINEERED SCAFFOLD 90
Chapter 4: Fabricating microparticles/nanofibers composite and nanofiber scaffold
with controllable pore size via the rotating multichannel
electrospinning 91
4.1. Introduction 92
4.1.1. Electrospinning 94
4.1.2. Gelatin 98
4.1.3. Polycaprolactone 98
4.2. Materials and methods 99
4.2.1. Electrospinning 99
4.2.2. Glutaraldehyde vapor crosslinking 101
4.2.3. Pore formation 102
4.2.4. Degradation test 102
4.2.5. Fiber and cell morphology observations 103
4.2.6. Cell seeding and culture 103
4.2.7. Cell proliferation and cell toxicity assay 104
4.3. Results 105
4.3.1. Electrospinning of PCL and the PCL/gelatin composites 105
4.3.2. Glutaraldehyde vapor crosslinking and PCL leaching 109
4.3.3. Cell morphologies 111
4.3.4. Cell proliferation and total cell number assay 113
4.4. Discussion 114
4.5. Conclusion 117
4.6. References 117
Chapter 5: Microstructure of chitosan sponge blended with electrospun
polycaprolactone fibers facilitated neural differentiation of
mesenchymal stem cells 120
5.1. Introduction 121
5.2. Materials and methods 123
5.2.1. Electrospinning 123
5.2.2. Lyophilizing and neutralization of chitosan/PCL composites 124
5.2.3. Mesenchymal stem cell culture 125
5.2.4. Srtucture morphology 126
5.2.5. Quantitative real-time polymerase chain reaction 127
5.3. Results 128
5.3.1. Electrospinning of PCL 128
5.3.3. The chitosan/PCL composite 129
5.3.4. Observations of seeded cells within the chitosan sponge 132
5.3.5. Quantitative real-time polymerase chain reaction 133
5.4. Discussion 134
5.5. Conclusion 136
5.6. References 137
PART III: NERVE CONDUIT AND SIGNAL PATTERNING 139
Chapter 6: Manufacture of nerve conduits via the direct-write CO2 laser
micromachining 140
6.1. Introduction 141
6.1.1. Chitosan 144
6.1.2. Laser micromachining 145
6.2. Materials and methods 147
6.2.1. Preparation of chitosan sponge 147
6.2.2. Processes of laser micromachined conduits 147
6.2.3. Wire-heated conduit process 149
6.2.4. Conduit structures 149
6.2.5. Pore structure comparisons 150
6.3. Results 150
6.3.1. Laser micromachined conduit structure 150
6.3.2. Comparisons of pore structures 151
6.4. Discussion 153
6.5. Conclusion 156
6.6. References 157
Chapter 7: Fabricate coaxial stacked nerve conduits through soft lithography
and molding processes 160
7.1. Introduction 161
7.1.1. Soft lithography 163
7.2. Materials and methods 164
7.2.1. Lithographic processes 164
7.2.2. PDMS mold production 165
7.2.3. Conduit subunit production 165
7.2.4. Nerve conduit production 166
7.3. Results 166
7.3.1. PDMS mold production 166
7.3.2. Conduit subunit production 168
7.3.3. Coaxial sacking by rational symmetry 169
7.4. Discussion 171
7.5. Conclusion 172
7.6. References 173
Chapter 8: Microcontant printing (μCP) of laminin on oxygen plasma activated
substrates for alignment and morphology of Schwann cells 175
8.1. Introduction 176
8.1.1. Schwann cell 178
8.1.2. Plasma activation 180
8.2. Materials and methods 182
8.2.1. Elastomeric stamp preparation 182
8.2.2 Substrate preparation 185
8.2.3. Contact angle measurement before and after
oxygen plasma treatment 186
8.2.4. Microcontact printing 187
8.2.5. Primary culture of Schwann cell 187
8.3. Results 189
8.3.1. Effect of oxygen plasma treatment 189
8.3.2. Validation of the microcontact pattern 190
8.3.3. Orientation and morphology of Schwann cells
on micropatterned substrates 190
8.4. Discussion 192
8.5. Conclusion 194
8.6. References 195
Chapter 9: Conclusions 197
9.1. Conclusions 197
dc.language.isoen
dc.subject軟蝕刻技術zh_TW
dc.subject組織工程zh_TW
dc.subject神經再生zh_TW
dc.subject電紡織技術zh_TW
dc.subject間葉幹細胞zh_TW
dc.subject微流道系統zh_TW
dc.subject轉分化zh_TW
dc.subject聚己內酯zh_TW
dc.subject微環境zh_TW
dc.subject神經導管zh_TW
dc.subject微接觸式印刷技術zh_TW
dc.subject許旺氏細胞zh_TW
dc.subjectMicrocontact printingen
dc.subjectTransdifferentiationen
dc.subjectPolycaprolactoneen
dc.subjectMicroenvironmenten
dc.subjectNerve conduiten
dc.subjectSchwann cellen
dc.subjectLaser micromachiningen
dc.subjectSoft lithographyen
dc.subjectElectrospinningen
dc.subjectMesenchymal stem cellen
dc.subjectMicrofluidic systemen
dc.title微奈米技術應用於神經再生研究zh_TW
dc.titleThe Application of Micro/nanotechniques and Approaches
in Studying of Nerve Regeneration
en
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.oralexamcommittee鄭宏志,鍾次文,吳信志,林劭品
dc.subject.keyword組織工程,神經再生,軟蝕刻技術,電紡織技術,間葉幹細胞,微流道系統,轉分化,聚己內酯,微環境,神經導管,微接觸式印刷技術,許旺氏細胞,zh_TW
dc.subject.keywordLaser micromachining,Soft lithography,Electrospinning,Mesenchymal stem cell,Microfluidic system,Transdifferentiation,Polycaprolactone,Microenvironment,Nerve conduit,Microcontact printing,Schwann cell,en
dc.relation.page202
dc.rights.note有償授權
dc.date.accepted2009-01-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
31.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved