Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41666
標題: 有限溝通能力派屈網路之可達性分析
Reachability Analysis of Petri Nets with Limited Communication Capabilities
作者: Chien-Liang Chen
陳建良
指導教授: 顏嗣鈞
關鍵字: 可達性問題,擴增標示圖,無交談派屈網路,
Reachability Problem,Augmented Marked Graphs,Communication-Free Petri Nets,
出版年 : 2009
學位: 博士
摘要: 在各類的派屈網路上可達性分析是一個很重要的議題,它可以用來分析活性問題,
公平性問題,可控性問題以及模型檢驗問題。在派屈網路的各種不同分析技巧法方法
上,我們覺得加上正規方法是非常合適用來描述各種系統。模型檢驗是檢查系統是否滿
足行為的一種自動方法。使用模型檢驗的觀念,我們可以簡單描述許多問題並且解決這
些有趣的問題。
在這篇論文,我們先針對擴增標示圖來做探討。擴增標示圖可以被想成是標示圖的
一種延伸並使其允許資源共享的狀況。擴增標示圖可以有用的塑模及分析某一類的彈性
製造系統。就我們所知,在傳統的派屈網路的分析技巧中用來分析擴增標示圖是用虹吸
式(siphon)。在這篇論文裡面,我們利用整數線性規劃的方法來分析某一類的擴增標示
圖就是所謂的可分解的擴增標示圖。我們展示了在一個可分解的擴增標示圖的路徑中其
可達性的問題可以被看成是解整數線性規劃的一個問題。我們更進一步的把我們的方法
擴充使其可以應用到某一類的分支時間時序邏輯與線性時間時序邏輯的模型驗證上。此
外,我們展示了我們的方法可以應用到彈性製造系統上的幾個範例。
其次,我們針對各種有限溝通能力派屈網路來進行可達性之分析。對無交談派屈網
路之可達性問題複雜度的問題已知是NP的問題。在沒有同步機制之下,這樣的無交談派
屈網路能力是被受限制的。因此,很重要的問題是是否可以增加無交談派屈網路的描述
能力之下而不犧牲其分析能力。在這篇論文中,我們從可判定性及複雜度的觀點為出發
點,來研究分析幾類無交談派屈網路變體中的可達性問題。這幾類無交談談派屈網路變
體其中包括了”靜態優先”、”動態優先”、”狀態” 、”禁止器弧”以及”時間限制”
。對許多擴充式無交談派屈網路而言,可達性問題變成比較困難去分析。事實上,對狀態
擴充式無交談派屈網路中加入優先權或禁止器弧而言,可達性的問題變成是不可判定性。
對於基本無交談派屈網路的模型,如果動態優先關係被利用到變遷實施上,其可達性的問
題還是不可判定性。
Reachability analysis is key to the solutions of a variety of Petri net problems including
liveness, fairness, controllability, model checking and more. Among various analytical
techniques of Petri nets, we feel that the approach based on formal methods is most suitable
for flexible manufacturing systems. Model checking is an automatic technique for
verifying that a behavior holds for a model of a system. Using the concept of model
checking, it becomes feasible to describe and solve many interesting problems in practice.
In the thesis, we first investigate augmented marked graphs. Augmented marked
graphs (AMGs) can be thought of as extensions of marked graphs that allow resource
sharing. It has been shown that AMGs are useful for modeling and analyzing certain
types of flexible manufacturing systems. To our knowledge, the techniques developed
for analyzing AMGs are mostly based upon checking certain Petri net structures such as
siphons. This thesis exploits the integer linear programming approach for the analysis
of a subclass of AMGs called decomposable AMGs. We show that reachability between
two configurations of a decomposable AMG can be equated with solving an instance of
integer linear programming. We further extend our technique to model checking a type
of branching time temporal logics and a type of linear time temporal logics. Examples
arisen in flexible manufacturing systems are used to demonstrate the application of our
technique.
Next, we study that the reachability issue of various Petri nets with limited communication
capabilities. It is known that the reachability problem for communication-free
Petri nets is NP-complete. Lacking the synchronization mechanism, the expressive power
of communication-free Petri nets is somewhat limited. It is therefore important and interesting
to see whether the power of communication-free Petri nets can be enhanced
without sacrificing their analytical capabilities. As a first step towards this line of research,
our main concern is to investigate, from the decidability/complexity viewpoint,
the reachability problem for a number of variants of communication-free Petri nets, including
communication-free Petri nets augmented with ‘static priorities,’‘dynamic priorities,’
‘states’ ‘inhibitor arcs,’ and ‘timing constraints’. For most of the augmented
communication-free Petri nets, the reachability problem becomes undecidable for stateextended
communication-free Petri nets augmented with priority or inhibitor arcs. For the
basic model of communication-free Petri nets, the reachability problem is also undecidable
if a dynamic priority relation is imposed on transition firing.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41666
全文授權: 有償授權
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.01 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved